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ABSTRACT

In this study, a new sulfidated nanoscale zero-valent iron (S-nZVI) supported on hydrogel (S-nZVI@H) was successfully synthesized for the removal

of chromium (Cr) (VI) from groundwater. The surfacemorphology, dispersion phenomenon and functional groups of novel S-nZVI@Hwere charac-

terized by scanning electronmicroscopy and Fourier transform infrared spectroscopy. Box–Behnken design (BBD) optimization technology based

on response surface methodology (RSM) is applied to demonstrate the influence of the interaction of S-nZVI@H dose, initial Cr(VI) concentration,

contact time, and initial pH with the Cr(VI) removal efficiency. The analysis of variance results (F¼ 118.73, P, 0.0001, R2¼ 0.9916) show that the

quadratic polynomial model is significant enough to reflect the close relationship between the experimental and predicted values. The predicted

optimum removal conditions are: S-nZVI@H dose 9.46 g/L, initial Cr(VI) concentration 30 mg/L, contact time 40.7 min, and initial pH 5.27, and the

S-nZVI@Hdose is the key factor affecting the removal of Cr(VI). The predicted value (99.76%) of Cr (VI) removal efficiency is in good agreementwith

the experimental value (97.75%), which verifies the validity of the quadratic polynomial model. This demonstrates that RSMwith appropriate BBD

can be utilized to optimize the design of experiments for removal of Cr(VI).
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HIGHLIGHTS

• Hydrogel-supported sulfidated zero-valent iron nanoparticle (S-nZVI@H) was successfully prepared and used to remove Cr(VI) from ground-

water.

• The effect of the interaction of four independent variables on the removal efficiency of Cr(VI) was studied by RSM.

• The optimum removal conditions and key factors for Cr(VI) removal were determined.

• BBD is considered to optimize the experimental study of Cr(VI) removal by S-nZVI@H.
INTRODUCTION

As a metal pollutant, chromium (Cr) comes from industrial processes such as tanning, electroplating, metallurgy, and textile

(Selvi et al. 2001). Large quantities of Cr-containing wastewater are drained into rivers, resulting in contamination of soil and
groundwater. Cr usually exists in the environment in the form of trivalent chromium (Cr(III)) and hexavalent chromium
(Cr(VI)) (Fendorf 1995). The toxicity of Cr(VI) is higher than that of Cr(III) mainly because of its higher solubility, fluidity,
and bioavailability (Kotas ́ & Stasicka 2000). Cr(VI) can increase the risk of cancer by entering the body through direct con-

tact with the skin or inhalation (Gheju 2011; Zhu et al. 2017). In order to effectively control the pollution of Cr, some
methods of removing Cr(VI) have been developed, including activated carbon adsorption technology (Mohan & Pittman
Jr 2006), polymer membrane filtration technology (Aroua et al. 2007), ion exchange technology (Lin & Kiang 2003), electro-

chemical precipitation technology (Kongsricharoern & Polprasert 1995). In order to further improve the removal efficiency
of Cr(VI) and reduce the impact of the treatment processes on the environment, it is necessary to develop a green material
with high removal efficiency, low cost, and little secondary pollution.

In recent years, nanomaterials have been widely applied in the removal of pollutants from water (Eskandari et al. 2018;
Galdames et al. 2020; Li et al. 2021; Tsade et al. 2021). Among them, nano zero-valent iron (nZVI) has been widely used
in the remediation of groundwater and soil pollution due to its high specific surface area and reactivity (Zhang 2003).
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Nevertheless, nZVI particles have a number of limitations that affect their reaction with contaminants. (1) nZVI easily aggre-

gates based on the action of van der Waals force and magnetic force, and eventually reduces the migration in aquifer (Phenrat
et al. 2007; Israelachvili et al. 2008; Li et al. 2017b). (2) nZVI particles with extremely high reactivity can react with other
substances in the water in addition to the target contaminants, resulting in poor selectivity for pollutants (Cai et al. 2020;
He et al. 2020). (3) When using nZVI in practice, a passivation layer can easily form on the surface of nZVI prohibiting
the Fe0 core to react with pollutants, thus lowering the reactivity (Sarathy et al. 2008). The bare nZVI therefore needs to
be modified to improve these limitations. A common approach is to load the nZVI onto inorganic carriers such as bentonite
(Chen et al. 2011b) and biochar (Su et al. 2016). The author applied diatomite to support nZVI to remove Cr(VI) from water

and achieved better dispersion and lower oxidation degree of nZVI with high removal rate (Zhang et al. 2019). In addition,
the coating of polymer on the surface of nZVI is also an effective method. Chen et al. (2011a) conducted an experimental
study on the removal of tetracycline from polluted water by modified nZVI with polyvinylpyrrolidone (PVP-K30). Another

method for the modification of nZVI is adding transition metal to nZVI to form a bimetallic iron base. Zhu et al. (2016)
reported the method of adding Cu metal to nZVI to repair Cr(VI) in groundwater.

The higher reactivity, selectivity, and lifetime of nZVI based on sulfidation are considered as promising characteristics (Xie

& Cwiertny 2010; Fan et al. 2016a, 2017; Xu et al. 2020b). At present, there are two commonly used methods for the prep-
aration of sulfide nanoparticles. Kim et al. (2011) used a facile one-pot synthesis process by adding a mixture of dithionite and
sodium borohydride (NaBH4) to a solution of ferric iron (Fe3þ) to synthesize Fe/FeS nanoparticles, achieving high reduction

rate for trichloroethylene (TCE). Another method of sulfidation is to reduce ferrous iron (Fe2þ) with NaBH4 and then add
Na2S, commonly known as the two-step synthesis method (Rajajayavel & Ghoshal 2015). Sulfurization breaks the application
limit of nZVI. Fan et al. (2016a) reported that sulfidation of nZVI enhances the rate of dechlorination of TCE, indicating that
the corrosion reaction with water of nZVI is suppressed. In view of improving lifetime of S-nZVI, Xie & Cwiertny (2010)

proposed that the reduction ability of aged nZVI could be restored by using dithionite as a reducing agent to sulfurize the
nZVI to prolong its lifetime. In addition, sulfidation significantly increases the crystal domain size and lattice spacing of
iron. The larger lattice constant is beneficial for the electron transfer, thus improving the reactivity and selectivity for the

reduction of contaminants (Xu et al. 2020a). These achievements are impressive and indicate that S-nZVI has great potential
for the removal of pollutants from water (Su et al. 2015; Li et al. 2016, 2017a, 2020).

In order to improve the aggregation phenomenon and anti oxidation property of S-nZVI, using a porous material as the

supported carrier of nanoparticles is an effective choice. Chen et al. (2020) removed TCE from groundwater by loading S-
nZVI on biochar (BC). The promotion of removal and degradation of TCE benefited from the high adsorption capacity of
BC and the high reduction capacity of S-nZVI. Other researchers have also applied inorganic porous material to support
S-nZVI for the removal of heavy metal (Su et al. 2015; Qu et al. 2021) and toxic dye (Yang et al. 2018). Based on its

strong response to environmental stimulation, biocompatibility, swelling property, and elasticity, hydrogels have been used
in drug transportation, eyeglasses manufacturing, biosensor development, artificial muscles, and other aspects (Manetti
et al. 2002; Sahiner et al. 2006; Satarkar & Zach Hilt 2008; Fuhrer et al. 2009; Jain et al. 2017). In this study, organic hydro-

gels with non-toxic, environmentally friendly, cheap and porous properties were selected as the carrier of S-nZVI. Hydrogel
has super function of absorbing contaminants (Jin et al. 2009; Sahiner & Ilgin 2010) due to the three-dimensional (3D) net-
work formed by cross-linking of polymer chains. In addition, hydrogels also have hydrophilic functional groups such as

COOH, OH, CONH2, and NH2 in the structure, where negatively charged COOH can be combined with positively charged
metal ions (Cu2þ and Fe2þ) in aqueous solution by electrostatic forces (Chauhan et al. 2006; Sahiner et al. 2010a). Conse-
quently, hydrogels can be used as reaction containers for in-situ reduction of metal nanoparticles (Sahiner 2006; Sahiner

et al. 2010b). The metal nanoparticles are uniformly dispersed in the hydrogel network system, thus avoiding the serious
aggregation of nanoparticles. Furthermore, hydrogels can be used as a protective structure to reduce the oxidation degree
of nanoparticles to a certain extent. Obviously, it is worth expecting to combine S-nZVI with hydrogel (S-nZVI@H) to
form a novel material to fully amplify the super reduction ability of S-nZVI particles, and then repair the pollution of

Cr(VI) in groundwater.
Response surface methodology (RSM) is a design method that combines mathematics and statistics to establish polynomial

models based on experimental data (Bezerra et al. 2008). After determining independent variables, designing experiments,

data statistics, and model validation, the goal of determining the optimal independent variable conditions is achieved.
Box–Behnken design (BBD) is one of the optimization analysis methods in the quadratic response surface design method,
://iwa.silverchair.com/wst/article-pdf/84/5/1190/935828/wst084051190.pdf
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which can show the influence of interaction between multiple variables on the response value and avoid the combination of

all variables in extreme circumstances (Ferreira et al. 2007; Bezerra et al. 2008).
In this study, nZVI@H and S-nZVI@H were synthesized and characterized for the removal of Cr(VI). Scanning electron

microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) were applied to survey the surface morphology, dis-

persion phenomenon, and structure of original hydrogels, nZVI, nZVI@H, and S-nZVI@H. Comparison experiments were
performed to research the removal efficiency of nZVI@H and S-nZVI@H. Considering the removal efficiency, S-nZVI@H
was selected as the material for the response surface experiment design. The S-nZVI@H dose, initial Cr(VI) concentration,
contact time, and initial pH were taken as independent variables to explore the influence of the interaction of four indepen-

dent variables on the Cr(VI) removal efficiency to acquire the optimal conditions for removal Cr(VI).

MATERIALS AND METHODS

Materials

Analytical pure levels of chemicals and reagents were used in this study. Ferrous sulfate (FeSO4·7H2O), sodium hydrosulfite
(Na2S2O4), and sodium borohydride (NaBH4) were purchased from Tianjin Fuchen Chemical Reagent Factory (Tianjin,
China). The solution required in the experiment was mixed with deionized water. Hydrochloric acid (HCl, 0.1 mol/L) and

sodium hydroxide (NaOH, 0.1 mol/L) were used to adjust the pH of the solution.

Preparation of S-nZVI@H

The prepared sodium polyacrylate and polyacrylamide were copolymerized in a constant temperature water bath and dried to
obtain the PANa-PAM hydrogel used in this study. The S-nZVI was prepared by one-pot method initiated by Kim et al. (2011).
The S-nZVI@H composites were prepared by supporting S-nZVI on hydrogel. First, hydrogel globules were dipped in ferrous
sulfate solution (0.1 mol/L) for 24 h. After soaking, the hydrogel globules were filtered with deionized water three times to
remove Fe2þ on its surface. Then, a three-necked flask was prepared to fill the soaked hydrogel globules, which were

immersed in deionized water. S-nZVI@H were prepared by liquid phase reduction method. For the preparation of the reac-
tion solution, NaBH4 (1 mol/L) and Na2S2O4 (0.1 mol/L) were put into the 250 mL conical flask and dissolved by stirring
with 200 mL of deionized water. The reductant solution was injected into the three-neck flask at 28 L/min through a peristal-

tic pump in nitrogen atmosphere and stirred at 90 rpm for 1 h. The reaction process of zero-valent iron (Fe0) is exhibited in
Equation (1):

FeSO4 þ 2NaBH4 þ 6H2O ! Fe0 þ 2B(OH)3 þNa2SO4 þ 7H2 " (1)

The formation of FeS occurs during the reduction of Fe2þ, which is shown in Equations (2)–(5):

2S2O
2�
4 þH2O ! 2HSO�

3 þ S2O
2�
3 (2)

S2O
2�
4 þ S2O

2�
3 þ 2H2OþHþ ! H2Sþ 3HSO�

3 (3)

H2S ! 2Hþ þ S2� (4)

Fe2þ þ S2� ! FeS (5)

The acquired S-nZVI@H composites were immersed in deionized water for 2 h in the presence of nitrogen to remove the
residual NaBH4 and Na2S2O4. Finally, the fresh S-nZVI@H were dried in a freeze drier (FD-1 A-50) for 24 h.

Characterization of the hydrogel, nZVI, nZVI@H, and S-nZVI@H

The surface morphology and microscopic structure of the hydrogel, nZVI, nZVI@H, and S-nZVI@H were observed with
SEM (JSM-7610F-Plus, JEOL Ltd, Japan). The functional groups of the hydrogel, nZVI, nZVI@H, and S-nZVI@H were ana-
lyzed using a FTIR (IRAffinity-1S, Shimadzu, Japan).

Cr(VI) removal batch experiments

Removal experiments were deployed using 250 mL conical flask containing 200 mL Cr(VI) solution at 25 °C. Different
masses of potassium dichromate were taken and dissolved in deionized water with different pH values. Afterwards, various
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dosages of S-nZVI@H were added inside a conical flask with a certain concentration of Cr(VI) solution, which were shaken

evenly at 180 rpm at a constant temperature (DSHZ-33A) of 25 °C. Solution was withdrawn by injection syringe at certain
reaction time intervals. The concentration of the reaction solution was determined at 540 nm by a UV–visible spectro-
phometer (2082SUV/VIS) using diphenylcarboxyl dihydrazine spectrophotometry method. Finally, the efficiency of Cr(VI)

removal was calculated using Equation (6):

Cr VIð Þ removal efficiency %ð Þ¼C0�C
C0

�100% (6)

where C0 is the initial concentrations (mol/L) of Cr(VI) and C is the concentrations (mol/L) after removal at a certain time.

Experimental design

In the content of this study, BBD was applied to conduct the RSM to acquire the optimal conditions for removal and the most

significant factor affecting the removal. Practical optimization steps and the main content of this work are as follows: (1)
determination of independent variables with relatively significant influence; (2) batch experiments of removal at determined
conditions; (3) establishing the mathematical model by quadratic polynomial function fitting with experimental data; (4) cal-

culating the optimal conditions for removal and the independent variable of most significant effect; and (5) conducting a
validation experiment under the given optimal removal conditions obtained from the previous fitting procedure. The
S-nZVI@H dose (A), the initial Cr(VI) concentration (B), contact time (C), and initial pH (D) are selected as independent
variables. The Cr(VI) removal efficiency is set to the predicted response value. The influence of the interaction of four

independent variables and one response value is described by using the quadratic polynomial model (Equation (7)).

R ¼ b0 þ b1Aþ b2Bþ b3Cþ b4Dþ b12ABþ b13ACþ b14ADþ b23BCþ b24BD

þ b34CDþ b11A
2 þ b22B2 þ b33C

2 þ b44D2 (7)

where R is the predicted response value of Cr(VI) removal, b0 is the intercept value; b1 – b4 are the linear coefficients; b12 –
b14, b23 – b24 and b34 are the cross-product coefficients; b11 – b44 are the quadratic coefficients; A, B, C, and D are the code
forms of the input variables (Gopinath et al. 2010).

In this study, the experimental data are coded and analyzed with Design-Expert 8.0.6 Trial. Four independent variables and

their levels are listed in Table 1. The experimental design procedure and results of Cr(VI) removal are shown in Table 2.
Twenty-nine groups of experiments are designed, which includes five parallel experiments. Analysis of variance (ANOVA)
is used to determine the fitting degree between the values obtained from the experiment and the predicted response

values calculated by the regression mode (Silveira et al. 2017). The statistical significance is evaluated by the coefficient of
determination R2 (Khosravi & Arabi 2016).

RESULTS AND DISCUSSION

Characterizations of the hydrogel, nZVI, nZVI@H, and S-nZVI@H

FTIR was used to reveal the chemical functional groups of PANa-PAM hydrogel, nZVI, nZVI@H, and S-nZVI@H (Figure 1).
The broad peak around 3,420 cm�1 is assigned to hydroxyl groups (Dong et al. 2018). The peak near 2,370 cm�1 is the satu-
rated zone of CO2 (Dong et al. 2018). The peak at 1,310 cm�1 is attributed to C–C stretching (Tang et al. 2008). The
Table 1 | Experimental domain and levels of independent variables

Variables Unit Factors

Level

Low (�1) Middle (0) High (þ1)

S-nZVI@H dose g/L A 2 6 10

Initial Cr(VI) concentration mg/L B 10 20 30

Contact time min C 5 25 45

Initial pH / D 4 6 8

://iwa.silverchair.com/wst/article-pdf/84/5/1190/935828/wst084051190.pdf



Table 2 | The coding values of the four independent variables and the experimental and predicted values of Cr(VI) removal

Run A (g/L) B (mg/L) C (min) D (/) Experimental (%) Predicted (%)

1 0 0 1 �1 86.07 84.07

2 0 1 0 �1 78.39 79.33

3 0 0 0 0 79.99 82.07

4 0 �1 0 1 82.93 81.77

5 0 1 1 0 84.31 81.91

6 0 �1 0 �1 82.93 84.03

7 0 �1 1 0 91.94 90.88

8 �1 1 0 0 20.88 22.13

9 0 0 0 0 82.93 82.07

10 0 0 0 0 79.52 82.07

11 1 0 0 �1 87.93 84.01

12 1 0 �1 0 44.71 44.04

13 1 1 0 0 84.93 87.02

14 �1 0 0 �1 40.02 41.78

15 0 0 �1 1 25.08 28.92

16 �1 �1 0 0 51.16 50.91

17 1 �1 0 0 84.34 84.93

18 �1 0 0 1 21.37 23.66

19 �1 0 �1 0 8.19 2.68

20 0 0 �1 �1 45.64 47.76

21 0 0 0 0 83.96 82.07

22 0 1 0 1 61.10 59.78

23 1 0 0 1 83.73 80.34

24 0 0 0 0 83.96 82.07

25 �1 0 1 0 38.40 38.85

26 0 0 1 1 81.39 81.12

27 0 �1 �1 0 50.22 51.00

28 0 1 �1 0 33.84 33.28

29 1 0 1 0 91.10 96.39
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absorption peaks at 1,670 cm�1, 1,570 cm�1, and 1,390 cm�1 are assigned to C¼O stretching, the N–H bending and –C–N–

deformation of the –CONH2 group in the hydrogel, respectively (Tang et al. 2008; Dong et al. 2019). Likewise, the absorption
peak at around 1,420 cm�1 is attributed to the symmetric stretching vibration of the –COO� anions in the hydrogel (Tang
et al. 2008). These absorption peaks of the hydrogel also present in nZVI@H and S-nZVI@H, indicating that nZVI and

S-nZVI have been successfully supported by hydrogels. The adsorption peak at about 470 cm�1 corresponds to Fe–O
stretches due to the oxidation of nZVI in the air (Zhang et al. 2011). Occurrence of less obvious Fe–O stretches in
nZVI@H and S-nZVI@H may be caused by the fact that the degree of oxidation of these two materials is modestly inhibited.
The new band spectrum at 1,100 cm�1 and 830 cm�1 of S-nZVI@H compared with the infrared images of nZVI@H further

indicates that nZVI has been successfully sulfidation (Chernyshova 2003; Reyes-Bozo et al. 2015).
SEM was applied to elucidate the surface morphology and structure of PANa-PAM hydrogel, nZVI, nZVI@H, and

S-nZVI@H. The porous network structure of PANa-PAM hydrogel is clearly observed in Figure 2(a). The spherical structure

of bare nZVI is shown in Figure 2(b). It can be observed that the diameter of nZVI particles is less than 100 nm with aggrega-
tion. The surface morphologies of nZVI@H and S-nZVI@H are shown in Figure 2(c) and 2(d), respectively. The porous
structure of the supported hydrogel retains a rougher surface. Both nZVI and S-nZVI particles are successfully loaded in
om http://iwa.silverchair.com/wst/article-pdf/84/5/1190/935828/wst084051190.pdf
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Figure 1 | FTIR analysis of the hydrogel, nZVI, nZVI@H, and S-nZVI@H.
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the hydrogel as small bulges in granular form and their dispersion performance is relatively better than that of bare nZVI. The
unique 3D structure of PANa-PAM hydrogel can effectively inhibit the aggregation of nanoparticles. It is obvious from
Figure 2(d) that the size of S-nZVI particles distributed in the porous hydrogel is larger and has a uniform distribution,
which may be due to the minimization of aggregation by electrostatic repulsion and steric hindrance in the case of sulfidation.
Comparison of removal of Cr(VI) between nZVI@H and S-nZVI@H

According to previous studies on S-nZVI, the reactivity and selectivity of S-nZVI with pollutants are greatly enhanced com-
pared with bare nZVI (Fan et al. 2016b, 2017). A comparative experiment was conducted to further explore Cr(VI) removal

efficiency of S-nZVI@H and nZVI@H under certain experimental conditions (initial Cr(VI) concentration of 20 mg/L, pH
6, nZVI@H and S-nZVI@H dosage of 6 g/L, and temperature of 25 °C). Figure 3 shows that the removal efficiency of
nZVI@H and S-nZVI@H increases rapidly in the first 30 min. After 60 min, the Cr(VI) removal efficiencies of both

reach more than 90%. The removal efficiency of S-nZVI@H is 24.89% higher than that of nZVI@H at 5 min. During the
reaction of Cr(VI) and S-nZVI@H, the sulfur species FeS enhances the transfer of electrons from the core to the surface
of nZVI, thus increasing the probability of Cr(VI) reduction (Li et al. 2018; Brumovský et al. 2021). Brumovský et al.
(2021) verified that S-nZVI was more effective in removing Cr(VI) than nZVI in laboratory conditions. Additionally, Su
et al. (2015) reported that S-nZVI had a higher surface area rather than bare nZVI, generating more metal ion adsorption
binding sites. Accordingly, the reason why S-nZVI@H can remove Cr(VI) more quickly and effectively compared with
nZVI@H is that sulfidation can improve the dispersity of nZVI and selectivity of nZVI to Cr(VI). Specifically, sulfidation

of nZVI reduces the magnetic interaction between nZVI nanoparticles by the formation of an iron sulfide compound, as a
result of ameliorating the aggregation. Moreover, the outer layer created by sulfidation decreases the direct reaction of nZVI
with water, thus improving the electron selectivity for the reduction of Cr(VI) and extending its reactive lifetime. PANa-

PAM hydrogel, in particular, provides a protective layer for the passivation of S-nZVI, and makes S-nZVI more evenly dis-
tributed in the hydrogel network, thus improving the reduction effectivity of Cr(VI). Therefore, the removal of Cr(VI) by
S-nZVI@H was further analyzed by RSM.
://iwa.silverchair.com/wst/article-pdf/84/5/1190/935828/wst084051190.pdf



Figure 2 | SEM images of (a) hydrogel, (b) nZVI, (c) nZVI@H, (d) S-nZVI@H.
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Model fitting results and analysis

BBD experiment design was carried out through 29 batch experiments. The quadratic polynomial equation of the relationship

between the four independent variables and the predicted response value of Cr(VI) removal is obtained in Equation (8):

R ¼ 82:07þ 24:73A� 6:67Bþ 22:13C� 5:45Dþ 7:72ABþ 4:04ACþ 3:61ADþ 2:19BC� 4:32BD

þ 3:97CD� 19:80A2 � 1:02B2 � 16:78C2 � 4:82D2 (8)

The predicted response value of Cr(VI) removal is calculated according to Equation (8), and the calculated results are pre-

sented in Table 2. To understand the fitting effect between the predicted response values and the experimental values in
detail, the fitting curve between them was obtained by RSM. Figure 4 shows that data points are distributed at both ends
of the straight line and most of them are distributed on the straight line. The coefficient of determination (R2) of the linear

equation is 0.9916, which indicates the quadratic polynomial model has better fitting degree and higher accuracy. The root
mean squares error (RMSE¼ 2.32) and the absolute average deviation (AAD¼ 5.39) of the model were calculated according
to Equations (9) and (10). RMSE and AAD are parameters that evaluate the difference (Liu et al. 2009) and the degree of

regression (Zheng et al. 2020) between the predicted response values of the model and the experimental values, respectively.

RMSE ¼ 1
n

Xn
i¼1

(yi � yb)
2

" #1
2

(9)
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Figure 3 | Removal efficiencies of Cr(VI) by nZVI@H and S-nZVI@H.

Figure 4 | Scatter plot of actual and predicted values of Cr(VI) removal by S-nZVI@H.
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AAD ¼

Pn
i

yb � yaj j
ya

� �
n

�100 (10)

where n is the number of experiments, yb is the predicted response value, and ya is the experimental value (Sohrabi et al. 2014).
ANOVA is used to evaluate the regression significance of quadratic polynomial model and the non-significance of

inadequate fitting. The fitting degree of the model is evaluated by F-value, P-value, lack-of-fit, and R2 to verify the quality

and reliability of the model (Mohammadi et al. 2017). With the larger F-value and the smaller P-value, the significance of
the model is higher. The model is logical when the F-value of the model is greater than the critical F-value. The critical
F-value is calculated according to F0:05, df, (n�dfþ1):F0:05,14,14 is 2.484 according to the F test threshold table. The critical
://iwa.silverchair.com/wst/article-pdf/84/5/1190/935828/wst084051190.pdf
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F-value is less than the calculated F-value. As can be seen from Table 3, the F-value of the model is equal to 118.73 and P-
value is less than 0.05, which indicates that the model is significantly effective (Mansouriieh et al. 2019). Among the four
model items A, B, C, and D, item A has the largest F-value, indicating that the dosage of S-nZVI@H has a significant
effect on the predicted response value of the model, which can be used as the key factor for Cr(VI) removal. Furthermore,

the F-value of D is smaller than that of the other three items, indicating that the initial pH value of solution has little influence
on the predicted response value of the model. The F-value of lack-of-fit is equal to 2.92, which is not obvious, indicating that it
is not important in model fitting compared with pure error. Meanwhile, due to noise, there is 15.64% probability of the
F-value missing. The degree of dispersion of data points is reflected by the square root of the variance (Std.dev (3.33)) and

the ratio of standard deviation to mean value (coefficient of variation (CV) (5.17)). A smaller value of CV indicates that
the data points and mean value are approaching, which means that the reliability of the model is higher. The predicted
residual sum of squares (PRESS) is used to measure the responsive ability of the model to predict the experiment, and the

model is ideal when the value of PRESS is small (Sohrabi et al. 2014). Adeq precision represents the signal to noise ratio
(SNR). According to Table 3, the SNR is equal to 39.096 and the value is greater than 4, indicating that this model is reliable
to predict experiments (Beg et al. 2003; Sohrabi et al. 2014). R2 (Equation (11)) is the ratio of the sum of squares of the

model (SSModel) to the sum of squares of the total (SSTotal), which can be used to evaluate the degree of fitting between exper-
imental values and predicted values of the model (Mansouriieh et al. 2019). The R2 should be within the range from zero to
one (0�R2� 1). The closer R2 is to 1, the better the model fitting effect is.

R2 ¼ SSModel

SSTotal
(11)
Table 3 | The ANOVA results for the response surface model for the removal of Cr(VI)

Source Sum of squares df Mean square F-value P-value

Model 18,461.55 14 1,318.68 118.73 ,0.0001 Significant

A 7,336.90 1 7,336.90 660.58 ,0.0001

B 534.27 1 534.27 48.10 ,0.0001

C 5,875.52 1 5,875.52 529.00 ,0.0001

D 356.21 1 356.21 32.07 ,0.0001

AB 238.24 1 238.24 21.45 0.0004

AC 65.45 1 65.45 5.89 0.0293

AD 52.20 1 52.20 4.70 0.0479

BC 19.14 1 19.14 1.72 0.2104

BD 74.74 1 74.74 6.73 0.0212

CD 63.04 1 63.04 5.68 0.0319

A² 2,542.79 1 2,542.79 228.94 ,0.0001

B² 6.79 1 6.79 0.61 0.4473

C² 1,827.06 1 1,827.06 164.50 ,0.0001

D² 150.50 1 150.81 13.58 0.0024

Residual 155.50 14 11.11

Lack-of-fit 136.78 10 13.68 2.92 0.1564 Not significant

Pure error 18.71 4 4.68

Cor total 1,8617.05 28

Std. dev 3.33 R-squared 0.9916

Mean 64.52 Adj R-squared 0.9833

CV 5.17 Pred R-square 0.9561

PRESS 817.11 Adeq precision 39.0964
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The calculated R2 is 0.9916 (Table 3), which indicates that there is a 99.16% probability that the predicted value of the

model has a linear relationship with the experimental value. Adjusted R-squared (0.9833) and predicted R-squared
(0.9561) of the regression line are presented in Table 3. Obviously, these two values are close to each other and can well
express the predicted response value of the model under the condition of adjusted R-squared.

The residual graph is drawn to verify whether the residual of the model has the characteristics of normality, independence,
and constancy (Un et al. 2014). Figure 5(a) is the residual normal possibility diagram, which indicates that the distribution of
residuals conforms to the characteristics of Gaussian distribution, thus verifying the normal distribution characteristics of
residuals. The chronological diagram of residuals is shown in Figure 5(b). Residual values are distributed between �3.93

and 3.93 with irregular distribution characteristics, which shows the independence of residuals. If the model is correct
and reliable, the residual does not exhibit a special structure and does not have a relationship with other variables
(Mansouriieh et al. 2019). Figure 5(c) is the residual graph based on predicted values. The distribution of residuals within

a certain range is also irregular, which shows the constancy of residuals. The smaller residual is when the residual data
points are close to the zero line. The more residual data points close to the zero line, the better the fitting degree between
the predicted value and the experimental value. These three residual diagrams show that the quadratic polynomial model

established by RSM has certain reliability and can effectively predict the experimental results.
Figure 5 | Residual plots of Cr(VI) removal efficiency using S-nZVI@H, (a) residuals normal possibility diagram, (b) the chronological diagram of
residuals, (c) residuals graph based on predicted values.
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3D response surface analysis

Based on the quadratic polynomial model, the 3D response surface map can visualize the relationship between the inter-
action of the two independent variables and the Cr(VI) removal efficiency while keeping the other two variables fixed.

Figure 6 shows the effects of the interaction between two of the four independent variables (S-nZVI@H dose (A), initial
Cr(VI) concentration (B), contact time (C), and initial pH (D)) on the removal efficiency of Cr(VI) by S-nZVI@H. In each
response surface diagram, under certain two variables, the highest point of the surface is the best reaction condition under
which the maximum removal efficiency can be obtained.
Figure 6 | 3D diagrams showing interactive influence of (a) S-nZVI@H dose and initial Cr(VI) concentration, (b) S-nZVI@H dose and contact
time, (c) initial Cr(VI) concentration and contact time, (d) S-nZVI@H dose and initial pH, (e) initial Cr(VI) concentration and initial pH, (f) contact
time and initial pH on Cr(VI) removal by S-nZVI@H.
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The interactive impact of the combination of S-nZVI@H dose and initial Cr(VI) concentration on Cr(VI) removal efficiency

is presented in Figure 6(a). It shows that the removal efficiency increases with decreasing initial Cr(VI) concentration and
increasing S-nZVI@H dose. S-nZVI@H can provide more surface-active sites, improving the reduction ability of Cr(VI).
The higher the initial concentration of Cr (VI), the more surface-active sites of S-nZVI can be occupied, resulting in the

lower removal efficiency of Cr(VI) (Khosravi & Arabi 2016). At S-nZVI@H dose 7.72 g/L and initial Cr(VI) concentration
10.10 mg/L, a maximum Cr(VI) removal of 91.36% is determined.

The reciprocal effect of contact time and S-nZVI@H dose on Cr(VI) removal efficiency is shown in Figure 6(b). As
S-nZVI@H dose and contact time increases, the removal efficiency of Cr(VI) improves. The removal efficiency of Cr(VI)

increases rapidly at the initial contact time, which indicates that the reduction of Cr(VI) is predominant (Ponder et al.
2000). However, with the further extension of contact time, the Cr(VI) removal efficiency increases slowly, which is due
to the accumulation of Fe(III)–Cr(III) hydroxides on the surface of S-nZVI@H hindering the reaction between Cr(VI) and

S-nZVI (Wu et al. 2015; Li et al. 2017c). In addition, it can be clearly observed that the curvature of the surface is relatively
large, which indicates that the interaction of contact time and S-nZVI@H dose has a great influence on the Cr(VI) removal
efficiency. A maximum Cr(VI) removal (98.95%) is observed at S-nZVI@H dose of 8.76 g/L and contact time of 39.57 min.

Figure 6(c) shows the combined effect of initial Cr(VI) concentration and contact time on removal of Cr(VI). With the
increase of contact time and the decrease of initial Cr(VI) concentration, the removal efficiency of Cr(VI) increases continu-
ously. The extended contact time provides sufficient reaction time for the reduction and adsorption of Cr(VI) by S-nZVI@H.

Under the condition of higher initial Cr(VI) concentration, the removal efficiency of Cr(VI) is reduced. This can be attributed
to the limited number of active sites provided by a fixed amount of S-nZVI@H. At initial Cr(VI) concentration 10.02 mg/L
and contact time 36.39 min, a maximum Cr(VI) removal of 93.63% is determined.

The plot for interactive effect of S-nZVI@H dose and initial pH (Figure 6(d)) shows that increasing initial pH results in a

decreasing removal of Cr(VI); conversely, this increases with the increase of S-nZVI@H dose. This is because, under alkaline
conditions, nZVI appears electronegative; under acidic conditions, nZVI appears electropositive (Gong et al. 2017). Cr(VI)
exists mainly in the form of HCrO�

4 in acidic conditions, and only in the form of CrO2�
4 in alkaline solutions (Lv et al. 2011).

Obviously, in alkaline solution, negatively charged nZVI and CrO2�
4 are more likely to generate electrostatic repulsion, which

inhibits their interaction, leading to the decrease of Cr(VI) removal. A maximum Cr(VI) removal (90.33%) is determined at
S-nZVI@H dose 8.30 g/L and initial pH 5.3.

The interactive influence of initial Cr(VI) concentration and initial pH on Cr(VI) removal is shown in Figure 6(e). Under
the dual function of high pH value and high initial Cr(VI) concentration, the removal efficiency of Cr(VI) is reduced. More-
over, it can be observed that the curvature of the response surface is small, which indicates that the interaction between initial
Cr(VI) concentration and initial pH has a slight influence on the removal efficiency of Cr(VI). At initial Cr(VI) concentration

10.07 mg/L and initial pH 3.72, a maximum Cr(VI) removal of 87.72% is determined.
The interaction of contact time and initial pH on Cr(VI) removal is shown in Figure 6(f). It may be noted that the trend of

Cr(VI) removal efficiency is consistent with the change of contact time and is contrary to the initial pH. Similarly, the contact

time and the initial pH play the same role as stated above. A maximum Cr(VI) removal (89.8%) is determined at contact time
of 37.61 min and initial pH of 5.38.

Model validation

As an optimization technology, RSM needs to be verified for its adaptability (Bezerra et al. 2008). To evaluate the validity and

feasibility of the RSM model, three parallel experiments were carried out under the conditions of independent variables cor-
responding to the maximum Cr(VI) removal efficiency determined by the model (Table 4). The predicted optimum removal
Table 4 | Results of three parallel experiments under the predicted optimum removal conditions

Optimum conditions Verification test

S-nZVI@H
dose (g/L)

Initial Cr(VI)
concentration (mg/L)

Contact time
(min)

Initial
pH

Predicted removal
efficiency (%)

Experimental removal
efficiency (%)

Mean
value (%)

Relative error of
prediction (%)

9.46 30 40.7 5.27 99.76 97.62 97.75 2.07
98.11
97.53
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conditions obtained from RSM are S-nZVI@H dose (9.46 g/L), initial Cr(VI) concentration (30 mg/L), contact time

(40.7 min), and initial pH (5.27). The relative error of prediction between the mean value of the experimental (97.75%)
and predicted (99.76%) removal efficiency was calculated as 2.07%, which showed that the quadratic polynomial model
can well predict the removal of Cr(VI) by S-nZVI@H (Ashrafi et al. 2018).

CONCLUSIONS

In this study, two materials of nZVI@H and S-nZVI@H are successfully synthesized for Cr(VI) removal. With better removal
effects confirmed by SEM and FTIR characterizations and comparable experiments, S-nZVI@H is selected as the material

designed by RSM to further explore its removal efficiency of Cr(VI). Furthermore, BBD experimental design is used to
reveal the influence of the interaction of four independent variables on the Cr(VI) removal efficiency and the predicted opti-
mum removal conditions are: S-nZVI@H dose 9.46 g/L, initial Cr(VI) concentration 30 mg/L, contact time 40.7 min, and

initial pH 5.27. Additionally, the S-nZVI@H dose is the key factor affecting the removal of Cr(VI). The variance analysis
and residual analysis of the experimental data are carried out by quadratic polynomial model. The analysis results show
that the correlation between the experimental values and the predicted values is high (F¼ 118.73, P, 0.0001, R2¼
0.9916), which corroborates the quality and reliability of the model. To verify the validity and feasibility of the model,
three parallel experiments are carried out under the predicted optimum removal conditions. The removal efficiency of
S-nZVI@H for Cr(VI) obtained from the experiment (97.75%) is very close to the predicted value of the model (99.76%).

In conclusion, BBD based on RSM can be used to statistically optimize the experimental study of Cr(VI) removal by
S-nZVI@H.
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