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ABSTRACT

The water reuse facilities of industrial parks face the challenge of managing a growing variety of wastewater sources as their inlet water.

Typically, this clustering outcome is designed by engineers with extensive expertise. This paper presents an innovative application of unsu-

pervised learning methods to classify inlet water in Chinese water reuse stations, aiming to reduce reliance on engineer experience. The

concept of ‘water quality distance’ was incorporated into three unsupervised learning clustering algorithms (K-means, DBSCAN, and

AGNES), which were validated through six case studies. Of the six cases, three were employed to illustrate the feasibility of the unsupervised

learning clustering algorithm. The results indicated that the clustering algorithm exhibited greater stability and excellence compared to both

artificial clustering and ChatGPT-based clustering. The remaining three cases were utilized to showcase the reliability of the three clustering

algorithms. The findings revealed that the AGNES algorithm demonstrated superior potential application ability. The average purity in six

cases of K-means, DBSCAN, and AGNES were 0.947, 0.852, and 0.955, respectively.
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HIGHLIGHTS

• Validation of three unsupervised learning clustering algorithms in six real cases.

• L2 distance improved based on water quality in the clustering algorithms.

• Practical engineering applications consideration.

• Machine clustering compared with human and ChatGPT’s clustering.

1. INTRODUCTION

Water scarcity has emerged as an increasingly pressing issue due to the continuous development of the global economy and
the impact of climate change (Lee & Jepson 2020; Verhuelsdonk et al. 2021). The Asia-Pacific region, in particular, faces the
challenge of limited water resources (UNESCO 2009). To ensure their sustainable development, industrial parks, as key con-
tributors to economic growth, must address water scarcity (Bauer et al. 2019). Wastewater reuse and management play vital

roles in alleviating the demand for water resources and addressing water quality degradation (Dairi et al. 2023). By efficiently
treating and reusing wastewater, industrial parks can mitigate water shortages and meet various needs, including irrigation
and industrial activities (Lahlou et al. 2021). Moreover, this approach can lead to reduced energy consumption and green-

house gas emissions, contributing to environmental sustainability (Chang et al. 2017).
A water reuse station, also known as a wastewater reclamation plant, refers to a facility that treats wastewater for reuse,

typically for the regeneration of water resources. These stations employ various technologies and processes to clean waste-

water to specific water quality standards, which are then used for purposes, such as flushing, irrigation, industrial
production, or other applications. Modern industrial parks increasingly prioritize clustering enterprises within the same
industrial chain and centralizing wastewater treatment and reuse to achieve economies of scale. However, this approach
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also introduces complexities in managing multiple streams of wastewater received by water reuse stations, as these waste-

water streams serve as the inlet water for reuse systems.
Figure 1 illustrates a typical water system for an industrial park’s water reuse facility. The inlet water of the water reuse

station consists of the effluent from each factory’s self-built sewage station, the wastewater from the domestic sewage plant

within the factory, as well as low-pollution effluents discharged by public infrastructures in the park (such as cooling
water and desalination stations). It may also include rainwater collected from drainage ponds.

There have been some studies on water source classification based on water quality. Sa’ad et al.’s (2022) research has
demonstrated that classifying different qualities of wastewater into multiple grades in industrial areas can lead to higher econ-

omic benefits for water reuse stations, while also reducing freshwater consumption. In Elsayed et al.’s (2022) research,
employing various machine learning methods to classify influent wastewater in sewage treatment plants facilitates swift
adjustment of subsequent operational parameters, thereby promoting optimized operation and effective management of

wastewater treatment facilities. Therefore, it is crucial to scientifically classify inlet water in reuse stations. Nonetheless,
the existence of numerous sources of wastewater poses a significant challenge in designing an efficient and cost-effective treat-
ment system.

However, numerous studies have been conducted on water quality classification in the field of environmental engineering,
with a predominant focus on the categorization of water quality levels within river basins. Most of these studies employ super-
vised learning using labeled data, such as the use of multi-layer perceptron-K nearest neighbors (MLP-kNN) for water quality

classification in Thailand’s Wang River (Northep et al. 2020) and fusion algorithms for water quality classification in the
Yellow River Delta wetlands (Zhao et al. 2023). Although the rise of artificial intelligence (AI) technology has led to its appli-
cation in simulating process conditions in certain water reuse units (Amitesh et al. 2023), there is a lack of research on the
classification of inlet water in reuse stations. The classification of inlet water represents an unsupervised learning process for

computers, given that each water reuse station possesses unique characteristics and lacks numerical boundaries for inlet
water clusters. Clustering algorithms serve as a type of unsupervised learning classification process and have been
implemented across various domains. Not only are they used extensively for processing a large number of samples and

data, such as image recognition analysis (Zhou et al. 2023), electronic text analysis (Pauletic et al. 2019), and network

Figure 1 | A typical water system of the reuse water stations’ inlet water.
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data analysis (Qiao et al. 2023), but they also find applications in specific environmental protection domains, including cli-

mate change analysis (Biabiany et al. 2020), identification of air pollution sources (Zhang & Yang 2022), water resources
management decisions (Sahraei & Asadzadeh 2021; Kumar et al. 2022), and environmental protection equipment design
(Lee et al. 2020).

This paper explores the application of unsupervised learning clustering algorithms to classify treated wastewater in indus-
trial parks, aiming to reduce construction and operation costs while unveiling objective mathematical principles. By
employing unsupervised learning methods to analyze extensive datasets, engineers can discern patterns and make more pre-
cise and rapid classification, regarding the behavior of diverse water sources within a treatment system.

2. MATERIALS AND METHODS

2.1. Datasets

When engineers design water reuse stations, the classification of inlet water quality is determined based on the analysis of
water quality data. Therefore, when applying unsupervised learning algorithms for clustering, it is essential to carefully

design the clustering feature set and select pertinent and concise indexes of water quality. Water reuse stations primarily
treat treated wastewater, and the discharge indexes for first- and second-class pollutants outlined in the ‘Integrated Waste-
water Discharge Standard (GB8978-1996)’ commonly serve as the discharge requirements of the upstream sewage station
for the reuse water system. Additionally, other crucial indexes, such as conductivity, hardness, and alkalinity, play a vital

role in membrane system design. These two components collectively constitute 37 indexes in the clustering feature set, as
listed in ‘Appendix A. Water Quality Distance Indexes and Index Benchmarks’. The data collected for a specific case only
include a subset of the 37 indicators, excluding other pollutants that are either absent or do not require removal at the

reuse station, or have no impact on the reuse system.
This study analyzed the inlet water of six reuse stations. The inlet water data from the water reuse stations of three industrial

parks were utilized as the preliminary research cases, which were from three industrial parks: JM, JDD, and FRX. Through

the analysis of these three cases, we established a definitive methodology for determining the optimal cluster number of var-
ious unsupervised clustering algorithms. Furthermore, the machine-generated clustering results were assessed in comparison
to those produced by human experts and a large-scale language model (ChatGPT), thereby validating the feasibility of unsu-
pervised learning clustering methodologies. Subsequently, three additional testing cases (ZL, HL, and FM) were employed to

further validate the effectiveness of the unsupervised clustering method. And the inlet water quality for each park was listed in
‘Appendix B, C, D, E, F, G’ (in supplementary materials, indexes not listed in the tables were considered to be 0). A concise
description of each industrial park is provided in Table S1 (in supplementary materials).

2.2. Clustering algorithms

To cluster the inlet water data from the three industrial parks, three unsupervised learning clustering algorithms were used: K-
means for prototype clustering (Jain & Dubes 1988), DBSCAN (Density-Based Spatial Clustering of Applications with Noise)
for density clustering (Ester et al. 1996), and AGNES (AGglomerative NESting) for condensed hierarchical clustering
(Kaufman & Rousseeuw 2009). The algorithms were implemented using Python programming language, utilizing the sklearn

module in Python for calculation processes.

2.3. Clustering performance evaluation

Appropriate indexes should be utilized to evaluate clustering results, which can be classified into internal and external
indexes. External indexes rely on known labels to assess the quality of clustering, while internal indexes solely utilize infor-

mation derived from the clustering process itself to evaluate its quality. The number of clusters in unsupervised learning,
particularly the K-means algorithm, was determined using external indexes in this study.

2.3.1. Internal indexes

In this study, several internal indexes (Liu et al. 2010) were employed, including the sum of squares due to error (SSE)
(Thorndike 1953), Silhouette coefficient (SC) (Rousseeuw 1987), and Calinski–Harabasz index (CH) (Caliński & Harabasz

1974). The SSE holds particular significance in the K-means algorithm, as it aids in identifying the optimal model by obtaining
the minimum SSE for a given clustering number. A smaller SSE value indicates a higher degree of internal aggregation within
each cluster in the results. However, an excessively high level of aggregation will result in an excessive number of clusters.
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Therefore, the ‘elbow method’ based on SSE was employed to determine the optimal number of clusters in the K-means algor-

ithm by identifying the inflection point where SSE exhibits a significant change with the number of clusters.
The SC is an evaluation method that combines cohesion and separation, producing values within the range of [�1, 1].

A value closer to 1 indicates a better degree of cohesion and separation. On the other hand, the CH coefficient serves as

another index to assess the clustering effect. A larger CH value indicates a better clustering effect. In this study, the CH coef-
ficient will be employed to evaluate the clustering effect in cases where the SSE and SC coefficients fail to provide precise
judgments.

2.3.2. External indexes

External indexes, which relied on the true labels, encompass purity, NMI (normalized mutual information), and ARI

(adjusted rand index). The true labels for this study were the clustering results determined by engineers in real project
cases for each water plant, which were utilized to validate the model. Purity assesses the proportion of correctly clustered
samples, with a value range of [0, 1], where a higher value indicates greater accuracy. NMI quantifies the degree of correlation

between clustering results and real labels, with larger values indicating a higher correlation. ARI adjusts the Rand Index to
mitigate the issue of random clustering results yielding values close to 0, with a range of [�1, 1], where higher values indicate
better performance.

The purity was calculated as follows:

Purity (C, W) ¼ 1
N

X
j

max
k

jcj >wkj

where N was the number of samples, C¼ {c1,c2,…, ck} represented the clustering results, and W¼ {w1,w2,…,wk} represented the
true labels (clustering results of engineering applications). Purity∈ [0,1], and a value closer to 1 denoted better clustering
result accuracy.

The calculation methods for NMI and ARI were obtained from the references (de Souto et al. 2012).

2.3.3. Dendrogram

The dendrogram in AGNES serves as a valuable tool for visualizing the clustering process and summarizing the hierarchy of
clusters through a tree diagram. The x-axis represents samples, with similar ones connected by straight lines and vertical
lengths indicating the distance between them. Greater differences in height signify greater dissimilarity between samples.

By identifying natural splitting points where the dendrogram branches, this tool can assist in determining an appropriate
number of clusters, avoiding arbitrary selection.

2.3.4. Economic indexes

This study examined six real-world engineering cases and compared the results of machine clustering and human clustering
with the final engineering application outcomes. The sum of construction and operation costs per year was computed by a

budget engineer and served as the baseline economic index (E0). The same budget engineer also calculated the sum of con-
struction and operation costs of both machine- and human-generated clusters, which were used as the economic index for
each clustering process (Ei). The ratio of these two economic indexes (E0/Ei) was employed as an economic factor (EF) to

evaluate cluster effectiveness. An EF value of 1 was assigned to represent optimal performance in terms of engineering appli-
cation outcomes, while higher values indicated more cost-effective clustering results.

2.4. Design of the water quality based distance

First, it was crucial to standardize each index in order to mitigate the clustering distance bias toward indexes with larger
values resulting from variations in their respective ranges. In this paper, we introduced the concept of ‘water quality distance’
by employing water quality benchmarks. The discharge index value of the first-level Integrated Wastewater Discharge Stan-
dard of China (GB8978-1996) was used as the benchmark for most indexes, as it typically represented the discharge
requirement for the upstream sewage station of the water reuse system. However, for hardness, alkalinity, and conductivity,

which were not covered by the discharge standard, we used the empirical limited index value of the inlet water of the reverse
osmosis membrane in the water reuse systems as the index benchmarks. The final index benchmarks were listed in ‘Appendix
A: Water Quality Distance Indexes and Index Benchmarks’.
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To calculate the water quality distance, we obtained a ‘base value’ for each index by dividing the actual index value by the

corresponding index benchmark (excluding pH). The water quality distance was then calculated based on this ‘base value’
using the following method:

LWQ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn
i¼1

(c1(i)=d(i)� c2(i)=d(i))
2

vuut

where c1(i) represents the index value of the first inlet water for index i, c2(i) represents the index value of the second inlet

water for index i, and d(i) is the corresponding index benchmark. For pH (Index 14), the calculated values of c1 and c2 are as
follows:

c1 or 2(14) ¼ jpH� 7j

The water quality distance can be defined as follows: first, the original water quality data are standardized by dividing it
with the corresponding water quality benchmarks to obtain the ‘base value’. Subsequently, this ‘base value’ is utilized in
the L2 distance calculation method, and the resulting L2 distance is normalized by the water quality benchmarks to determine

the water quality distance.
The clustering algorithms used in this study employed the ‘water quality distance’ as the basis for calculating the distances

between data points.

3. RESULTS AND DISCUSSION

3.1. Results of K-means

3.1.1. Internal indexes analysis of K-means

In the context of the K-means clustering algorithm, the initial step for three engineering cases involved computing SSE, SC,
and CH. By employing the ‘elbow method’ based on the SSE curve in conjunction with SC and CH values, a comprehensive

assessment was conducted to determine the optimal number of clusters. Figure 2 illustrates the evolution of SSE, SC, and CH
as the number of clusters increases.

Based on Figure 2, in the JM case, SSE decreased significantly as the number of clusters increased from 1 to 2, and then
remained stable. SC reached its maximum value at 2, while CH did not change significantly between 2 and 3. The optimal

number of clusters was determined to be 2, using the ‘elbow method’.
In the JDD case, SSE exhibited a significant decrease as the number of clusters increased from 1 to 3, with no further

reduction observed thereafter. SC attained its maximum value at two clusters, while CH was higher for three clusters than

for 2. Thus, the elbow method may be employed subjectively to determine three clusters.
In the FRX case, the SSE exhibited a sharp decrease as the number of clusters increased from 1 to 3 and subsequently stabil-

ized beyond that point. The SC and CH both reached their highest values at three clusters, thus leading us to select this as the

optimal number of clusters for our algorithm.

Figure 2 | Evolution of SSE, SC, and CH of K-means in three cases with an increasing number of clusters. (a) JM, (b) JDD, and (c) FRX.
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3.1.2. Clustering results of K-means

The final clustering results were obtained using two clusters for JM, and three clusters for both JDD and FRX. The detailed
clustering results are shown in Tables S2–S4 of supplementary materials, where real labels stand for clustering results of

engineering applications. Different colors and numbers represent different clusters. And the SN refers to the wastewater
source code provided in the appendix, specifically indicating the code of the inlet water.

3.1.3. External indexes analysis of K-means

The K-means clustering results were compared with the engineering application results of the three cases, and the clustering

performance was evaluated using three external indexes (purity, NMI, and ARI) (as shown in Figure 3). Based on this evol-
utionary graph, we can analyze whether using the previously determined number of clusters yields the most accurate results.

As depicted in Figure 3, the JM case exhibited maximization 1 of all three external indexes at a cluster number of 2, showing
perfect cluster prediction performance.

In the JDD case, the clustering result could be acceptable, with 0.88 of purity, 0.81 of NMI, 0.71 of ARI, which were all
highest at a cluster number of 3. Therefore, the choice of three clusters for the JDD case in the previous section was
deemed reasonable.

In the FRX project, the K-means algorithm demonstrated excellent clustering performance with a data volume of 19 water
source groups, achieving the highest levels of purity (0.95), NMI (0.902), and ARI (0.982).

3.1.4. Conclusion of K-means

The aforementioned analysis demonstrated that K-means was a classical clustering algorithm that yields favorable clustering

outcomes. However, it also presented certain limitations. The most challenging aspect of K-means lies in the subjective pro-
cess of determining the number of clusters through the elbow method, which could be considered a weakness of this
algorithm. Nevertheless, with meticulous selection of the number of clusters, K-means had the potential to generate highly

precise clustering results.

3.2. Results of DBSCAN

3.2.1. Parameters selection

In the context of the DBSCAN clustering algorithm, the determination of two parameters, namely min_samples and epsilon
distance (eps), is required.

The min_samples parameter represents the minimum number of sample points required to classify a data point as a core

point within a cluster. It is important to note that this value should not exceed half of the total samples, as higher values tend
to result in fewer clusters. The epsilon distance was utilized to determine the density of data points by creating data distances
around each point. As previously mentioned in the calculation process for water quality distance, these distances were cal-

culated based on multiples of index benchmarks and could be interpreted as representing the multiple relationships between
pollutants in two sets of samples.

Figure 3 | Evolution of purity, NMI, and ARI of K-means in three cases with an increasing number of clusters. (a) JM, (b) JDD, and (c) FRX.
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In order to achieve the best economy of scale, it is advisable to keep the number of clusters as low as possible. Therefore, we

selected min_samples as an integer slightly less than half the total number of samples, specifically JM¼ 2, JDD¼ 3, and
FRX¼ 9 for our three projects, respectively.

For epsilon distance, we believe that there is no meaningful merging between the two sets of water quality data if the dis-

tance exceeds three times the standard deviation. Therefore, we uniformly choose epsilon distance as 3.

3.2.2. Clustering results of DBSCAN

According to the aforementioned criteria for parameter selection, Tables S2–S4 present the corresponding clustering
outcomes.

The best results have been achieved in all cases, thus resulting in all external indexes (purity, NMI, ARI) being equal to 1.

3.2.3. Conclusion of DBSCAN

The optimal results can be achieved by setting the min_samples value to its maximum within 50% of the sample size (2, 3, and
9 for each case, respectively), and setting eps to 3.

When designing for water reuse, it is important to consider both project cost and the scale economy effect of equipment. As
a result, the actual design process tends to have fewer clusters. Therefore, the parameter selection scheme proposed in this
study not only provides excellent results but also has practical significance.

3.3. Results of AGNES

In this section, we will evaluate the effectiveness of AGNES in classifying inlet water from three water reuse stations and
generate dendrograms to assist designers in determining the final clustering outcomes.

3.3.1. Dengrograms of AGNES

For the JM case, and the distance between clusters 0, 1, and clusters 3, 2, 4 was the largest in the dendrogram. The optimal
number of clusters was, therefore, determined to be 2 (Figure 4).

Similarly, in the case of JDD, the dendrogram indicates that clustering into two or three clusters is feasible. However, due to
the exceptionally high hardness levels of water sources 3, 4, and 5, they need to be treated separately for hard removal. There-

fore, based on subjective judgment from the auxiliary manual, we have selected a total of three clusters here (Figure 4).
In the FRX case, the dendrogram indicated that the 19 inlet water samples could be classified into either 2 or 3 clusters.

However, due to a greater vertical distance, it was deemed more appropriate to group them into two distinct clusters.

3.3.2. Clustering results of AGNES

When the number of clusters is 2 in JM, 3 in JDD, and 2 in FRX, the detailed clustering results are shown in Tables S2–S4 of
supplementary materials.

Figure 4 | Diagram of the evolution of SC of AGNES with the increase of the number of clusters and the dendrogram of AGNES in three cases.
(a) JM, (b) JDD, and (c) FRX.
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3.3.3. External indexes analysis of AGNES

Based on the tree diagram in the previous section, we compared the AGNES clustering results with the engineering appli-
cation results for different cluster numbers in the three cases and analyzed the evolution of the clustering results under

different cluster numbers using three external indexes: purity, NMI, and ARI, and drew an evolution diagram. Based on
this evolution diagram, we can analyze whether the most accurate results were obtained by using the previously determined
cluster number.

In Figure 5, for the JM case, all three external indexes were maximized when the number of clusters was 2, indicating that

AGNES clustering with two clusters was reasonable.
For the JDD case, clustering into three clusters using AGNES resulted in high accuracy with 0.88 purity, 0.81 NMI, and

0.71 ARI. However, this approach has inherent limitations for achieving good clustering results for data with arbitrary

shapes. The algorithm mistakenly identified water source JDD01 as a sample with a prominent shape due to its high ammonia
nitrogen and chemical oxygen demand (COD) levels.

For the FRX case, all three external indexes were maximized when the number of clusters was 2, indicating that AGNES

clustering with two clusters was reasonable.

3.3.4. Conclusion of AGNES

Based on the aforementioned analysis, AGNES is capable of providing design engineers with clustering suggestions through
the output of a dendrogram. However, significant deviations may occur in certain cases due to arbitrary shapes or data noise
in real-world data. Nevertheless, when the selection of clustering numbers is reasonable, AGNES’ clustering results are
deemed acceptable with a purity rate exceeding 0.88.

3.4. Comparison of human–machine results

In this section, we present the clustering results of three reuse water stations generated independently by four human experts

with varying levels of experience in water treatment design (15, 12, 10, and 4 years of experience, denoted as M15, M12, M10,
and M4, respectively) and ChatGPT, a state-of-the-art language model that has gained recent popularity. These results were
compared against those obtained from three clustering algorithms. The problem descriptions provided to both the ChatGPT

and human experts are identical in Chinese, with the Q&A results included in the supplementary materials. Due to the
instability of ChatGPT’s output, we performed 10 iterations and selected the clustering results based on their highest
frequency.

After analyzing external indexes, we compared the clustering results of each algorithm with those obtained by four human
experts. The comparison is presented in Figure 6.

The comparison of human and machine results in JM is presented in Figure 6(a). In the JM case, where there was less vari-
ation in the type of inlet water, both the computer algorithms and most human engineers demonstrated good results. This was

also reflected in the economic index of the construction and operation costs, which followed the same pattern. The ChatGPT,
along with the less experienced engineer M4, yielded suboptimal results in terms of purity, NMI, ARI, and EF scores of 0.8,
0.78, 0.55, and 0.8, respectively.

Figure 5 | Evolution of purity, NMI, and ARI of AGNES in three cases with an increase in the number of clusters. (a) JM, (b) JDD, and (c) FRX.
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The comparison of human and machine results in the JDD case is presented in Figure 6(b). In this case, there were eight
categories of inlet water, and the accuracy of human clustering was lower than that of machine clustering, with only M15

achieving relatively ideal results. The purity’s extreme difference of artificial clustering increased to 0.25, indicating the
instability of artificial clustering performance. Simultaneously, the optimal purity of artificial clustering achieved a mere
0.88, with similar trends observed in NMI, ARI, and EF metrics. Specifically, these optimal values decreased by 0.19,

0.29, and 0.05, respectively, compared to the JM case study results. Consequently, as data volume increases, the efficacy of
clustering performed by an individual engineer within a limited timeframe diminishes significantly. However, the accuracy
of machine results was consistent. DBSCAN achieved 100% purity, with perfect NMI, ARI and EF, demonstrating the advan-
tages of this algorithm. And the optimal outcomes of manual classification can also be achieved by K-means and AGNES

algorithms. In addition, it is noteworthy that the performance of ChatGPT exhibited a significant deterioration in comparison
to the results obtained in the JM case, ranking consistently at the lowest positions for both NMI and ARI.

Notably, K-means, AGNES, and all four human engineers believed that the second inlet water (JDD01) should be treated

separately (shown in Table S3). However, in reality, despite having relatively high levels of ammonia nitrogen and COD
(shown in Appendix C), it was feasible to be incorporated into other wastewater for treatment, and it did not affect the sub-
sequent treatment processes. As we analyzed earlier, the difference in clustering results was caused by the arbitrary shape of

water quality data in high-dimensional space or the existence of ‘data noise’ (Duan et al. 2007). Therefore, the ability of
DBSCAN to detect noise led to the best clustering effect.

The comparison of human and machine results in JDD is presented in Figure 6(c). In this case, a substantial amount of data
was analyzed. Although the M12 engineer achieved the best results with all evaluation indicators being 1, the extreme differ-

ence of purity in artificial clustering results further increased to 0.32 compared to the previous two cases, further highlighting
the substantial impact of increasing data volume on the stability of artificial clustering performance. However, computer clus-
tering results remained stable and even surpassed human clustering results with DBSCAN and AGNES achieving all the

highest evaluation indicators. It can be concluded that when dealing with a large amount of data, machine clustering results
are more stable and accurate than human clustering results. In this case, the results obtained from ChatGPT were inferior
compared to previous instances, with lower external index values. Although ChatGPT served as a useful guide, caution

should be exercised in relying solely on it for our design.
Based on the analysis of three cases, the K-means clustering algorithm achieved an average purity of 0.943, while DBSCAN

achieved a perfect purity of 1.00. AGNES had an average purity of 0.96, and ChatGPT had an average purity of 0.617. In

contrast, the average purity of manual classification by four human engineers ranged from 0.723 to 0.916, with an overall
average of 0.832. Overall, the machine clustering algorithms outperformed both the human engineers and ChatGPT in
terms of purity.

The visual comparison results of each individual external index and the EF for human–machine interaction in three differ-

ent cases are presented in Figure 7.

Figure 6 | Comparison of human–machine results in three cases. (a) JM, (b) JDD, and (c) FRX.
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The figure above illustrates the outcomes of machine clustering algorithms in the left three columns, where the extreme

differences in purity, NMI, ARI, and EF values across these three projects were 0.12, 0.19, 0.29, and 0.05, respectively. In
contrast, four engineers working on these projects achieved extreme differences of 0.37 in purity, 0.58 in NMI, 0.73 in
ARI, and 0.53 in EF, respectively. As a reference, ChatGPT achieved extreme differences of 0.38, 0.73, 0.63, and 0.5 in

these indexes, respectively.
Based on these findings, it can be concluded that machine clustering results were significantly more stable than those

obtained by humans or ChatGPT. The analysis conducted on the aforementioned three projects in this article suggests
that machine clustering accuracy was at least equivalent to human classification. The utilization of three unsupervised learn-

ing algorithms for inlet water classification at reuse stations was deemed feasible.
In addition, through the above three cases, we also found that the ‘elbow method’ with SC and CH coefficients could effec-

tively obtain the number of clusters in the K-means algorithm. In DBSCAN algorithm, by selecting min_samples as the

maximum value within 50% of the sample size and eps as 3, better clustering results could be obtained. AGNES algorithm
can yield robust clustering results through the dendrograms.

3.5. Three testing cases

The unsupervised learning clustering analysis method mentioned earlier was applied to the inlet water classification design of
water reuse stations in three additional industrial parks. This application aimed to further validate the reliability of the unsu-

pervised learning clustering algorithm. For brief introductions to these three cases, please refer to Table S1, and detailed data
on water quality and process design are available in Appendix E–G.

The external indexes of the clustering results for these three testing cases are illustrated in Figure 8.

From Figure 8, it was observed that in these three cases, DBSCAN exhibited unstable performance (no better results were
obtained after returning the hyperparameters). Specifically, in the ZL and FM cases, the purity of DBSCAN was only 0.5 and
0.69, respectively. However, in the HL case, DBSCAN performed well with a purity of 0.92. On the other hand, both k-means
and AGNES showed similar and stable performance across the three cases. In particular, the purity of ZL and FM reached 1,

while the purity of HL was 0.85 for both k-means and AGNES.
On the other hand, through the AGNES’ dendrogram (Figure 9), it was observed that in the HL case, despite the consider-

able distance between water source 11 and the other water sources, when it was classified separately, the overall classification

could still be divided into three clusters (Cluster 1: 11, Cluster 2: 6 and 12, Cluster: others). In this condition, the results from
AGNES were completely consistent with practical engineering applications (as shown in Figure S3b, purity, NMI, ARI all
reaching 1). This result could also be achieved using K-means when selecting a cluster number of 3 (as shown in

Figure 7 | Human–machine comparison of external indexes. (a) Purity, (b) NMI, (c) ARI, and (d) EF.
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Figure S2). However, the ‘elbow method’ from K-means’ SSE curve and a higher SC index guided us to choose a cluster
number of 2 (as shown in Figure S1), leading to the inability to conclude a cluster number of 3. This highlighted a significant
advantage of AGNES in guiding clustering decisions: it could visually provide hidden clustering possibilities through the hier-

archical clustering dendrogram.
Finally, we compared the purity of the three unsupervised learning clustering algorithms across six cases and compared

them with the clustering results of similar studies, as shown in Table 1.
From the data presented in Table 1, it was evident that both K-means and AGNES demonstrated superior stability, achiev-

ing average purity indicators of 0.947 and 0.955, respectively. These values had reached the level of similar research. While
DBSCAN exhibited commendable performance in scenarios featuring noisy data, such as the JDD project, its efficacy
appeared limited in the ZL and FM cases, consequently impacting its overall performance.

4. CONCLUSION AND PERSPECTIVES

4.1. Conclusion

This paper innovatively established the distance calculation method of clustering algorithm based on water quality. The
machine clustering results using water quality distance were satisfactory and could serve as a basis for inlet water classifi-
cation for reuse purposes.

Figure 8 | Comparison of human–machine results in three testing cases. (a) ZL, (b) HL, and (c) FM.

Figure 9 | Diagram of the evolution of SC of AGNES with the increase of the number of clusters and the dendrogram of AGNES in three
testing cases. (a) ZL, (b) HL, and (c) FM.
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This paper also innovatively applied three unsupervised learning clustering algorithms to address the inlet water classifi-
cation problem in a water reuse station. The results revealed that these three clustering algorithms exhibited exceptional
performance when contrasted with outcomes derived from artificial clustering and ChatGPT-based clustering methodologies.

K-means demonstrated favorable clustering results with an average purity of 0.947. However, it required to determine the
number of clusters relied on internal indexes. DBSCAN performed the best on clustering tasks with noisy data and could
automatically cluster using selected parameters. It achieved an average purity of 0.852 by setting the minimum number of

samples to the maximum value within 50% of the sample size and an epsilon distance of 3. AGNES possesses an highest
average purity of 0.955. In addition, AGNES, visually depicted through dendrograms, offered a significant advantage by pro-
viding the designer with a more extensive range of potential clustering possibilities. This advantage enhances the potential

applicability of AGNES for future research endeavors.

4.2. Limitations and perspectives

This study investigates the application of three unsupervised learning algorithms for inlet water classification in water reuse
systems, yielding promising results. However, certain limitations exist, including a limited quantity of research data and

incomplete index benchmarks that may not encompass all scenarios encountered in water reuse engineering. These limit-
ations also point to directions for future research: first, further validation of algorithm effectiveness across a broader range
of engineering cases is necessary; second, there is a need to establish a more comprehensive set of index benchmarks that

can adapt to a broader array of scenarios.
In addition, the classification of the inlet only represents the initial stage of the design of the water reuse treatment system.

The subsequent design process also includes process selection, equipment selection, energy consumption calculation, invest-

ment prediction, etc. In the water reuse system, the research on clustering algorithms for inlet classification is the cornerstone
for realizing the fully AI-driven design of future water treatment projects.
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