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ABSTRACT

Hyperparameter tuning is an important process to maximize the performance of any neural network model. This present study proposed the

factorial design of experiment for screening and response surface methodology to optimize the hyperparameter of two artificial neural net-

work algorithms. Feed-forward neural network (FFNN) and radial basis function neural network (RBFNN) are applied to predict the permeate

flux of palm oil mill effluent. Permeate pump and transmembrane pressure of the submerge membrane bioreactor system are the input vari-

ables. Six hyperparameters of the FFNN model including four numerical factors (neuron numbers, learning rate, momentum, and epoch

numbers) and two categorical factors (training and activation function) are used in hyperparameter optimization. RBFNN includes two

numerical factors such as a number of neurons and spreads. The conventional method (one-variable-at-a-time) is compared in terms of

optimization processing time and the accuracy of the model. The result indicates that the optimal hyperparameters obtained by the proposed

approach produce good accuracy with a smaller generalization error. The simulation results show an improvement of more than 65% of train-

ing performance, with less repetition and processing time. This proposed methodology can be utilized for any type of neural network

application to find the optimum levels of different parameters.
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HIGHLIGHTS

• Membrane fouling in filtration is a complex process, and understanding the behaviour of the dynamic is crucial.

• This is the study of artificial neural network (ANN)-based dynamic model and optimization for a submerged membrane bioreactor (SMBR)

filtration process.

• The ANN structure was able to model the dynamic behaviour of the filtration process under normal conditions.

• The optimization method improves the ANN structure for SMBR filtration model development.

1. INTRODUCTION

Malaysia is the second-largest producer and exporter of palm oil (PO) after Indonesia (Kushairi et al. 2018). Currently, PO
and palm kernel oil constitute 34% of the world’s oil and fat production, crucial for sustaining the global population. Conse-
quently, the PO industry plays a pivotal role in Malaysia’s agricultural and economic growth, making a substantial

contribution to gross domestic product, gross national income, foreign exchange reserves, and employment (Kushairi et al.
2018). Simultaneously, the high production of PO results in a significant volume of industrial wastewater. It is estimated
that the extraction of one tonne of crude PO necessitates between five and seven tonnes (5000–7000 kg) of water, with

over 50% of this water becoming palm oil mill effluent (POME) (Ahmad et al. 2015).
POME comprises wastewater streams originating from three primary processing steps in the mill, namely, sterilizer conden-

sate, clarification wastewater, and hydrocyclone wastewater (Liew et al. 2015). POME is naturally non-toxic, and direct

discharge of untreated POME into rivers initiates natural decomposition and rapidly depleting dissolved oxygen levels in
the river water. This leads to the degradation of aquatic life and the natural ecosystem. Recognizing the environmental
impact of the PO industry, the adoption of advanced wastewater treatment technologies for POME discharge is imperative
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to meet the standards set forth by the Malaysian government through the enactment of the Environmental Quality Acts

(EQA) in 1978.
In recent years, membrane technology has gained significant importance in the field of wastewater treatment, such as

municipal, domestic, and industrial wastewater including POME. This preference arises from its simplicity of operation,

lower weight, reduced space requirements, and high efficiency. The membrane bioreactor (MBR) technology has also demon-
strated its reliability as a filtration system for treating POME discharge (Teow et al. 2023). However, fouling remains the
principal drawback of MBR filtration systems, leading to increased energy consumption and maintenance costs (Ghani
et al. 2018). Fouling occurs when solid materials clog the membrane pores, resulting in decreased permeate flux and elevated

transmembrane pressure.
According to Li et al. (2022), fouling can be mitigated by controlling various fouling variables. Stuckey (2012) demonstrated

that fouling is influenced by several parameters, including membrane form, hydrodynamic conditions, the composition of the

biological system, and the operating conditions of the reactor and the chemical system. Operationally, fouling can be man-
aged and reduced through techniques such as air bubble (aeration) control, backwashing, relaxation, and chemical
cleaning (Yusuf et al. 2019). Given that the MBR filtration system involves numerous variables and is highly nonlinear

due to the intricate nature of fouling variables, the construction of mathematical models for predictive purposes proves to
be a valuable tool (Xiong et al. 2019). A reliable prediction model is critical for supporting decision-making that impacts
the system performance.

Machine learning (ML) algorithm primarily aims to develop models that can predict new values based on historical data.
Linear and nonlinear regression models are the two general categories of ML algorithms (Garza-Ulloa 2022). For nonlinear
models, frequently employed approaches include k-nearest neighbour, decision trees, support vector machines, and artificial
neural networks (ANNs) (Basha & Rajput 2019). According to Bunmahotama et al. (2017), prediction models play an indis-

pensable role in optimizing parameters by conducting independent data processing, forecasting outputs based on input
datasets, adjusting the operation of a series of equipment, and furnishing timely and automated decisions for production. Fur-
thermore, modelling aids in streamlining operations, conserving manpower, and reducing energy consumption within the

system. Therefore, an accurate prediction model is pivotal in supporting the decision-making process, which directly impacts
system performance.

The ANN stands as a well-established ML algorithm, noted for its efficacy in modelling complex and nonlinear processes.

The concept of ANN is inspired by the functioning of the biological human brain in problem-solving processes. ANN has
several merits, including strong learning capacity, parallelism, and robustness in handling noise (Hemeida et al. 2020).
The most common ANN structures employed in wastewater treatment are the multilayer perceptron or feed-forward
neural network (FFNN) and the radial basis function neural network (RBFNN). However, the primary challenge in construct-

ing effective prediction models using ANN lies in the tuning process of the hyperparameters (Feurer & Hutter 2019; Probst
2019b; Pannakkong et al. 2022). Most ML techniques, including ANN, encompass hyperparameters, each requiring specific
configurations. Tuning these hyperparameters to identify the optimal configuration that minimizes the loss value is known as

hyperparameter optimization (HPO) (Feurer & Hutter 2019).
HPO plays a critical role in enhancing the performance and reproducibility of ML models (Vincent & Jidesh 2023). Con-

sequently, HPO has gained substantial commercial interest, aligning with the increased utilization of ML across industries.

However, it has usually found application in internal tools and ML cloud services. HPO serves as a crucial resource for
data analysts and researchers in comprehending ML hyperparameters (Ali et al. 2023). Nevertheless, resolving the HPO pro-
blem is challenging, and achieving the ideal configuration in a few trials is crucial, necessitating a suitable approach. Several

ML studies propose methods to tune hyperparameters for decision tree (Alawad et al. 2018), support vector machine (Duarte
& Wainer 2017), deep neural network (Zhou et al. 2019), random forest (RF) (Probst 2019b), FFNN (Ibrahim & Wahab
2022), etc. These studies show that well tuning the hyperparameters of each algorithm increases the performance of the
ML training process (Nematzadeh et al. 2022). There exists no one-size-fits-all rule for tuning hyperparameters, and this

optimization process is contingent on the complexity of the modelled system.
In the literature, various methods for HPO or tuning hyperparameters are outlined. The simplest approach with minimal

effort entails using recommended values from prior studies or default values suggested by ML libraries. Nonetheless, these

hyperparameter values may not universally perform optimally across all ML models, and they may require modification
based on different or updated input data (Lujan-Moreno et al. 2018; Probst 2019a). Conventional HPO is often conducted
through a trial-and-error method, where studies may focus solely on selecting the number of neurons and neglecting other
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hyperparameters (Badrnezhad & Mirza 2014; Onukwuli et al. 2021). This approach may prove impractical, especially for

less-experienced modellers when an extensive array of configurations is involved. Frequently, this technique may not guaran-
tee finding the optimal hyperparameter values.

Other studies (Pakravan et al. 2015; Said et al. 2018) have applied a one-variable-at-a-time (OVAT) method to determine

the optimal number of neurons. Among conventional methods, OVAT is more efficient, as it is user-friendly and requires
minimal expertise from the modeller. For instance, Jawad et al. (2021) individually trained the log-sigmoid and tan-sigmoid
as activation functions with neurons ranging from 1 to 20. However, these tuning procedures are time-consuming and labor-
ious, particularly when numerous parameters are examined simultaneously (Elfghi 2016). According to Ibrahim et al. (2020),
for three different levels of each ANN variable, approximately 245 (¼35) different configurations of hyperparameters would
be required.

The design of experiment (DoE) technique has gained considerable attention and has been successfully applied as a mod-

elling and optimization tool to address complex and nonlinear problems in various industrial fields (Pashaei et al. 2023). The
technique is favoured for its reliability, simplicity, systematic strategies, low trial requirements, and reduced processing time.
While considering all hyperparameter combinations in the application of HPO may be time-consuming, especially when

involving mixed parameters (e.g., numerical and categorical), the DoE technique aids in overcoming these drawbacks. In
addition, it provides richer information by exploring a larger design space in an engaging manner (e.g., two dimensional
(2D) and three dimensional (3D)), offering an easy means to discern the interaction effects of the hyperparameters.

In hyperparameter tuning for optimization problems, DoE techniques have been employed, although with limited room for
study. For instance, the study by Kechagias et al. (2018) utilized the full factorial design method for HPO, optimizing the
number of neurons in the hidden layer, learning rate, and momentum constant. While this method accurately identifies
the main and interaction effects of the hyperparameters, it is restricted to linear models and experiences an exponential

increase in the number of experiments with a higher number of factors. Typically, this factorial design is applicable to
three primary objectives: screening factors, optimization, and stability testing (Chen et al. 2013). Consequently, response sur-
face methodology (RSM) proves indispensable if curvature is present due to higher-order relationships. Moreover, studies by

Lujan-Moreno et al. (2018) and Probst (2019b) have employed DoE methodology to tune RF hyperparameters such as ntree,
mtry, replace, nodesize, classwt, cutoff, and maxnodes value. This DoE approach combines linear (factorial design) and non-
linear (RSM) design methods for screening and tuning hyperparameters, respectively.

Among RSM designs, the most popular are central composite design (CCD) and Box–Behnken designs (BBD). A study by
Pashaei et al. (2023) has compared CCD and BBD, with CCD standing out for its high applicability and performance with
only a few test points. In another work presented by Nourbakhsh et al. (2014), only 52 different settings were created
using CCD for five different types of hyperparameters, including the number of neurons, training epochs, step size, training

percentage, and momentum coefficient. A quadratic model was developed from training results to mean-square error (MSE)
as the response. The results indicated that step size, momentum coefficient, and training epoch significantly influenced the
model development. However, the study did not account for any categorical factors. Furthermore, it did not compare the con-

ventional method with the proposed RSM technique in terms of optimization processing time and model accuracy. As such,
the fairness and effectiveness of the RSM method could not be conclusively established. This underscores the need to expand
knowledge on mixed hyperparameters concerning prediction model performance across various ML types using the RSM

approach.
In light of this, the work here aims to propose a combined DoE and RSM optimization approach with ANN models to

predict the permeate flux of submerged membrane bioreactors (SMBRs). In this case, two common network structures –

FFNN and RBFNN algorithms – are employed. A combination of numerical and categorical hyperparameters is utilized
to achieve high model accuracy. The outcomes of ANN using the proposed RSM optimization and OVAT optimization
are compared to gain a comprehensive understanding of the respective models’ capacities for accurate prediction and to
enhance ANN training performance.

The evaluation of model performance is based on real input–output data from the SMBR treatment plant for POME waste-
water. Subsequently, model accuracy is analyzed through performance statistical errors, including the correlation coefficient
(R), coefficient of determination (R2), MSE, and root-mean-square error (RMSE). The total number of repetitions and com-

putational time are also measured and compared. To demonstrate the practical implications of the proposed HPO, the
outcomes of applying two types of HPO techniques to the neural network learning algorithms (FFNN and RBFNN) are pre-
sented. The simulation and experimental findings from the application of HPO on a POME dataset are discussed thoroughly.
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2. MATERIALS AND METHODS

2.1. Experimental setup

MBR filtration treatment is conducted at a pilot scale with a working volume of 30 L. Samples are collected from the final

pond of the treatment plant, possessing a biochemical oxygen demand of less than 10,000 mg L�1, to induce fouling in the
SMBR filtration process. The plant is equipped with a single bioreactor tank containing submerged hollow fibre membranes.
These hollow fibre membranes are fabricated using polyethersulfone, with a pore size of approximately 80–100 kDa and an

effective surface area of about 0.35 m2. Figure 1 depicts the schematic of the pilot plant setup for the experiment, and Table S1
(see Supplementary Material) specifies the instruments utilized in the pilot plant. Data acquisition was controlled and mon-
itored through the National Instruments Labview 2009 software, interfaced with NI USB 6009 hardware.

2.1.1. Data collection

A total of 4,000 data were collected for each parameter during the experiment, involving airflow (standard litres per minute

(SLPM)), permeate pump voltage, transmembrane pressure (mbar), and permeate flux (Lm�2h�1). Random magnitude steps
vary from 1.4 to 3 volts for the suction pump and from 0 to 270 mbar for the transmembrane pressure (TMP), to produce the
dynamic behaviour of the filtration process. Both permeate pump and TMP were OFF during the relaxation period. The set-

tings for the permeate-to-relaxation period were maintained at 120 s for permeate and 30 s for relaxation, with continuous
aeration airflow. Airflow was regulated between 6 and 8 SLPM during filtration to sustain a high intensity of bubble flow
for membrane surface cleansing. Figure 2 illustrates the SMBR filtration dataset, including permeate pump voltage and

TMP as inputs and permeate flux as output. Data analysis was conducted using MATLAB R2015a and Design-Expert version
12.0.

2.1.2. Experimental analyses

Filtration process performance is assessed based on permeate flux, which is calculated as follows:

J ¼ v
A � t

, (1)

where J is permeate flux in (Lm�2 h�1), v is the volume flowrate in litres (L), A is the membrane surface area (m2), and t is the
time (h).

2.2. Preprocessing data

In this study, data normalization and division were conducted before developing the neural network model. Given that the
input data for the SMBR system encompass different magnitudes and scales, the dataset was scaled to fall within the range of
0–1. This was implemented to prevent the dominance of large original input data in the solution, as well as to mitigate

Figure 1 | Schematic diagram of the SMBR system.
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numerical challenges during calculations (Kumar 2011). Equation (2) outlines the normalization formula:

X0 ¼ yi � ymin

ymax � ymin
(2)

where X0 represents the scaled value, yi is the ith actual value of the data, ymax is the maximum value of the data, and ymin is
the minimum value of the data.

To assess the feasibility of the predictive model, all data were randomly divided into training dataset (Ttraining) and
testing dataset (Ttesting). The training dataset was employed for network training and evaluation, while the testing
dataset was used to validate network performance. The dataset was partitioned into 60% for training and 40% for testing.

Hyperparameters were tuned, and network performance was evaluated using the training dataset (Ttraining). This process
was repeated three times, with the average MSE calculated. The hyperparameters yielding the minimum MSE were selected.
Finally, the network was validated on the testing dataset (Ttesting) to provide an unbiased estimate of its performance on

unseen data.

2.3. Simulation modelling

The present study employs the schematic structures of FFNN and RBFNN to predict the permeate flux of POME during
SMBR filtration processes. The input variables comprise transmembrane pressure and permeate pump voltage, while the

output variable is the permeate flux of POME.

2.3.1. Feed-forward neural network

The FFNN consists of two or more layers of processing elements linked by weight connections. It comprises three layers: an

input layer, a hidden layer, and an output layer (Figure S1 in Supplementary Material) (Ghasemi et al. 2023). An earlier work
(Said et al. 2018) reported that a network with one hidden layer is commonly used in practice. The error is fed forward
through the network during training to adjust the weights and minimize the error. This process is repeated until the minimum
error is achieved or a specific number of epochs is reached. The FFNN used in this study is based on the following equation:

ŷ1(t) ¼ Ei

Xnh
j¼1

Wijfj
Xnw
l¼1

wij þwj0

 !
þWi0

2
4

3
5, (3)

Figure 2 | Dataset from the SMBR filtration experiment.
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where ŷ1(t) represents the prediction output, fj is the function of the network, and w is the input vector. Wij and wij represent

the network connection layer weights and biases, respectively.

2.3.2. Radial basis function neural network

The RBFNN is structurally similar to the FFNN, comprising three layers. In RBFNN, neurons in the hidden and output layers
are interconnected by weights. Typically, the neurons in RBFNN are based on the Gaussian function (Kasiviswanathan &

Agarwal 2012). Its structure is depicted in Figure S2 and defined in Equation (4):

y (t) ¼
Xi
i¼1

wiui(t); � � � � � � � � � i ¼ 1, 2, 3 . . .k: (4)

The output of the hidden layer can be represented by Equation (5):

ui ¼ e

x(t)� ci(t)k k2
c2
i

 !
, (5)

where x is the input vector, c is the centre of the hidden node, k is the number of hidden nodes, and ψ is the width of the
hidden node. w represents the weight number of the output layer, and y indicates the output of the network.

To achieve optimal network performance in RBFNN, it is essential to regulate certain hyperparameters, namely, the
number of spreads and the number of neurons in the hidden layer. An incorrect choice of the spread constant can lead to
underfitting or overfitting. High spread values result in data points being scattered over a considerable distance from the
centre, consequently reducing the maximum function response (Kasiviswanathan 2012). It is worth noting that the default

spread value in the Matlab toolbox is set to one.

2.3.3. Hyperparameter configurations

Optimizing hyperparameters is crucial for achieving good performance in an ANN model. Careful selection of appropriate

ranges for hyperparameters is essential. For the FFNN model structure, the training process involves various numerical
hyperparameters, including the number of neurons, learning rate, number of epochs, and momentum coefficient. In addition,
categorical factors such as training function and activation function are considered to enhance model prediction
performance.

Activation functions, sometimes referred to as ‘transfer functions,’ determine how the weighted sum of inputs is trans-
formed into an output from nodes in a layer of the network. The choice of activation function in the hidden and output
layers significantly influences the network’s ability to learn from the training dataset. Typically, the hidden layer employs non-

linear functions, while the output layer uses a linear transfer function (purelin). Commonly used activation functions in
hidden layers include sigmoid (or logistic) and hyperbolic tangent (Tanh) (Rasamoelina et al. 2020). In recent years, the rec-
tified linear unit (ReLU) has gained popularity among practitioners and deep learning researchers for its simplicity and

superior training performance over common activation functions (Rasamoelina et al. 2020).
Training functions used in this case are Levenberg–Marquardt (lm) and gradient descent with momentum (gdm). The lm

training function offers capabilities such as fast training, nonlinear regression with low MSE, and memory reduction features

(Keong et al. 2016; Johnson Santhosh et al. 2021). On the other hand, gdm has advantages such as avoiding local minima,
accelerating learning, and stabilizing convergence (Winiczenko et al. 2016). The gdm training function primarily depends on
two parameters: the learning rate and momentum parameters. Thus, the impact of different types of activation and transfer
functions on the network performance of SMBR filtration for POME models needs to be defined.

The number of epochs or training cycles is crucial in determining network models. Too few epochs limit the network’s abil-
ity, while too many can lead to overfitting and increased error (Winiczenko et al. 2016). In training the FFNN model with
different training functions (br, lm, and gd), the maximum setting for the number of epochs is 1,000 (Keong et al. 2016).
Next, the parameter aims to find the minimum weight space. A learning rate that is too high may lead to increased oscillations
in MSE, while too low of a learning rate causes smaller steps in the weight space. A low learning rate can reduce the net-
work’s ability to escape local minima in the error surface.
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The following parameter defines the amount of momentum, where low momentum leads to less sensitivity of the network

to local gradients, while high momentum may cause divergence of adaptation, resulting in unusable weights. Moreover,
studies by Winiczenko et al. (2016) and Yousif & Kazem (2021) have found that optimal values of the learning rate and
momentum provide smooth behaviour and speed up convergence. They also noted that excessively low values of the learning

rate and momentum slow down the convergence process, while overly high values may lead to network instability and train-
ing divergence.

The number of neurons in the hidden layer plays a pivotal role in network performance. Too few hidden neurons result in
limited adaptation in simulation modelling. Conversely, too many may lead to system memory errors or over training

(Winiczenko et al. 2016) and increase the calculation time (Nazghelichi et al. 2011). There is no systematic method for deter-
mining the structure (number of hidden neurons) of the network. To achieve an accurate neural network approximation,
there exists an upper bound for the number of hidden neurons, as proposed by Hecht-Nielsen (1992), given in Equation (6):

Na � 2Nb þ 1, (6)

where Na is the number of hidden neurons and Nb is the number of inputs.

Rogers & Dowla (1994) proposed the relationship between the number of training data samples and the number of hidden
neurons, which is given in Equation (7), to prevent an overfitting issue in the training data:

Na � Nu

Nb þ 1
, (7)

where Nu is the number of samples in the training data.
For a conventional-based ANN to search for optimal conditions, networks were trained under a wide range of hyperpara-

meter settings based on the OVAT method. The conventional HPO was carried out on the training dataset (Ttraining). The
selection of corresponding FFNN and RBFNN hyperparameters is based on the lowest MSE for each parameter, which is
then used for the testing dataset (Ttesting) to verify the reliability of the network models. In this present study, the number

of neurons in the hidden layer, the learning rate, the momentum, the number of epochs, the number of spreads, training func-
tion, and activation function are considered in building an optimum network structure. The range of hyperparameters for
conventional-based FFNN and RBFNN models is presented in Table 1.

Table 1 | The range of ANN hyperparameters for conventional models

Conventional-based FFNN method

Symbol
Model FFNN-1 FFNN-2 FFNN-3 FFNN-4
Hyperparameters Range settings

A Number of neurons 1–30 1–30 1–30 1–30

B Learning rate 0.1–1 0.1–1 0.1–1 0.1–1

C Momentum 0.1–1 0.1–1 0.1–1 0.1–1

D Number of epochs 100–1,000 100–1,000 100–1,000 100–1,000

E Training function trainlm trainlm traingdm traingdm

F Activation function tansig ReLu tansig ReLu

Number of repetitions 60 60 60 60

Conventional-based RBFNN method

Symbol
Model RBFNN
Hyperparameters Range setting

A Number of neurons 1–30

B Number of spreads 0.5–3

Number of repetitions 36
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2.3.4. Proposed ANN-RSM hyperparameter optimization method

2.3.4.1. Screening method. This section outlines the proposed RSM-based ANN (ANN-RSM) HPO method. Figure S3
illustrates the screening steps using the two-level full factorial method. Initially, a screening process using a two-level full

factorial design model was conducted with a few sets of hyperparameter configurations. This approach greatly aids in
identifying appropriate ranges or scales for RSM optimization. A first-order model using a polynomial function is
generally sufficient to approximate the process. It is assumed to behave similarly to the network within a small range or
region of the response surface. The first-order model is represented as follows:

Y ¼ b0 þ b1x1 þ b2x2 þ . . .þ bixi þ 1, (8)

where Y represents the predicted response or dependent variable, xi are the independent variables, bi are the constants, and 1

is the error term.
Under this screeningmethod, the regionof the response surfacewas defined using several scales. Three different scales of hyper-

parameters for FFNN and two different scales for RBFNNwere assessed (refer to Table S2 in the Supplementary Material). The

scale of hyperparameters exhibiting the best performance was selected for the subsequent RSM optimization procedure. The
screening results for FFNN and RBFNN hyperparameters (2LF-FFNN and 2LF-RBFNN, respectively) are provided in Table S2.

Analysis of variance (ANOVA) at a 5% level of significance was used for determining the experimental design, interpret-

ations, and analyses of the training data. The ANOVA included evaluation terms such as the coefficient of determination (R2),
adjusted R2, and predicted R2, which were used to assess the significance of the model. The predicted response was trans-
formed to bring the distribution of the response variable closer to normal distribution. The Box-Cox plot was applied to

improve model fitting, employing various transformations l ¼ �1, l ¼ �1, l ¼ 0, l ¼ 0:5, representing inverse, inverse
square root, natural log, square root, and no transformation functions, respectively (Nazghelichi et al. 2011).

Pareto chart is applied to illustrate the sequencing of the statistically significant for main and interaction effect factors and

to compare their relative value. Factors exceeding the reference line are considered significant at a confidence level (t-value)
of 95%. Figure S4(a) shows that the main factor of training function (E) hyperparameters contributes the highest effect to the
MSE value of 2LF-FFNN-1 algorithm, followed by momentum (C), neuron numbers (A), and learning rate (B). In addition,
there are several interaction factors significantly affecting the MSE performance, such as AD, AE, AF, BC, BE, CD, CE, CF,

DE, DF, EF, ACE, ADE, ADF, BCE, and ACDE. In Figure S4(b), the number of neurons has the most significant impact on
the MSE performance of 2LF-RBFNN-2 algorithm.

The ANOVA reveals that the range setting for 2LF-FFNN-1 yielded the best performance with R2¼ 0.9534, R2
adj ¼ 0:9247,

and R2
pred ¼ 0:8744 using inverse square root transformation to develop the highest factorial model. For 2LF-RBFNN screen-

ing hyperparameters, natural log transformation was used to develop the highest two-level factorial model. Based on the
ANOVA results, 2LF-RBFNN-2 produced an excellent model performance (R2 ¼ 0:9898, R2

adj ¼ 0:9847, and R2
pred ¼

0:9593). Therefore, the scale and configuration hyperparameters of 2LF-FFNN-1 and 2LF-RBFNN-2 were selected for
FFNN and RBFNN, respectively, to execute the higher-order optimization method using the RSM technique.

2.3.4.2. RSM hyperparameters optimization method
i. Data Insertion:

RSM is a sequential procedure used to fit a second-order model, which works well in modelling curvature around prom-
ising regions. The overall steps of data insertion were the same as Figure S2. In the case of FFNN, six hyperparameters are
taken into account: four numerical variables (number of neurons, learning rate, momentum, and number of epochs) and two

categorical components (training function and activation function). Meanwhile, in the RBFNN case, two numerical variables
(number of neurons and spreads) are considered. The lowest and highest levels of variables were coded as �1 and þ1, respect-
ively, including the axial star points of (�α and þα), where α is the distance of the axial points from the centre and makes the

design rotatable. The α value was set to 1 (face centred). The total number of experimental combinations was calculated based
on the concept of CCD using Equation (9):

2k þ 2kþ n0, (9)

where k is the number of factor (numerical factor only) and n0 is the number of experiments (tuning) repeated at the centre
point. Then, 2k and 2k are stated as the factorial point and an axial point, respectively.
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In the FFNN case, with four numerical factors (number of neurons, learning rate, momentum, and number of epochs),

k ¼ 4 and n0 ¼ 6 were set. Since this study involves two categorical factors with two levels – training function (trainlm
and traingdm) and activation function (tansig and ReLu) – the number of experiments repeated at the factorial point, axial
point, and centre point are doubled for each categorical factor (24trainlm ¼ 16, 24traingdm ¼ 16; 24tansig ¼ 16, 24ReLu ¼
16; 2ktrainlm ¼ 8, 2ktraingdm ¼ 8; 2ktansig ¼ 8, 2kReLu ¼ 8; n0 trainlm ¼ 6, n0 traingdm ¼ 6; n0 tansig ¼ 6, n0 ReLu ¼ 6). Meanwhile,
in the case of RBFNN, with two numerical factors (neuron numbers and spread numbers), k ¼ 2 and n0 ¼ 5 were set.
Then, the number of experiments repeated at the factorial point, axial point, and centre point is four, four, and five, respect-
ively. Therefore, the total number of runs needed for FFNN and RBFNN were 120 and 13, respectively.

A matrix of 120 experiments for FFNN and 13 experiments for RBFNN was generated using the software package Design-
Expert version 12.0. Tables S3 and S4 show the complete design matrix of the experiments performed and the obtained
results of the MSE for FFNN and RBFNN, respectively. The centre points were used to determine the experimental error

and reproducibility of the data.

ii. Data Transformation:

The predicted response was transformed to bring the distribution of the response variable closer to normal distribution. The
Box-Cox plot was applied to improve model fitting, employing various transformations (l ¼ �1, l ¼ �1, l ¼ 0, l ¼ 0:5,

and l ¼ 1) representing inverse, inverse square root, natural log, square root, and no transformation functions, respectively
(Nazghelichi et al. 2011).

iii. Model Selection:

Quadratic models are established using the least square method to describe the dynamic behaviour of the network process.

For k factors, the second-order model is utilized as shown in Equation (10) (Ogunjiofor & Ayodele 2023):

Y ¼ b0 þ
Xk
i¼1

bixi þ
Xk
i¼1

biix
2
i þ

Xk�1

i¼1

Xk
j¼iþ1

bijxixj þ 1, (10)

where Y is the predicted response, xi and xj are the factors, bi and bj are the constants, and 1 is the error term. The term b0 is
the intercept term, bi is the linear term, bii and b jj are the squared terms, and bij is the interaction term between the variables.

iv. ANOVA, Diagnostic Plot, and Model Graph:

The accuracy of the RSMmodel was determined using ANOVA and diagnostic plot. The ANOVA included evaluation terms
such as the coefficient of determination (R2), adjusted R2, predicted R2, adequate precision, F-value, and p-value, which were
used to assess the significance of themodel. The statistical test factor, F-value, was used to evaluate the significance of themodel

at the 95%confidence level (Nourbakhsh et al. 2014). The p-value served as a tool to ensure the importance of each coefficient at
a specified level of significance. Generally, a p-value less than 0.050 indicated the most significance and contributed largely
toward the response. The smaller the p-value, the more significant the corresponding coefficient. Values greater than 0.050

are less significant. Then, the residuals analysis is performed to diagnose the model adequacy and reliability. The plot of
response and the interaction factors were obtained from the model graph of the Design-Expert version 12.0 software.

v. Set the Goal and Optimum Value:

In the numerical optimization phase, there are five possibilities of goal to construct the desirability indices including ‘maxi-

mize’, ‘minimize’, ‘target’, ‘in range’, and ‘equal to’. Desirability range is from zero to one for any given response. A value of
one represents the ideal case, while zero indicates that one or more responses fall outside the desirable limit. Then, RSM will
suggest several sets of the solution for hyperparameter configuration from the most desirable results to the least.

The detailed methodology of the development of the proposed ANN-RSM is depicted in Figure 3.

2.3.5. Performance evaluation

The performance evaluation of the ANN model development is measured using the MSE, RMSE, correlation coefficient (R),
and determination coefficient (R2), as given in Equations (11)–(14) (Nourbakhsh et al. 2014; Jawad et al. 2021):

MSE ¼ 1
N

Xn
i¼1

(ŷi � yi)
2, (11)
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RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

Xn
i¼1

(yi � ŷi)
2

vuut , (12)

R ¼

Pn
i¼1

(yi � �y)(ŷi � ŷ)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

(yi � �y)2
� � Pn

i¼1
(ŷi � ŷ)

2
� �s , (13)

R2 ¼ 1�

Pn
i¼1

(yi � ŷi)
2

Pn
i¼1

(yi � yi)
2
, (14)

where yi, ŷi, �y, and ŷ denote the ith independent variable, ith dependent variable, the mean of independent variables, and the
mean of dependent variables, respectively. The independent and dependent variables are measured by the permeate flux and
predicted permeate flux of POME, respectively. Thus, the correlation coefficient was used to assess the strength of the
relationship between the inputs (permeate pump and TMP) and the permeate flux output. The MSE (or RMSE) value

near zero, and the R (or R2) value near one indicate the high accuracy of the prediction model (Ibrahim & Wahab 2022;
Idris et al. 2022).

3. RESULTS AND DISCUSSION

This section is divided into three parts. The first part describes the results of the conventional-based ANN training for select-
ing hyperparameters. The second part introduces the proposed RSM-based ANN training (ANN-RSM) along with the initial
screening results. Finally, the model validations for permeate flux using optimal parameters from both techniques

Figure 3 | Overall process of proposed ANN-RSM hyperparameters tuning method.
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(conventional and ANN-RSM) are presented and discussed. The accuracy of the ANN models is measured and compared

using training and testing regressions.

3.1. Conventional-based HPO method

For the FFNN model, optimal performance is achieved by optimizing four numerical hyperparameters and two categorical
hyperparameters: number of neurons, learning rate, momentum, number of epochs, training function, and activation function

(as outlined in Section 3.1.1). Then, the RBFNN model’s optimal configuration involves optimizing two numerical hyperpara-
meters: number of neurons and number of spreads (as outlined in Section 3.1.2). This optimization is conducted using the
OVAT method based on the lowest MSE value.

3.1.1. Conventional-based FFNN training

Figure 4(a) depicts the results for optimizing the number of neurons in the hidden layer. The number of neurons is varied from

1 to 30, requiring 30 runs. The legend bars represent MSE for FFNN-1 and FFNN-2 using the trainlm function, while the solid
lines represent MSE for FFNN-3 and FFNN-4 using the traingdm function, respectively. In general, the bar chart shows a
decreasing trend with respect to the number of neurons, while the solid line shows an upward tendency with respect to

the number of neurons.
At this neuron plot, it is evident that the lowest MSE for FFNN-1, FFNN-2, and FFNN-3 were obtained at 28, 29, and 1,

with MSE values of 0.0221, 0.0225, and 0.0394, respectively. Then, for FFNN-4, it was found that 3, 7, 8, 11, 13, and 19 with

MSE values of 0.0352, 0.0357, 0.0382, 0.0366, 0.0343, and 0.0317, respectively, may produce a good prediction outcome.

Figure 4 | MSE with varying number of (a) neurons, (b) learning rate, (c) momentum, and (d) epochs.
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However, 11 neurons have been selected since it produced the lowest MSE value of 0.0317. It seems that the interaction of

neuron number and activation function significantly influences the MSE of FFNN model development.
Figure 4(b) and 4(c) present the MSE with varying values of learning rate and momentum, respectively. In this case, both

learning rate and momentum were trained with values set from 0.1 to 1, requiring 10 runs for each hyperparameter. As shown

in Figure 4(b), the MSE values generated by the traingdm function tend to fluctuate between zero and one as the learning rate
varies, compared to the trainlm function, which fluctuates between 0.022 and 0.027. Notably, learning rates of 0.8, 0.4, 0.1,
and 0.2 produce favourable prediction outcomes for FFNN-1, FFNN-2, FFNN-3, and FFNN-4, respectively.

The optimal values of the momentum coefficient for FFNN-1, FFNN-2, FFNN-3, and FFNN-4 are depicted in Figure 4(c).

At this momentum value, it is evident that 0.8 represents the optimum momentum value for FFNN-1, with an MSE value of
0.0221. For FFNN-2, the bar chart shows an increasing trend with respect to the number of momentums, and the lowest MSE
was obtained at 0.4 (0.0229). Meanwhile, the MSE values of FFNN-3 and FFNN-4 exhibit a similar trend: they remain slightly

consistent at the beginning, but experience an increase towards the end of the momentum range. For instance, in the case of
FFNN-3, the MSE values exhibit slight consistency at the beginning, but then show a sudden increment at momentums of 0.7,
0.9, and 1. Therefore, 0.5 and 0.6 momentum values were selected for FFNN-3 and FFNN-4, resulting in MSE values of

0.0314 and 0.0261, respectively.
The MSE results for FFNN-1, FFNN-2, FFNN-3, and FFNN-4 to determine the optimal number of epochs are depicted in

Figure 4(d). The MSE values for FFNN-1 and FFNN-2 exhibit random fluctuations within the range of 0.022–0.0227. Based

on these results, it was determined that epoch values of 300 and 600 could potentially yield good results for FFNN-1 with a
lower MSE. However, an epoch value of 300 was chosen since it resulted in the lowest MSE of 0.0223. FFNN-2 also produced
the lowest MSE value (0.0221) with 100 epochs.

Regarding the momentum for FFNN-3, it is shown to have an optimal value at 700 with an MSE value of 0.0265. Further-

more, the MSE values for FFNN-4, from the first 100 to 200 epochs, experienced a sudden decrease from 0.0525 to 0.0325.
Subsequently, they stabilized around 0.0325 until the end. Ultimately, FFNN-4 achieved optimal results with 600 epochs,
resulting in the smallest MSE value of 0.0314.

In summary, the lowest MSE values were achieved by FFNN when utilizing the trainlm function for training, as opposed to
traingdm. This is attributed to the advantages of the Levenberg–Marquardt algorithm, which include its rapid training process
and its effectiveness in function fitting (nonlinear regression), leading to a lower MSE (Ibrahim & Wahab 2022).

3.1.2. Conventional-based RBFNN training

Figure 5(a) and 5(b) show the MSE with varying numbers of neurons and spreads for RBFNN training. Similar to FFNN,
the number of neurons is varied from 1 to 30, requiring 30 runs. Meanwhile, the number of spreads varied from 0.5 to 3

Figure 5 | MSE with varying (a) number of neurons and (b) number of spreads.
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in increments of 0.5, with six runs required. It can be observed in Figure 5(a) that the MSE values for the number of

neurons suddenly decrease and then slightly stabilize at minimum values starting at eight until 30, with MSEs ranging
from 0.0315 to 0.0251, respectively. In the meantime, as depicted in Figure 5(b), the MSE shows an increasing trend
with respect to the number of spreads, then it slightly decreases after the number of spreads is set to two. Therefore,

the lowest MSE for the number of neurons and the number of spreads were obtained at 30 (0.0251) and 0.5
(0.0235), respectively.

3.2. RSM-based HPO method

This section outlines the outcomes of RSM-based FFNN and RSM-based RBFNN training, utilizing the selected scale
obtained in Section 2.3.4.1.

3.2.1. RSM-based FFNN training

For this study, a quadratic model was selected to establish the relationship between FFNN hyperparameters (input) and the
corresponding MSE response (output). Employing the Box-Cox method, the MSE response was transformed into the inverse
of MSE (1/MSE), with α set at 1. This transformation aligns the response distribution closer to normality and enhances the

model’s fit to the data (Nazghelichi et al. 2011). In addition, inverting the MSE values is beneficial for a small value data
because it will transform a metric into a larger value. This allows for a more effective representation of improved
performance.

Comparisons of actual and predicted 1/MSE responses, based on 120 runs with various hyperparameter configurations
using CCD, are provided in Table S3 in the Supplementary Material. The equation, in terms of coded factors, allows for pre-
dictions of the response at given levels of each factor. Typically, high levels of factors are coded as þ1, while low levels are

coded as �1. This coded equation is valuable for assessing the relative impact of the factors by comparing their coefficients.
The quadratic model, in terms of coded factors for 1/MSE of the FFNN-RSM model, is expressed in Equation (15):

1
MSE

¼ 27:8796þ 4:7072 Aþ 1:9849 B� 2:5610 Cþ 1:0684 D� 11:5799E� 2:3678F� 1:0215 AB� 0:0688 AC

� 0:3811AD� 3:5479 AEþ 3:1920 AF� 2:7498 BC� 0:5089 BDþ 0:5671 BE� 0:1462 BFþ 0:4303 CD

� 2:7918CEþ 0:2225 CFþ 1:0511 DE� 0:0169DFþ 0:0231 EF� 1:9888 A2 � 1:8045 B2 � 1:9809 C2 þ 0:3722 D2

(15)

where parameters A, B, C, D, E, and F represent the coded values of the number of neurons, learning rate, momentum,

number of epochs, training function, and activation function, respectively. Positive values lead to an increase in the response,
while negative values indicate a decrease. Due to the inherently small MSE response values of the network, the coefficients’
values are relatively low (Podstawczyk et al. 2015).

The accuracy of the RSM model is assessed through ANOVA, as presented in Table 2. P-values less than 0.050 (A, B, C, E,
F, AE, AF, BC, and CE) indicate significant effects on the predicted process. The analysis reveals that the linear term of train-
ing functions (E) and neuron number (A) are the most significant factors in the 1/MSE response. Following these, in order of

significance, are the activation function, momentum, and learning rate. In contrast, the number of epochs shows a less sub-
stantial effect on the response, with a small F-value (1.16) and a p-value (0.2839). AB, AC, AD, BD, BE, BF, CD, CF, DE, DF,
EF, A2, B2, C2, and D2 have p-values greater than 0.050, indicating their lesser importance in the FFNN training process.

The lack-of-fit test for the model yielded an insignificance with an F-value of 0.8309 and a p-value of 0.7237, indicating that
the model suitably fits the experimental data. Model fitness was assessed using the determination coefficient (R2) for various
models (linear, two-factorial, and quadratic). As a practical guideline, an R2 equal to or higher than 0.75 is recommended,
representing the total deviation of observed activity values from their mean (Elfghi 2016). The closer the R2 is to unity,

the better the model performs in predicting response values. Here, R2¼ 0.7741, R2
adj ¼ 0:7140 , and R2

pred ¼ 0:6309 signify
a strong agreement between observed and predicted inverse MSE values from the fitted model.

An adequate precision of 13.2814, exceeding four, affirms a reliable signal, indicating the model’s accuracy. Interestingly, it
appears that the number of epochs has a lesser impact on the overall performance accuracy of the FFNN training model.
While the number of epochs showed significance in two-factor interactions with other factors in the two-level factorial
method (Figure S3(a)), it was estimated insignificant in the RSM approach. In RSM, parameter significance is evaluated
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using statistical test based on the coefficients of these terms in the regression model. If a parameter’s coefficient does not sig-
nificantly differ from zero, it is considered insignificant.

The residuals analysis is a powerful tool to validate the model adequacy and reliability. Figure S5(a) displays the normal

probability graph versus the studentized residuals, with points lying on a straight line. It confirms that the model is appropri-
ate because errors are typically distributed with a constant (Pashaei et al. 2023). Assessing the hypothesis of constant variance
at specific levels is demonstrated in Figure S5(b), showing a random distribution of points above and below the x-axis between

–3.6612 and þ3.6612 for externally studentized residuals. Both ANOVA and residual analysis support the model’s validity.
The perturbation graph is crucial for understanding how the response (1/MSE) changes in relation to alterations in its fac-

tors from the reference point, while keeping other factors at constant reference values. Figure 6(a) illustrates perturbation

Table 2 | Analysis of variance for the FFNN hyperparameters quadratic model

Source Sum of squares df Mean square F-value p-Value Remark

Model 22791.82 25 911.67 12.88 ,0.0001 Significant

A: No. of neurons 1595.33 1 1595.33 22.54 ,0.0001 Significant

B: Learning rate 283.68 1 283.68 4.01 0.0482 Significant

C: Momentum 472.24 1 472.24 6.67 0.0113 Significant

D: No. of epoch 82.19 1 82.19 1.16 0.2839

E: Train. Func. 16091.19 1 16091.19 227.38 ,0.0001 Significant

F: Activ. Func. 672.78 1 672.78 9.51 0.0027 Significant

AB 66.78 1 66.78 0.9437 0.3338

AC 0.3032 1 0.3032 0.0043 0.9480

AD 9.29 1 9.29 0.1313 0.7179

AE 906.33 1 906.33 12.81 0.0005 Significant

AF 733.12 1 733.12 10.36 0.0018 Significant

BC 483.92 1 483.92 6.84 0.0104 Significant

BD 16.57 1 16.57 0.2342 0.6295

BE 23.15 1 23.15 0.3272 0.5687

BF 1.54 1 1.54 0.0217 0.8831

CD 11.85 1 11.85 0.1674 0.6833

CE 561.16 1 561.16 7.93 0.0059 Significant

CF 3.57 1 3.57 0.0504 0.8229

DE 79.55 1 79.55 1.12 0.2918

DF 0.0205 1 0.0205 0.0003 0.9865

EF 0.0640 1 0.0640 0.0009 0.9761

A2 40.99 1 40.99 0.5792 0.4485

B2 33.75 1 33.75 0.4769 0.4915

C2 40.67 1 40.67 0.5746 0.4503

D2 1.44 1 1.44 0.0203 0.8870

Residual 6652.29 94 70.77

Lack of fit 5019.59 74 67.83 0.8309 0.7237 Not significant

Pure error 1632.70 20 81.64

Cor total 29444.12 119

R2 0.7741

Adjusted R2 0.7140

Predicted R2 0.6309

Adeq. precision 13.2814
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plots comparing the effect of all numerical factors including the number of neurons (A), learning rate (B), momentum (C), and

number of epochs (D) at the reference point, whereas categorical factors including training function and activation function
were set at trainlm and ReLu, respectively.

In this case, the graph representing 1/MSE would behave in the opposite way compared to MSE, where the value of 1/MSE

should be as high as possible. Observations from the perturbation plot indicate that the number of neurons exerts a relatively
higher effect on the change of 1/MSE, while learning rate and momentum exhibit a significant interaction effect, and epoch
number exerts a very small effect. This is further confirmed by the single plot as shown in Figure 6(b). Lower epoch numbers
indicate faster training, requiring fewer iterations for convergence. This occurs because training stops once the minimum

Figure 6 | (a) Perturbation plot, (b) single epoch plot versus inverse MSE, (c) interaction plot using three dimension, and (d) contour plot of
learning rate and momentum versus inverse MSE.
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error is achieved, often before the specified number of epochs is reached (Salam et al. 2021). These results align with the simu-

lation results obtained by the conventional method in the previous section (Section 3.1.1) in Figure 4(d), where lower MSE
values were produced for all FFNN models with minimal variation in their trends.

Furthermore, the relationship between 1/MSE response and the combined factors of learning rate and momentum is illus-

trated in a three-dimensional (3D) surface plot and a two-dimensional (2D) plot. The blue colour region indicates the highest
1/MSE values. Figure 6(c) and 6(d) demonstrates a significant increase in 1/MSE values with respect to increasing learning
rate and momentum. It displays an ideal curve for learning rate and momentum. Both hyperparameters interact, leading to
accelerated learning. The curve remains linear if the learning rate is too low and resembles an inverse exponential curve if the

learning rate is high. However, excessively high learning rates can decay the loss rapidly and lead to getting stuck at local
minima. The observation suggests that the range of maximum 1/MSE value appears to be between 0.13 and 0.31 for learning
rate and momentum around 0.6–0.84.

In conclusion, these three hyperparameters (neuron number, learning rate, and momentum) play an essential role in influ-
encing the 1/MSE value, which is consistent with the results obtained from the regression model ANOVA. Through
numerical optimization in Design-Expert software, the goal for all hyperparameter factors was set at ‘in range,’ while the

MSE response was specified at ‘minimum.’ Therefore, the optimum values suggested by RSM with a desirability value of
one are as follows: number of neurons¼ 15, learning rate¼ 0.23, momentum¼ 0.65, number of epochs¼ 287, and trainlm
and ReLu have been selected as the training and activation functions, respectively. These optimum values were applied

for predicting the permeate flux of POME.

3.2.2. RSM-based RBFNN training

Regression analysis was applied to the design matrix data of RBFNN hyperparameters and fitting the response (MSE) to a
quadratic model. The MSE response was transformed to natural log MSE (ln(MSE)). The quadratic model in terms of

coded values for ln(MSE) is expressed in Equation (16):

ln(MSE) ¼ � 3:6265 � 1:1606 A � 0:0109 B þ 0:0649 AB þ 1:0952 A2 � 0:0086 B2 (16)

where A and B are the coded values for the number of neurons and the number of spreads, respectively. Positive and negative

signs represent synergistic and antagonistic effects between mutual interaction and individual parameters.
Table 3 presents the ANOVA of the quadratic model for the RBFNN-RSM training response. The highest F-value

(21809.26) with a p-value,0.0001 confirms the model’s statistical significance. An R2 of 0.9999 indicates a strong correlation

Table 3 | Analysis of variance for the RBFNN hyperparameters quadratic model

Source Sum of squares df Mean square F-value p-Value Remark

Model 11.95 5 2.39 21809.26 ,0.0001 Significant

A: No. of neurons 8.08 1 8.08 73738.65 ,0.0001 Significant

B: No. of spreads 0.0007 1 0.0007 6.47 0.0384 Significant

AB 0.0168 1 0.0168 153.69 ,0.0001 Significant

A2 3.31 1 3.31 30225.83 ,0.0001 Significant

B2 0.0002 1 0.0002 1.87 0.2141

Residual 0.0008 7 0.0001

Lack of fit 0.0008 3 0.0003

Pure error 0.0000 4 0.0000

Cor total 11.95 12

R2 0.9999

Adjusted R2 0.9999

Predicted R2 0.9993

Adeq. precision 344.6088
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between predicted and actual response values. Predicted R2 (0.9993) closely aligns with adjusted R2 (0.9999), underscoring

model significance. The adequate precision (344.6068) implies a satisfactory signal-to-noise ratio. A ratio greater than 4 is
desirable. Thus, the model can be used to navigate the design space (Nourbakhsh et al. 2014).

All main factors (A and B) and two-factor interaction (AB) exhibit p-values ,0.050, signifying their significant impact on

the prediction process. The analysis reveals the first-order and second-order effects of neurons (A and A2) as the most signifi-
cant terms in the ln(MSE) response for the RBFNN model. Meanwhile, the quadratic term for spreads (B2) exhibits a p-value
of 0.2141, indicating less influence on the response.

Comparisons of actual and predicted ln(MSE) responses, based on 13 runs with various hyperparameter configurations of

RBFNN using CCD, are provided in Table S4. The actual and predicted ln(MSE) values align, confirming the applicability of
the quadratic model (Equation (16)) in establishing the relationship between ln(MSE) and RBFNN hyperparameters.

Residual analysis further supports these findings. Figure S6(a) and S6(b) display the normal probability diagram of studen-

tized residuals and residuals plot versus predicted response values, respectively. The points cluster near the straight line in
Figure S6(a), indicating model adequacy. Figure S6(b) shows random scatter across the graph between the red line
(�4.5612 and þ4.5612), affirming the model’s adequacy and unobvious error.

The perturbation scheme, comparing the effects of two hyperparameters (neurons and spreads) at the reference point, is
illustrated in Figure 7(a). Neurons (A) exhibit a curvature with a significant decrease at a specific point, then increase with
respect to ln(MSE). Spreads (B), conversely, maintain a constant trend along their midpoint. Figure 7(b) and 7(c) plots the

response (ln(MSE)) with respect to neuron numbers and spread numbers, respectively. Factor A exerts a relatively higher
effect on changes in the reference point, while factor B has a minimal effect.

The curves in Figure 7(c) reveal a significant increase of spread numbers at beginning, and then it decreases with respect to
ln(MSE). These findings confirm the statistical results from Table 3, affirming the significance of all hyperparameters of

RBFNN to ln(MSE). Furthermore, the shift of spread numbers being insignificant in a two-level factorial design
(Figure S4(b)) to becoming significant in RSM can be attributed to the fact that the two-level factorial design is not well
suited for capturing the more complex relationships or curvature in the response surface of spread numbers at multiple

levels (more than two).
Figure 7(d) and 7(e) presents the three-dimensional (3D) surface plot and two-dimensional (2D) contour plot of ln(MSE)

against combinations of neuron and spread numbers. The red regions denote the highest ln(MSE), while the blue regions sig-

nify the lowest ln(MSE). The minimum ln(MSE) occurs within the range of 13–31 neurons. The numerical goal setting of
neurons number and spreads number were set to ‘in range’, while ‘minimum’ for MSE response. Then, RSM suggests optimal
values of 29 neurons and 1.5 spreads for minimizing ln(MSE) with a desirability value of one. These parameters were applied
to predict permeate flux in POME.

3.3. Model validation

The validation of FFNN and RBFNN models is certified based on the validity of training and testing dataset. To evaluate the

validity of training and testing models, the permeate flux output plot and regression plot of developed models are discussed in
this section. The comparison of the results is based on two important criteria: the lowest MSE and the highest correlation
coefficient (R) values.

Figure S7(a)–S7(f) shows training results for the permeate flux outputs for the FFNN-1, FFNN-2, FFNN-3, FFNN-4, and
FFNN-RSM models. These models are plotted based on the best hyperparameters obtained in Sections 3.1.1, 3.2.1, and
3.2.2. Figure S7(a) shows that the predicted datasets for FFNN-1 through FFNN-4 and FFNN-RSM training models have simi-

lar trends to the actual or measured datasets. Moreover, FFNN-2 model showed the highest accuracy with an R-value and
MSE of 0.9881 and 0.0236, respectively, followed by FFNN-RSM (0.9878 and 0.0243), FFNN-1 (0.9877 and 0.0245),
FFNN-4 (0.9862 and 0.0274), and FFNN-3 (0.9837 and 0.0323).

As shown in Figure 8(a)–8(f), the training model is then validated using the testing dataset, achieving good agreement with

the actual dataset. The permeate flux models for FFNN-3 have a slight offset due to a slightly lower performance of MSE. All
models demonstrate good prediction with comparable R and MSE results for the testing dataset. The testing performance of
FFNN-2 model was higher, followed by FFNN-RSM, FFNN-1, FFNN-4, and FFNN-3 with R and MSE values of 0.9871 and

0.0256, 0.9867 and 0.0264, 0.9865 and 0.0268, 0.9854 and 0.0290, and 0.9827 and 0.0343, respectively.
Figure S8(a) shows the comparison plot between RBFNN and RBFNN-RSM permeate flux models for the SMBR filtration

system during the training dataset. It can be seen that both models demonstrated good prediction with slightly higher
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Figure 7 | (a) Perturbation plot, (b) single factor plot for neurons number, (c) single factor plot for number of spread, (d) interaction plot using
3-dimentional and (e) contour plot of neurons and spreads number versus ln(MSE).
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Figure 8 | (a) Permeate flux for FFNN�measured, FFNN� 1, FFNN� 2, FFNN� 3, FFNN� 4, and FFNN� RSM models. Comparison of the
measured and predicted permeate flux of POME between (b) FFNN� 1, (c) FFNN� 2, (d) FFNN� 3, (e) FFNN� 4, and (f) FFNN� RSM for the
testing dataset.
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performance of accuracy for RBFNN than RBFNN-RSM. Overall training performance in terms of R and MSE value for both

models is depicted in Figure S8(a) through Figure S8(c). The RBFNN model resulted in 0.9882 and 0.0235 for R and MSE,
respectively. The R and MSE for RBFNN-RSM are 0.9873 and 0.0253, respectively.

The testing model of conventional RBFNN was then compared with the testing model of RBFNN-RSM. It can be seen from

Figure 9(a) that both models demonstrated good prediction with comparable MSE results for testing dataset. The RBFNN
model resulted in 0.9867 and 0.0265 for R and MSE, respectively, while the R and MSE performance of the RBFNN-RSM
model are 0.9857 and 0.0284, respectively (Figure 9(a)–9(c)).

Table 4 shows the summary of overall performance for all models. The FFNNmodels (FFNN-1, FFNN-2, FFNN-3, FFNN-4,

and FFNN-RSM) demonstrated good and comparable prediction models, with a slightly higher performance of accuracy for
FFNN-2 (0.9871), followed by FFNN-RSM (0.9867), FFNN-1 (0.0865), FFNN-4 (0.9854), and FFNN-3 (0.9827). However,
FFNN-RSM only required 120 runs in 150.38 s to determine the optimal value of hyperparameters. Meanwhile, the conven-

tional method required 60 runs for each model (a total of 240 runs), with a total computational time of 253.24 s for all models,
which is 59.58 s for FFNN-1, 57.68 s for FFNN-2, 72.95 s for FFNN-3, and 63.03 s for FFNN-4. Moreover, RBFNN-RSM only
needed 98.82 s for 13 runs compared to the conventional RBFNN, which required 269.02 s for 36 runs to determine the opti-

mal hyperparameters.

Figure 9 | (a) Permeate flux for RBFNN�measured, RBFNN� conventional, and RBFNN� RSM models. Comparison of the measured and
predicted permeate flux of POME between (b) RBFNN� conventional and (c) RBFNN� RSM for the testing dataset.
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Overall, the RBFNN required more computational time compared to FFNN, consistent with prior findings (Yang 2023).
This can be attributed to the larger number of neurons necessary for RBFNN, providing more freedom for weight adjustment

and subsequently increasing calculation time (Nazghelichi et al. 2011). Moreover, slightly better performance accuracy was
observed for FFNN compared to RBFNN. However, this finding contrasts with results reported by Yang (2023) for predicted
membrane distillation performance. It appears that the combination of the training algorithm (trainlm) and activation func-
tion (ReLu) used in FFNN was optimal for permeate flux prediction, exhibiting reduced computational time and high-

performance accuracy. This is attributed to the advantages of the Levenberg–Marquardt algorithm, which facilitates a
rapid training process with lower MSE (Ibrahim &Wahab 2022), and the superior training performance of the ReLu function
over common activation functions (Rasamoelina et al. 2020).

It is noteworthy that the proposed ANN-RSM approach reduces the number of repetitions required to find optimum hyper-
parameters. Consequently, computational operation time can be significantly reduced compared to the time required when
the OVAT method is employed in this study. Indeed, the proposed ANN-RSM emerges as a systematic, superior, and faster

optimization technique for determining appropriate ANN hyperparameters when contrasted with the traditional OVAT
method. Therefore, the integrated ANN and RSM approach stands as a viable alternative to the OVAT method, effectively
reducing computational time and expediting ANN model development.

4. CONCLUSIONS

The FFNN and RBFNN model have been successfully developed for the permeate flux of POME during the submerged MBR
filtration process. The proposed combined FFNN-RSM and RBFNN-RSM model has been developed to determine the ANN

hyperparameters, and it has been compared with conventional one-variables-at-time models (FFNN-1, FFNN-2, FFNN-3,
FFNN-4, and RBFNN). The model validation results showed that good validity of the training and testing models was
obtained for all models. The simulation results showed the comparable performance accuracy of the proposed ANN-RSM

models (FFNN-RSM and RBFNN-RSM) in relation to the conventional ANN models (FFNN-1, FFNN-2, FFNN-3,
FFNN-4, and RBFNN). The optimization of the ANN hyperparameters for the FFNN-RSM models shows an improved com-
putational time and number of repetitions – by about 41 and 50%, respectively – compared to the conventional FFNN model

(FFNN-1, FFNN-2, FFNN-3, and FFNN-4). Meanwhile, an RBFNN-RSM model indicates an enhanced computational time
and repetition number by 65 and 64%, respectively, compared to the conventional RBFNN model. The benefit of RSM is due
to the application of the DoE, which requires less repetition of the training process but can provide a huge sum of infor-
mation. In this work, the RSM successfully determines the best hyperparameters for the FFNN and RBFNN models.

Moreover, it learned the significance and the relationship between the ANN hyperparameters and the MSE values even
though the model involves with mix parameters (e.g., numerical and categorical). The proposed ANN-RSM technique
proved an improvement over the conventional ANN models in terms of the number of repetitions, the computational

time, and the estimation capabilities. While this study demonstrates the applicability of the proposed ANN-RSM for optimiz-
ing ANN hyperparameters in the permeate flux process by the SMBR system, further investigations into this methodology are
essential. Exploring alternative training functions, such as Bayesian regularization (BR) and scaled conjugate gradient, along

Table 4 | Overall performance accuracy of the FFNN� conventional, FFNN� RSM, RBFNN� conventional, and RBFNN� RSMmodels for the
SMBR filtration system

Model

Training Testing No.
of
run

Computational
time (sec)

Total
no. of
run

Total
computational
time (sec)MSE RMSE R R2 MSE RMSE R R2

FFNN-1 0.0245 0.1567 0.9877 0.9754 0.0268 0.1636 0.9865 0.9731 60 59.58 240 253.24

FFNN-2 0.0236 0.1535 0.9881 0.9764 0.0256 0.1600 0.9871 0.9744 60 57.68

FFNN-3 0.0323 0.1797 0.9837 0.9677 0.0343 0.1851 0.9827 0.9656 60 72.95

FFNN-4 0.0274 0.1654 0.9862 0.9726 0.0290 0.1703 0.9854 0.9709 60 63.03

FFNN-RSM 0.0243 0.1559 0.9878 0.9757 0.0264 0.1624 0.9867 0.9736 120 150.38 120 150.38

RBFNN 0.0235 0.1533 0.9882 0.9765 0.0265 0.1628 0.9867 0.9734 36 269.02 36 269.02

RBFNN-RSM 0.0253 0.1589 0.9873 0.9747 0.0284 0.1686 0.9857 0.9715 13 93.82 13 98.82
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with varying activation functions like logsig, scaled exponential linear unit, and leak rectified linear unit, is warranted. Sub-

sequently, the methodology outlined in this study should be replicated not only in other ML models but also in diverse
wastewater treatment areas. This would contribute to a comprehensive understanding of the proposed approach’s generaliz-
ability and effectiveness across different contexts. Furthermore, this significant improvement can be later used in control

system development to improve membrane operation.
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