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Biological-based control strategies for MBR membrane

biofouling: a review

Yin Cui, Huan Gao, Ran Yu, Lei Gao and Manjun Zhan
ABSTRACT
Membrane bioreactor (MBR) technology has been paid extensive attention for wastewater treatment

because of its advantages of high effluent quality and minimized occupation space and sludge

production. However, the membrane fouling is always an inevitable problem, which causes high

operation and maintenance costs and prevents the wide use of MBR technology. The membrane

biofouling is the most complicated and has relatively slow progress among all types of fouling.

In recent years, many membrane biofouling control methods have been developed. Different from

the physical or chemical methods, the biological-based strategies are not only more effective for

membrane biofouling control, but also milder and more environment-friendly and, therefore, have

been increasingly employed. This paper mainly focuses on the mechanism, unique advantages and

development of biological-based control strategies for MBR membrane biofouling such as quorum

quenching, uncoupling, flocculants and so on. The paper summarizes the up-to-date development of

membrane biofouling control strategies, emphasizes the advantages and promising potential of

biological-based ones, and points out the direction for future studies.
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HIGHLIGHTS

• Membrane biofouling is the most complicated among all types of membrane fouling.

• New physical and chemical methods may hurt membranes and environment.

• Cheaper enzyme extraction methods for enzymatic control of membrane biofouling

need to be introduced.

• Environmental conditions and cost are the main limitations of biological strategies.

• The effects of biological methods on the microbial ecology need to be explored.
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CAPSULE
Newly developed biological-based strategies for MBR mem-

brane biofouling control are summarized. The unique
advantages of the biological control strategies over physical
or chemical ones, as well as their future research direction
and possible challenges, are discussed.
ABBREVIATIONS
MBR
 Membrane bioreactor
SBR
 Sequencing batch reactor
A2O
 Anaerobic/anoxic/aerobic
HRT
 Hydraulic retention time
SRT
 Solids retention time
EPS
 Extracellular polymeric substances
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 Soluble microbial product
GO-CNC
 Graphene oxide-cellulose nanocrystal
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Vinylidene fluoride
PMS
 Peroxymonosulfate
AHLs
 N-acyl-homoserine lactones
AI-2
 Autoinducer-2
QS
 Quorum sensing
QQ
 Quorum quenching
MEC
 Magnetic enzyme carriers
C8-HSL
 N-octanoyl-DL-homoserine lactone
C10-HSL
 N-(decanoyl)-DL-homoserine lactone
C12-HSL
 N-(dodecanoyl)-DL-homoserine lactone
BHL
 N-butyryl-DL-homoserine lactone
CFS
 Cell-free supernatant
DPD
 4,5-dihydroxy-2,3-pentanedione
GCL
 Gamma caprolactone
QSIs
 QS inhibitors
OdDHL
 N-(3-oxododecanoyl)-L-homoserine lactone
ATP
 Adenosine triphosphate
PMF
 Proton motive force
TCS
 3,30,40,5-tetrachlorosalicylic acid
LB-EPS
 Loosely bound EPS
TB-EPS
 Tightly bound EPS
DNP
 2,4-dinitrophenol
OCP
 O-chlorophenol
α-PLL
 α-poly-L-lysine
INTRODUCTION

Until now, the activated sludge method is still the most com-
monly used biological treatment process in wastewater
treatment. Due to the low solid-liquid separation efficiency

of the traditional activated sludge wastewater treatment
processes such as oxidation ditches, sequencing batch
reactor (SBR), anaerobic/anoxic/aerobic (A2O), and the

increasingly stringent effluent discharge standards, MBR
technology has attracted more and more attention
(Krzeminski et al. ; Meng et al. ). MBR technology

is a new wastewater treatment process that combines the
functions of both membrane separation and biological
wastewater treatment. It is not only well known for higher
solid-liquid separation efficiency than the traditional acti-

vated sludge processes, but also possesses many other
advantages such as high-quality effluent, higher organic
loading, less sludge yield, improved nitrification/denitrifica-

tion performances and complete separation of hydraulic
retention time (HRT) from solids retention time (SRT)
erchair.com/wst/article-pdf/83/11/2597/897236/wst083112597.pdf
(Wang et al. ; Tan et al. ). Under normal circum-

stances, MBR traps particles and pathogenic bacteria
such as Escherichia coli through a membrane with a pore
size of 0.01–1 μm. The separation process in the MBR

technology can be enhanced by using a highly selective
membrane with a pore diameter between 0.02 and 0.4 μm
(Xiao et al. ). The development history of MBR
technology is more than 30 years (Yamamoto et al. ).
By the end of 2020, there had been more than 104,000
papers about MBR. Patent publications have maintained
an exponential growth trend (Figure 1; The data comes

from Google Scholar, the search keyword is ‘MBR’). The
number of engineering applications has also continuously
increased in China, the United States, Europe and other

countries over the world (Krzeminski et al. ; Xiao
et al. ).

Despite the popularities and unique advantages of
MBR technology in the wastewater treatment system,

membrane fouling is always the most important and
depressing concern (Gil et al. ; Wang et al. ;
Meng et al. , ), which prevents MBR technology

from wider applications. Membrane fouling is caused by
complex physical and chemical interactions among the
various fouling constituents in the feed, and between

these constituents and the membrane surface (Guo
et al. ). Mainly due to the deposits of the inor-
ganic/organic substances in the sludge, as well as the

adsorption or accumulation of extracellular polymeric
substances (EPS) and soluble microbial product (SMP)
on the membrane surface or inside the membrane, the
membrane filtration resistance increases and the mem-

brane flux decreases, resulting in membrane fouling
during the MBR operation process (Yu et al. ; Yue
et al. ; Meng et al. ). The main types of membrane

fouling can be divided into four categories (Kochkodan &
Hilal ): (1) organic fouling, which is mainly caused by
organic compounds in the system, such as polysaccharides,

proteins, and humic oils; (2) inorganic dirt, which is ascribed
to the deposition of inorganic substances, mainly refers to
metal salts such as calcium carbonate and calcium sulfate;

(3) colloid fouling, which is emerged on account of colloids
and suspended particles in the size range of a few nano-
meters to a few microns; (4) biofouling, which mainly
refers to the biofilm formed due to the bacterial attachment

to the membrane surface and then the combination with
other compounds such as EPS. Biofouling accounts for
more than 45% of the membrane fouling and is generally

regarded as the most intractable for removal among these
four fouling categories (Komlenic ; Aslam et al. ).



Figure 1 | Publication of papers and patents in the past ten years. (The data come from Google Scholar, the search keyword is ‘MBR’.)
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Membrane biofouling will reduce the membrane flux and
cause higher energy consumption for membrane cleaning.

To avoid these problems, the polluted membrane needs to
be cleaned and replaced at regular intervals, resulting in
higher costs for MBR application (Bao et al. ). Hence,

the control strategies for MBR membrane biofouling need
extensive attention.

The membrane biofouling control methods mainly
include physical (e.g. membrane relaxation and backflush-

ing, etc.), chemical (e.g. NaClO, NaOH cleaning) and
biological (e.g. enzymatic agents and energy uncoupling)
ones. Since the formation of membrane biofouling is a

complex and difficult process, the traditional physical and
chemical methods usually exhibit poor effects on biofouling
control (Qasim et al. ; Wang et al. a, b). Also,
the high cost and damage to the membrane are their
limitations.

Until now, the physical and chemical methods for mem-
brane biofouling control have been well documented and

reviewed (Meng et al. ; Xiao et al. ), while less atten-
tion has been paid to the biological ones or the combination
of physical/chemical techniques with biological ones for

membrane biofouling. This review systematically introduced
the formation mechanism and impact factors of membrane
biofouling. The mechanisms, advantages, and challenges of

biological-based strategies for membrane biofouling control-
ling are critically reviewed, which is expected to provide
valuable information to scientists and engineers who

engage in this field.
://iwa.silverchair.com/wst/article-pdf/83/11/2597/897236/wst083112597.pdf
FORMATION AND IMPACT FACTORS OF
MEMBRANE BIOFOULING

Membrane biofouling is caused by the deposition, growth

and metabolism of microbial cells (bacteria, algae, fungi
and protozoa) or flocs and the formation of biofilm on the
membrane (Siddiqui et al. ). Current research manifests
that the biofouling of membranes can usually be divided into

the following processes (Kochkodan & Hilal ; Ishizaki
et al. ) (Figure 2). (1) The formation of conditioning
film. Organic materials are adsorbed onto the surface

of the membrane in advance to form a conditioning
film, which contains both organic macromolecules (poly-
saccharides, proteins, humus) and inorganic compounds.

The conditioning film may promote the adhesion of
bacteria. (2) The transport and attachment of suspended
bacterial cells to the membrane. (3) The generation of

EPS, SMP and biofilm. The attached bacteria continuously
produce EPS and SMP during their proliferation process,
which contributes to the integrity of the biofilm structure.
(4) Cell detachment. Mature cells are separated from the bio-

film matrix, and their subpopulations regenerate biofilms in
new locations. The bacteria in the biofilm can be protected
from the action of many antibacterial agents (Matin et al.
).

The first impact factor for formation of membrane
biofouling is the surface characteristics of the film. The

adsorption of organic materials and bacteria is the first
and crucial step of biological fouling of membranes. Some



Figure 2 | Formation process of membrane biofouling: (a) The formation of conditioning film; (b) the attachment of bacteria; (c) generation of EPS, SMP and biofilm; (d) cell detachment.
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surface properties of the membrane (hydrophobicity/
hydrophilicity, zeta potential, surface roughness, and so
on) exert significant influences on this step (Kochkodan

et al. ; Lv et al. ). The second is operation conditions
such as hydraulic conditions. Physical effects such as aera-
tion intensity and hydraulic conditions also show great

impacts on the adsorption stage of membrane biofouling
(Saeki et al. ). The third is the types of microorganisms
in the membrane system. Biofilm contamination is mainly
caused by the microorganism associated with Corynebacter-
ium, Pseudomonas, Bacillus, Arthrobacter, Flavobacterium,
Aeromonas and to a lesser extent by fungi such as
Penicillium, Trichoderma, and other eukaryote microorgan-

isms (Kochkodan & Hilal ). Last but not least, the
generation and removal of EPS and SMP also have great
effects on the membrane biofouling. The EPS and SMP

will form a dense structure (biofilm) on the membrane
with other dirt, leading to the great reduction in the per-
meability of the membrane and the effects of many
antibacterial agents. Among the above factors, EPS and

SMP are considered to be the main fouling impact factors
for membrane biofouling (Lee et al. ).
MBR MEMBRANE BIOFOULING CONTROL
STRATEGIES

When MBR membrane fouling, especially biofouling
occurs, the system’s operation and energy costs will be

greatly increased. Consequently, many researchers are
devoted to investigations to develop efficient techno-
logies to solve the membrane biofouling problems. Until
recently, physical and chemical methods were the most

commonly used methods to control or eliminate mem-
brane fouling. Those physical (e.g. backflushing and
relaxation) and chemical (e.g. acid-base treatment and oxi-

dation) methods have certain effects on the control of
membrane fouling, but the shortcomings of these methods
om http://iwa.silverchair.com/wst/article-pdf/83/11/2597/897236/wst083112597.pdf

4

are also addressed by many researchers. Physical methods
usually can only remove reversible fouling, and some strict
mechanical cleaning can cause membrane damage. If

using aeration to alleviate membrane pollution, the best
aeration conditions needs to be studied. Membrane foul-
ing may be aggravated when the aeration intensity is too

high (Sabouhi et al. ). Besides, frequent chemical
cleaning will greatly shorten the service life of the mem-
brane, reduce the permeability of the membrane, and
cause the deterioration of the MBR effluent quality. There-

fore, different chemicals and cleaning frequencies are
required for wastewater with various properties to
extend the service life of the membrane (Hacıfazlıog ̆lu
et al. ).

When using NaClO to chemically clean the membrane
it cannot completely remove the MBR membrane biofoul-

ing, which might cause the remaining microorganisms to
quickly form a new biofilm in the subsequent MBR oper-
ations (Cai & Liu ). In addition, the residual NaClO in
the MBR can cause severe biological pyrolysis, and sub-

sequently form toxic halogenated aromatic by-products,
causing great threat to the water environment (Zhang &
Liu ; Cai et al. ). Moreover, if chemical fungicides

are used for a long time to remove a membrane’s biological
pollution, bacteria will gradually form a defense mechanism
to reduce the effect of fungicide later (Matin et al. ).
Although some new physical and chemical methods reme-
dying the above-mentioned shortcomings have appeared
in recent years (Table 1), there are still ineradicable pro-

blems such as higher costs and secondary environmental
pollution. Compared with physical and chemical methods,
biological ones can not only effectively remove the mem-
brane’s biological fouling, but also have less impact on the

ecological environment and human health. Therefore,
many biological-based strategies for membrane biofouling
control have been developed rapidly in these years, such

as the use of quorum quenching inhibitors and cell wall
hydrolases.



Table 1 | Mechanism and limitations of new physical and chemical strategies

Classification Methods Mechanism Limitations References

New physical
strategies

Ultrasonic
cleaning

(1) Shear force, drag force, pressure
difference and high-pressure
shock wave;

(2) Agglomerate small particles

(1) Decompose sludge into
small particles, increase
EPS adhesion;

(2) Membrane damages

Borea et al. (); Qasim
et al. (); Sui et al.
(); Zheng et al. ()

Electric field
assistance

(1) Prevent sludge and colloids
from depositing on the
membrane surface;

(2) Promote the microorganisms’
metabolism;

(3) Oxidation of H2O

(1) Operation complexity;
(2) High costs

Ma et al. (); Su et al.
(); Xu et al. (); Yin
et al. (a, b)

Membrane
materials

Increase the hydrophilicity of the
membrane

(1) High costs;
(2) Membrane damages

Hir et al. ()

New chemical
strategies

PMS Oxidize and degrade dirt (1) Limited ability to remove
membrane biofouling;

(2) High costs of chemicals;
(3) Risk to the ecological

environment and human
health

Wang et al. (a, b)
Ferric hydroxide

(1) Increase the size of biomass
flocs;

(2) Enhance the microorganisms’
activity

Huang et al. ()

Ozone (1) Reduce the zeta potential;
(2) Increase the surface

hydrophobicity of flocs

Tang et al. (); Wu &
Huang ()
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Development of physical and chemical membrane
biofouling control strategies

Physical strategies

Ultrasonic cleaning is recently studied as a new physical

flushing method, which can generate physical phenomena
such as acoustic streaming, microstreaming, microjets and
shock waves in heterogeneous solid-liquid systems. These

physical phenomena reveal that the separation of dirt and
membrane by shear force, drag force, pressure difference
and high-pressure shock will generate a wave generated by

unidirectional flow currents (Qasim et al. ). In addition,
ultrasonic radiation can reduce the possibility of pore clog-
ging by agglomerating small particles (Borea et al. ).

However, the latest research found that ultrasound would
decompose sludge into small particles, and thus increase
the adhesion of EPS to the membrane to intensify the bio-
fouling (Zheng et al. ). Besides, ultrasonic radiation

may negatively affect bacterial activities and cause mem-
brane damage (Sui et al. ).

Electric field assistance is an emerging membrane biofoul-

ing control technology with cost-effectiveness and low energy
consumption. This method mainly controls membrane
://iwa.silverchair.com/wst/article-pdf/83/11/2597/897236/wst083112597.pdf
biofouling through the following actions (Ma et al. ; Xu
et al. ): (1) electric field force to effectively prevent nega-

tively charged sludge and colloids from depositing on the
membrane surface; (2) proper electric field intensity to pro-
mote the microbial metabolisms of the attached sludge,
which may enhance the degradation of organic matters; (3)

H2O2 generated in-situ in a bio-electrochemical system in
MBR to oxidize membrane fouling. In several different studies,
when the electric field was introduced into the MBR, the EPS

content in the activated sludge was dramatically reduced from
52.8% to 90.6% (Su et al. ; Yin et al. a, b). At the
same time, the EPS adsorption onto and their deposition from

the membrane surface were delayed, which showed a good
membrane biofouling control effect. The application limit-
ations of the electric fields are mainly reflected in the

operation complexity, the cost of materials under large-scale
conditions, and the determination of the optimal electric
field intensity value.

In addition to the two new physical methods mentioned

above, others are available to optimize the characteristics of
membrane materials. These methods are mainly aimed at
the hydrophilicity of the membrane. Fixing a photocatalyst

such as TiO2 in the membrane matrix can reduce the mem-
brane biofouling by increasing the membrane hydrophilicity



Figure 3 | QS (or QQ) control strategies.
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and inducing the free radicals’ production to degrade pollu-

tants (Hir et al. ). Besides, the addition of graphene
oxide-cellulose nanocrystal (GO-CNC) composite material
to vinylidene fluoride (PVDF) microporous membrane can

reduce the EPS accumulation and alleviate the membrane
biofouling. However, these methods are costly and may
even cause damage to the membrane.

Chemical strategies

In view of the problems that traditional chemical cleaning
methods also produce toxic and harmful by-products,

researchers are looking for the environmentally friendly
alternative chemical agents to control membrane fouling.
As a strong oxidant without chlorine, peroxymonosulfate

(PMS) is employed as a chemical cleaning agent for MBR.
Under the same dosage, the dirt cleaning efficiency by
PMS was equivalent to that by NaClO and reached as high

as 82.2%. When PMS was combined with ferrous ions, not
only the membrane fouling removal efficiency increased to
91% but also the applied chemical agent amount reduced

by approximately 75% (Wang et al. a, b). The
addition of ferric hydroxide could slow down the membrane
fouling rate by about 35%. This was mainly because the iron
could increase the size of biomass flocs and enhance the

microbial activities, and consequently more organic matters
were degraded (Huang et al. ). As a strong oxidant,
ozone has also been used to clean membrane fouling (Tang

et al. ). Ozone mainly expands the sludge flocs by redu-
cing the zeta potential value and increasing the surface
hydrophobicity of flocs, thereby increasing the permeability

of the sludge suspension (Wu & Huang ). On the
whole, the chemical membrane fouling control strategies
mainly focus on oxidants and their effects are varied.

Although these emerging physical and chemical methods

have overcome many traditional ones’ shortcomings, the
membrane biofouling control efficiencies are not significantly
improved. In addition, the issues of the cost, the operational

complexity, the damage to the membrane, and the impacts
on the environment also need to be resolved. Therefore, the
biological-based methods are attracting more and more

attention mainly because of their environmental friendliness
and lower energy consumption.

Biological-based strategies

Quorum quenching

Microbes can communicate with each other through signal
molecules such as N-acyl-homoserine lactones (AHLs) and
om http://iwa.silverchair.com/wst/article-pdf/83/11/2597/897236/wst083112597.pdf

4

autoinducer-2 (AI-2). The LuxI-type protein (AHL synthase)

leads to the formation of an amide bond between S-adenosyl-
methionine (SAM) and acyl-acyl carrier protein (acyl-ACP).
Subsequently, the AHL autoinducers will be formed by the

intermediate lactonized with the release of methylthioadeno-
sine (Oh & Lee ). When the concentration of
autoinducers reaches a threshold level proportional to cell
density, it will bind to the receptor proteins (transcription

factor, usually from LuxR family) and activate the transcrip-
tion of specific genes to thus regulate the microbial
communities’ performances such as EPS production, biofilm

formation, luminescence, and virulence (Davies et al. ;
Shrout & Nerenberg ). This gene-based regulatory mech-
anism is called quorum sensing (QS). In the MBR system, QS

plays a very important role in biological fouling formation.
When AHL, one of the common auto-inducible factors is
added to MBR, it may increase the membrane biofouling
rate through promoting QS (Yeon et al. a, b).

Quorum quenching (QQ) is a mechanism used to inhibit
the communication between cells, which can occur through
enzymatic activities, microbial metabolisms, or chemical

reaction processes (Millanar-Marfa et al. ). The methods
based on QQ have been proved to effectively reduce the
membrane biofouling mainly through (1) preventing the pro-

duction of auto-inducible factors, (2) interfering with the
binding of signal molecules to the receptor, and (3) inactivat-
ing (destroying or degrading) auto-inducible factors (Kim

et al. ; Turan & Engin ) (Figure 3). The main studied
QQ based biological strategies for membrane biofouling con-
trol currently are: QQ enzymatic treatment, and QQ bacteria,
bio-stimulant and QS inhibitor applications (Table 2).

The first commonly studied membrane biofouling con-
trol strategy derived from QQ is enzymatic treatment,
which is based on the mechanism of degrading or altering

AHL signal’ structures. The three main kinds of enzymes
are: (1) AHL lactonases for the hydrolysis of lactone ring;
(2) AHL acylases for the hydrolysis of the amide bond;



Table 2 | Strategies based on Qs (or QQ)

Categories Names Source or active component Mode of action
Targeted signal
molecules

Biofouling mitigation
capabilities References

Enzymes AHL-lactonase Halomonas sp. strain 33;
Agrobacterium

tumefaciens

AHLs degradation / / Dong et al. ()

AHL-acylase
(including fixed on
the carrier)

Tenacibaculum discolor
strain 20 J;

Hyphamonas sp. DG895

C4-HSL, C12-HSL
and C8-HSL

Membrane fouling rate
was reduced by 58.0–
85.8%

Lee et al. ();
Jiang et al. ();
Yeon et al. (a,
b)

AHL-oxidoreductase Burkholderia strain GG4 3-oxo-C6-HSL / Chan et al. ()
AHL-oxidase Bacillus megaterium C4-HSL and

C12-HSL
/ Chowdhary et al.

()

QQ bacteria Rhodococcus sp. BH4 Lactonase Signal molecules degradation (C6, C7, C8, C10,
3-oxo-C6, 3-oxo-
C8)-HSL

Membrane fouling rate
was reduced by 75.0–
89.0%

Nahm et al. ();
Maqbool et al.
()

Bacillus
methylotrophicus
sp. WY

Lactonase (C8, C10, C12, C14,
3-oxo-C6, 3-oxo-
C12)-HSL

The degradation of
targeted signal
molecules exceeds 90%.
Membrane flux
increased by 3-4 times

Khan et al. ()

Enterococcus sp.
HEMM-1

Lactonase (C4, C6)-HSL, BHL Biofilm formation was
reduced by 15–44%

Ham et al. ()

Serratia sp. Z4 Unknown C8-HSL C8-HSL was reduced by
93%

Dong et al. ()

Acinetobacter sp.
DKY-1

Unknown AI-2 (DPD) Biofilm formation was
reduced by about 81.5%

Lee et al. ()

Candida albicans Farnesol AI-2 (DPD) Anti-biofouling capability
increased by 70%

Lee et al. (a,
b)

Pseudomonas
nitroreducens JYQ3

Acylase C6-HSL Membrane flux increased
by 19%

Kaur & Yogalakshmi
()

Pseudomonas JYQ4 Acylase C6-HSL Membrane flux increased
by 22%

Pseudomonas sp. 1A1 Acylase (C6, C8, C10, C12,
3-oxo-C12)-HSL

Membrane fouling rate
was reduced by about
63.6%

Cheong et al. ()

Delftia sp. T6 Acylase C8-HSL Biofilm formation was
reduced by about 76%

Gul et al. ()

Bacillus sp. T5 Acylase C8-HSL Biofilm formation was
reduced by about 85%

Bio-stimulants Gamma caprolactone
(GCL)

Plants Stimulating the growth of
Rhodococcus species

Same with
Rhodococcus

EPS secretion was reduced
by 1/3–1/2

Yu et al. ()

(continued)
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and (3) AHL oxidoreductases for the modification of acyl

chain (Iorhemen et al. ). The first extensively studied
QQ enzyme is a porcine kidney acylase (Yeon et al. a,
b), one of the AHL acylases, which can hydrolyze

N-octanoyl-DL-homoserine lactone (C8-HSL) (one of
AHLs) and inactivate them to effectively reduce the EPS
production and retard the membrane biofouling progress
when added into the MBR. Since the added enzyme activity

would generally decrease after one day of MBR operation,
the strategies to immobilize the enzyme onto a carrier to
reduce the loss of free enzyme have also been extensively

investigated. In the early studies, when magnetic enzyme
carriers (MEC) were used as the carrier of acyltransferase,
the stability of the enzyme was greatly improved, which

effectively mitigated the biofilm formation (Yeon et al.
a, b). Sodium alginate and nano filter-capsules
have also been used as enzyme carriers, and usually could
reduce EPS and SMP levels by about 30% (Jiang et al.
; Lee et al. ). However, the enzyme treatment
approach has great limitations since the enzymatic activities
are sensitive to the environmental conditions (e.g. tempera-

ture and pH) and the dosage of enzymes required is too
large when applied. In addition, when used in large-scale
MBR, the enzymatic agents cannot mix well with pollutants

so that the effect of membrane biofouling control was lim-
ited (Brepols et al. ). Accordingly, most studies have
focused on the use of bacteria with QQ activity to inhibit

membrane biofouling.
Many QQ bacteria species have been reported to effec-

tively control the MBR membrane biofouling. After adding
the QQ bacteria Rhodococcus sp. BH4 to the MBR, they

effectively interfered with the QS through the quorum
quenching, thereby inhibiting the membrane biofouling pro-
cesses (Jahangir et al. ; Maqbool et al. ; Nahm et al.
). Wrapping BH4 in QQ beads (one of QQ media) can
efficaciously prolong their microbial action time to up to
four months when applied in two types of pilot-scale

MBRs (Lee et al. a, b). Bacillus methylotrophicus
sp. WY was isolated from the activated sludge of a waste-
water treatment plant in China, and was found to degrade

a variety of AHLs, such as C8-HSL, N-(decanoyl)-DL-
homoserine lactone (C10-HSL), and N-(dodecanoyl)-DL-
homoserine lactone (C12-HSL) with a degradation rate as
high as 90% and a membrane filtration time three times

longer (Khan et al. ). Other HEMM-1 was also reported
as QQ bacteria, which mainly degraded AHL with short
acyl chains, such as N-butyryl-DL-homoserine lactone

(BHL). Their cell-free supernatant (CFS) showed higher
QQ activity than those of other QQ ones (Ham et al.
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). Dong et al. () isolated a strain of Serratia sp. from

the sewage, which decreased the SMP levels by 75% within
8 days and the EPS levels by 37% within 12 days in an MBR,
indicating their strong QQ ability potential. Acinetobacter
sp.DKY-1 was isolated from an MBR. Unlike many other
QQ bacteria, DKY-1 weakened QS by blocking or decom-
posing the AI-2 signaling molecule 4,5-dihydroxy-2,3-
pentanedione (DPD) (Lee et al. ). Therefore, adding

QQ bacteria to MBR will achieve high degradation rates
of signal molecules such as AHL or AI-2, and effectively
inhibit EPS and SMP production, which finally contributes

to the alleviation of membrane biofouling.
The addition of the bio-stimulants to MBR is another

way to promote the growth of indigenous QQ bacteria for

membrane biofouling control. Gamma caprolactone (GCL)
is one of the best studied bio-stimulants. It can enhance
QQ by stimulating the growth of Rhodococcus species,
which can degrade AHLs and reduce the membrane biofoul-

ing (Yu et al. ). In order to improve the survival rates
and activities of QQ bacteria, Yu et al. () designed
core-shell structured quorum quenching beads, which

imbedded a bio-stimulant in the core with QQ bacteria
fixed in the shell, which displayed significant membrane
pollution mitigation effects through enhancing the AHL

degradation rates and reducing the EPS and SMP yields.
In addition, QS inhibitors (QSIs), which are non-

enzymatic compounds, can also be used to control MBR

membrane biofouling by interfering with QS signal trans-
mission and reducing their generation or combination with
the receptor (Choo et al. ). QSI is generally extracted
from eukaryotes, such as halogenated furanones from Deli-
sea pulchra (algae), vanillin from vanilla beans (plants), and
farnesol from Candida albicans (fungi). Vanillin(4-hydroxy-
3-methoxybenzaldehyde) is the first QSI compound used

to alleviate membrane biofouling via the inhibition of the
generation of both short-chain and long-chain AHLs
(Ponnusamy et al. ). Since the chemical structure of

the halogenated furanone is similar to that of AHLs, it can
compete with the homologous AHL molecules for their
receptor sites and interfere with the QS signal transduction

(Manefield et al. ). Similarly, the chemical structure of
6-gingerol in ginger was found to be similar to that of N-
(3-oxododecanoyl)-L-homoserine lactone (OdDHL), leading
to competitive binding to the cognate receptors of the QS

systems (Ham et al. ). Because curcumin can effectively
control the production of short-chain AHLs, it can also be
used as QSI and has been proved to significantly delay the

occurrence of TMP in MBR while the removal efficiencies
of nitrogen and phosphorus were not affected (Lade et al.
://iwa.silverchair.com/wst/article-pdf/83/11/2597/897236/wst083112597.pdf
). Different from the QSIs mentioned before, the farnesol

in Candida albicans fungus was reported to reduce the mem-
brane biofouling process in the MBR by inhibiting the AI-2
QS (Lee et al. a, b). The combination of multiple

QSIs is likely to achieve better membrane biofouling control
effects. When vanillin was combined with cinnamaldehyde
and attached to the membrane, the polysaccharide contents,
microorganisms on the membrane surface, were significantly

reduced during the operation of the system (Katebian et al.
). The current research on QSI stimulants is mainly for
laboratory-scale membrane filtration systems. Their effects

on larger-scale pilot systems and actual treatment systems
need to be verified.

Enzymatic destruction of EPS

EPS and SMP are important substances in bio-cake during

membrane biofouling formation, which cause degradation
critical for effective alleviation of membrane biofouling.
The structure and function of EPS are documented to
mainly be jointly maintained by the key components,

protein and polysaccharides, in the EPS. EPS concentration
can be limited when these key components have been
destroyed (Shi et al. ). Proteolytic enzymes (proteinase

K, trypsin, subtilisin, etc.) and polysaccharide degrading
enzymes (glucanase, cellulase, etc.) can effectively destroy
the EPS structure and have been proven to help inhibit

the biofilm formation (Molobela et al. ; Pei et al. ).
Like QQ enzymes, these methods both utilize enzymes to
control the membrane biofouling and face the limitations
of high cost of enzyme extraction and poor stability due to

the variation of temperature, pH, and salt concentration.

Energy uncoupling

Adenosine triphosphate (ATP) is the main energy source for
microbial metabolisms. It is produced by consuming the

proton motive force (PMF) produced by the coupling of elec-
tron transport and oxidative phosphorylation (Jiang & Liu
). As the important impact factor for membrane biofoul-

ing, EPS synthesis is highly dependent on ATP. The addition
of uncoupling agents for electron transport or oxidative
phosphorylation would inhibit ATP production and thus
alleviate biological membrane pollution. The commonly

used uncoupling agents have been summarized in Table 3.
After adding 100 μg/L metabolic uncoupling agent
3,30,40,5-tetrachlorosalicylic acid (TCS) to the MBR, the

secretions of not only loosely bound EPS (LB-EPS) and
tightly bound EPS (TB-EPS), but also QS signal AI-2 and



Table 3 | Uncoupling agents

Abbreviation Full name Effect References

TCS 3,30,40,5-tetrachlorosalicylic acid The net synthesis of cell ATP was reduced by 75–90%;
The formation rate of membrane fouling has been slowed

down by about 2 times.

Xu et al. (); Jiang &
Liu ()

NP Nitrophenols The ATP level were reduced by 81.8%;
The release of EPS were reduced from 26.98 mg/g VSS to

20.52 mg/g VSS.

Liang & Hu ()

DNP 2,4-dinitrophenol Low dosage of DNP accelerated membrane fouling while
high dosage retarded membrane fouling.

Ding et al. ()

OCP O-chlorophenol Effect on MBR membrane biofouling is still unclear. Fang et al. (, )

CCCP Carbonyl cyanide m-
chlorophenylhydrazone

The biofilm formation was significantly inhibited. Baugh et al. ()

2606 Y. Cui et al. | A review for MBR membrane biofouling’s biological control Water Science & Technology | 83.11 | 2021

Downloaded fr
by guest
on 24 April 202
AHLs (C8-HSL) in MBR were inhibited. Besides, the mem-
brane biofouling cycle is prolonged by more than 2 times
with no adverse effects on the growth and catabolism of

the activated sludge (Jiang & Liu ). Low TCS concen-
trations would lead to a significant decline in microbial
attachment (mainly in the initial attachment phase) and sub-

sequent biofilm development in MBR. These indicated that
the inhibition mechanism of biofilm formation for uncou-
pling agent includes the depression of the EPS secretion as

well as the motility of bacteria (Feng et al. ). The
addition of the metabolic uncoupling agent 2,4-dinitrophe-
nol (DNP) also showed a positive impact on relieving
membrane biofouling stress. However, the addition of low

dosage of DNP would not alleviate the membrane biofoul-
ing threat, and conversely resulted in more SMP release,
which increased the resistance of the filter cake layer and

aggravated the membrane biofouling. DNP with high
dosages had a strong inhibitory effect on the production of
proteins, polysaccharides, and so on, and effectively limited

the formation of cake layer on the membrane surface (Ding
et al. ). High DNP doses delayed the transition of the
fouling model from pore clogging to filter cake layer.

O-chlorophenol (OCP) is another common metabolic
uncoupling agent. Recent studies have found that it would
reduce the SMP formation. But due to its cytotoxicity,
microorganisms secrete more EPS in order to protect them-

selves (Fang et al. , ). Hence, OCP’s effect on MBR
membrane biofouling is still unclear.

In summary, the using of the uncouplers to inhibit the

ATP synthesis should be feasible for membrane biofouling
control. However, most ATP uncouplers, such as DNP,
om http://iwa.silverchair.com/wst/article-pdf/83/11/2597/897236/wst083112597.pdf
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CCCP, TCS, DCP, PCP, TCP, FCCP, are aromatic com-
pounds and are recalcitrant/toxic, which in turn limits
their applications.

Cell wall hydrolases

The cell wall hydrolase can simplify the structure of the foul-
ing layer by hydrolyzing macromolecular EPS and SMP

(Wong et al. ), and thus improves the membrane per-
formances and reduces the membrane biofouling process.
These enzymes can specifically bind to the cell wall of the

target bacteria and cause cell lysis. In addition, they can pre-
vent bacteria from accumulating on the surface of the
membrane and play a key role in delaying the membrane

biofouling (Bhagwat et al. ). Lysozyme could destroy
bacterial cell walls to prevent microorganisms from forming
biofilms (Xiong & Liu ). However, in recent years, there

have been few studies on the use of bacterial cell wall hydro-
lase for MBR membrane biofouling. It is speculated that the
cell wall hydrolase will depress the microbial activities in the
activated sludge of the MBR and cause the deterioration of

the wastewater treatment performance.

Biological or natural flocculant

The chemicals, such as iron-based flocculants (ferric chlor-

ide, ferric sulfate, ferric hydroxide, etc.), cationic polymers
and other inorganic or organic flocculants can be used as
flocculants to effectively mitigate membrane biofouling,

but exert negative impacts on the environment and
human health. Therefore, biological or natural flocculants
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with less adverse impacts on the environment have been

developed (Table 4). Salt-tolerant Arthrobacter was isolated
from seawater as a biological flocculant and added into
the MBR system to achieve the successful mitigation effects

on membrane biofouling (Tan et al. ). Meanwhile, they
reduced the levels of not only EPS and SMP levels, but
also humic acid-like, fulvic acid-like and aromatic protein
components. When the biopolymer flocculant α-poly-L-

lysine (α-PLL) was utilized to collect Chlorella ellipsoidea,
the membrane biofouling process was inhibited due to
their inherent antibacterial activity (Noh et al. ). After
two modified starches (CGMS and MGMS) were added to
the MBR, respectively, the concentrations of macromol-
ecules with MW (molecular weight) �100 kDa in the

supernatant significantly decreased. The MBR with CGMS
added displayed better membrane biofouling mitigation
effects because the flocs formed were larger and fell more
easily from the membrane surface (Ji et al. ). Deng

et al. () found that after adding a bio-flocculant
(GemFloc™), the sludge suspension in the MBR with the
bio-flocculant (G-MBR) contained less SMP content, and

the content ratio of protein to polysaccharide (SMPP/
SMPC) decreased too. Meanwhile, TB-EPS and the sludge’s
Table 4 | Biological or natural flocculant

Flocculant Source Dosage (g/day)

Chitosan Sea shrimp or crab shell 1.0

GBF (green
bioflocculant)

Modified natural starch-
based cationic flocculant

1.0 at first 10
days and the
0.5

Gemfloc® Patent of University of
Technology Sydney (UTS)

1.0
0.5

Marine Arthrobacter
cells

Isolate from seawater /

Algae Secondary clarifier wall
(Heilongjiang province,
China)

Algae/sludge¼
1:10

Diatomite Produced from seas and
lakes

/
2.0

MPE (membrane
performance
enhancer)

Cationic polymer-based
substances

1.0
2.2

Attapulgite clay Hangzhou, China 18 g/L (only o
time)

://iwa.silverchair.com/wst/article-pdf/83/11/2597/897236/wst083112597.pdf
floc size, zeta potential, and relative hydrophobicity

increased, leading to the reduction of the membrane cake
layer and pore blocking resistances. The microbial commu-
nity in G-MBR displayed higher diversity, and there are

more species (e.g. Arenimonas and Flavihumibacter)
beneficial to membrane biofouling control. In addition, the
introduction of algae into theMBR can reduce the membrane
biofouling by 50%, mainly because algae would inhibit the

overgrowth of filamentous bacteria and reduce the absolute
value of sludge zeta potential to improve the flocculation
and stability of the MBR system (Sun et al. ).

Bacteriophage

Bacteriophages are viruses that can infect and lyse host
cells. The metabolic characteristics of bacteriophages to
break down the host cells is related to two different life

cycles: lytic and lysogenic cycles (Figure 4) (Harada et al.
). Currently, bacteriophages have been used as a new
tool in water pollution control. The lysis ability of the
phage indicates its application potential in membrane pol-

lution control, which is mainly reflected in four aspects: (1)
the phage can replicate where the pollution occurs to achieve
Membrane fouling
rate (kPa/day)

Reduction ratio of fouling
rate (compared with
control) References

3.70 26.0% Guo et al. ()

n
0.04 Almost 100% (within

70 days)
Ngo & Guo
()

0.067
0.59

87.0%
46.8%

Deng et al. (),
)

0.75 26.4% Tan et al. ()

0.93 50.3% Sun et al. ()

1.1
/

76.6%
/

Liu et al. ();
Yang et al.
()

3.47
6.40

95.7%
92.0%

Yoon et al. ()

ne <0.49 �6.5% (but TMP was
always lower than
control)

Yi et al. ()



Figure 4 | The lysis process of bacteriophage.
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in-situ pollution control; (2) the enzyme produced by the
phage can hydrolyze biofilm polymer matrix; (3) the phage
control method is compatible with others such as QSIs and
QQ enzymes; (4) the phage is easier to apply on a larger

scale (Wu et al. ). Ayyaru et al. () used E. coli phage
P2 on the modified nanocomposite membrane to increase
the membrane flux by 57%. The use of a pyophage cocktail

would effectively reduce the membrane biofouling by 45%,
and inhibit bacteria-induced biofilm formations (Aydin &
Can ). In addition, it is necessary to use phage mixtures

and multivalent phages to expand their host range to improve
the efficiency of membrane biofouling control (Mathieu et al.
). When QSI or QQ enzyme is combined with the

phage, the sensitivity of bacteria to phage can be enhanced
for better bacteriophage control efficiencies (Remy et al. ).

The main limitation of the bacteriophage control
method lies in three points. First, the host range of a

phage is usually narrow and not enough information is avail-
able to characterize the phage. Second, the bacteria in the
system can gradually develop an immune system against

the existing phage and may make the phage inactive
(Chan et al. ). Third, excessive use of bacteriophages
may lead to the destruction of useful bacteria for wastewater

treatment in the system itself, resulting in deterioration of
the treated water quality (Armon ). Therefore, further
systematic investigations are still needed for the bacterio-

phage control method.
Predation of protozoa and metazoans

Protozoa and metazoans are the main bacteria consumers in
the sludge. They can change the structure of the membrane
cake layer and biofilm through predation, and affect the

contents and compositions of EPS and SMP. Compared
with protozoa, metazoans may play a more important role
om http://iwa.silverchair.com/wst/article-pdf/83/11/2597/897236/wst083112597.pdf
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in retarding the formation progress of the membrane cake

layer due to their greater mobility and wider prey range
(Derlon et al. ). Metazoans, nematodes (Plectus aquati-
lis) and oligovalves (Aelosoma hemprichi) were found to

reduce membrane biofouling by 119–164 and 50%, respect-
ively, mainly because the biofilm was destroyed from a
uniform pie-like structure to an uneven porous structure
(Klein et al. ). The addition of worms to the integrated

MBR increased the SMP concentration, resulting in a
higher membrane fouling rate (Menniti & Morgenroth
). Due to the worm predation, the size of the flocs in

the system decreased, causing more serious membrane foul-
ing (Navaratna et al. ). When separating the worm
reactor from the MBR, a completely different situation

arises. After the sludge passes through the worm reactor
and then enters the MBR, the sludge flocs are more uniform,
and the filamentous bacteria are inhibited. Besides, the
possibility of biofouling created by SMP is reduced, thereby

reducing the membrane biofouling rate (Wang et al. ;
Navaratna et al. ). When the worms appear on the mem-
brane, they will change the biofilm fouling structure from

dense to an open and heterogeneous one through peristalsis
and digging holes, thereby enhancing the filtration perform-
ance of the membrane (Jabornig & Podmirseg ; Klein

et al. ).
CONCLUSIONS AND PERSPECTIVES

This article reviews the formation mechanisms of MBR
membrane biofouling and emphatically summarized and

discussed the biological-based strategies for membrane bio-
fouling controlling (Figure 5). The following conclusions
and perspectives have been drawn as below.

(1) The future research on physical and chemical methods
must pay serious attention to the prevention of second-

ary pollution to the environment and the damage to
the membrane. When using the chemical methods to
control the membrane fouling, it is necessary to fully

consider the reaction among the compounds, and the
sustainability of membrane permeability after chemical
treatment.

(2) It is vitally important to introduce cheaper enzyme

extraction methods for enzymatic control of membrane
biofouling since the high extraction cost of enzymes
limits their application.

(3) The dosage control of biopharmaceuticals is critical
when using uncouplers, natural flocculants, and



Figure 5 | Biological-based strategies for membrane biofouling.
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protozoans/metazoans to mitigate membrane biofoul-
ing. A low dosage may have no effect while a too-high
dosage may aggravate membrane biofouling.

(4) The difficulty of using bacteriophages to control mem-
brane biofouling lies in the narrow host range of
bacteriophages and the gradually developed microbial

defense strategy against bacteriophages. Therefore, the
mixed use of multiple bacteriophages or the isolation
of new bacteriophages that the host bacteria cannot
resist are promising. The impacts of environmental con-

ditions on bacteriophages also need to be considered in
the future research.

(5) So far, almost all the researches on biological control

strategies for membrane biofouling are on the laboratory
scale. A larger-scale pilot stage or the actual plant case
need to be carried in order to verify the effectiveness

and safety of these developed strategies.
(6) Biological membrane biofouling control methods

mainly depend on the use of enzymes, bacteria, or

viruses. However, the treatment stability to the method
adaptation to the environmental conditions, and the
large biological agent demand, still need to be solved
in the near future.

(7) Biological membrane biofouling control methods will
inevitably affect the microbial community compositions
and their diversity in the MBR. Therefore, the impacts of

using these methods on the MBR system performance
still need to be carefully investigated.
://iwa.silverchair.com/wst/article-pdf/83/11/2597/897236/wst083112597.pdf
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