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Spatial and temporal variation of water quality of a

segment of Marikina River using multivariate statistical

methods

Vanseng Chounlamany, Maria Antonia Tanchuling and Takanobu Inoue
ABSTRACT
Payatas landfill in Quezon City, Philippines, releases leachate to the Marikina River through a creek.

Multivariate statistical techniques were applied to study temporal and spatial variations in water

quality of a segment of the Marikina River. The data set included 12 physico-chemical parameters for

five monitoring stations over a year. Cluster analysis grouped the monitoring stations into four

clusters and identified January–May as dry season and June–September as wet season. Principal

components analysis showed that three latent factors are responsible for the data set explaining 83%

of its total variance. The chemical oxygen demand, biochemical oxygen demand, total dissolved

solids, Cl� and PO4
3� are influenced by anthropogenic impact/eutrophication pollution from point

sources. Total suspended solids, turbidity and SO4
2� are influenced by rain and soil erosion. The

highest state of pollution is at the Payatas creek outfall from March to May, whereas at downstream

stations it is in May. The current study indicates that the river monitoring requires only four stations,

nine water quality parameters and testing over three specific months of the year. The findings of this

study imply that Payatas landfill requires a proper leachate collection and treatment system to

reduce its impact on the Marikina River.
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INTRODUCTION
A major source of pollution of water resources is landfill

sites, which are growing due to ever-increasing domestic,
commercial, municipal and industrial waste. Landfills pro-
duce leachate that can seep into groundwater or be carried

into rivers and lakes. Landfill management is a challenging
issue in developing countries due to lack of regulation and
control as well as poor design, construction and mainten-
ance of leachate management systems.

Experimental studies have been done for specific rivers
in selected developing countries to examine river pollution
due to landfill leachate by analyzing water quality par-

ameters such as organic, inorganic and heavy metal
content (e.g., Kjeldsen et al. ; Mor et al. ; Yusof
et al. ). Marikina River in Quezon City, Philippines, is
a main river that used to be classified as Class ‘A’ of the
DAO Standards of the Philippines (DENR ; Sia Su

). Since late 1990s, Marikina River has been seriously
polluted due to various point and non-point sources associ-
ated with landfills, solid waste and wastewater disposal from
nearby communities and runoff from agricultural lands

along the river (Sia Su ). Payatas landfill, located in
Quezon City, is closer to the Marikina River and discharges
its leachate to the river through Payatas creek. Payatas land-

fill was constructed without an appropriate bottom liner and
it does not have a proper leachate management system. In
the Philippines, studies on impact of landfill sites such as

Payatas on nearby rivers are rarely available. A critical
need exists for such studies to facilitate river pollution con-
trol and landfill management. With this background in
mind, an experimental study of Payatas leachate and the
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water quality of a Marikina River segment and two creeks

discharging to the river was conducted. Chounlamany
() presents the details of experimental study.

Multivariate statistical methods such as cluster analysis

(CA) and principal component analysis (PCA) have been
widely used as unbiased methods in the analysis of water
quality data to obtain useful information such as a reduced
number of latent factors/sources of pollution and assess-

ment of temporal and spatial variations (Vega et al. ;
Singh et al. ; Shrestha & Kazama ; Cho et al.
; Cai et al. ; Wang et al. ; Feher et al. ).

The objectives of this study are to apply the CA and PCA
to a set of water quality data involving a segment of Mari-
kina River and assess information about the similarities

and dissimilarities among the sampling stations due to
spatial and temporal variations; and identify the water qual-
ity characteristics due to natural or anthropogenic
influences of point sources and non-point sources such as

Payatas landfill leachate and creeks carrying domestic
waste. It is hypothesized that leachate from Payatas has a
Figure 1 | Location of sampling sites and sampling network (source: Google Maps).

://iwa.silverchair.com/wst/article-pdf/76/6/1510/449464/wst076061510.pdf
significant effect on the water quality of the Marikina

River, especially during the dry season.
METHODS

Description of study area

The Marikina River has depths ranging up to 20 m, spans

from 70 to 120 m, and a total area of nearly 75.2 hectares
and is 27 km long. The climate of the Philippines is charac-
terized by relatively high temperature, humidity, rainfall and

typhoons. Metro Manila region has two seasons based on
rainfall, the dry season from November to April and the
wet season over the remainder of the year (Flores & Balagot
). The Marikina River is subjected to pollution from a

variety of points (e.g., Payatas landfill, creek outfalls) and
non-point sources (e.g., domestic waste disposal from com-
munities along the river banks, agricultural runoff, etc.).

A network of sampling stations as shown in Figure 1 was
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established to study the effects of Payatas landfill leachate

and creeks discharging to the river. Station M1, located
upstream of Payatas creek, has no influence from the land-
fill. Station M2 was approximately 0.7 km from M1 and

downstream of the Payatas creek outfall. Station M3 was
approximately 1.1 km downstream of M2 but upstream
of where a second creek that carries municipal waste
meets the river. M4 was approximately 0.9 km down-

stream of M3 and downstream of the second creek
outfall. M5 was approximately 1.5 km downstream of
M4. Stations P, C and L were located on Payatas creek,

the creek carrying municipal waste and the landfill site,
respectively (Figure 1). It was noted that three small
creeks carry domestic waste in to the Marikina River

between M4 and M5 and the area has a lot of agricultural
activity.
Monitored parameters

Davis & Cornwell () discuss the commonly used par-

ameters for water quality characterization. The important
physical parameters are temperature, pH, electrical conduc-
tivity (EC), total dissolved solids (TDS) and turbidity,

whereas the dissolved oxygen (DO), chemical oxygen
demand (COD), biochemical oxygen demand (BOD),
anions (Cl�, NO�

3 -N, SO2�
4 , PO3�

4 -P) and relevant heavy

metals (Cd, Pb, etc.) are the common chemical parameters.
The 12 physico-chemical parameters (pH, EC, TDS, total
suspended solids (TSS), turbidity, DO, COD, BOD, Cl�,
NO�

3 , SO2�
4 , PO3�

4 ) were chosen based on the literature

review and general knowledge of the region and landfill.
BOD and COD are representative of the total organic con-
tent of leachate and river water. Heavy metal contents of

the Payatas leachate and the river are very low based on
experimental studies (Chounlamany ).

Sampling was done during March to December 2013

and January and February 2014, except in August and
November 2013 due to heavy rain. The samples were ana-
lyzed for the 12 parameters mentioned previously. All

water quality parameters are expressed in mg L�1, except
pH, EC (μS cm�1), temperature (WC) and turbidity (NTU).
The experimental procedures and data quality for water
quality testing were ensured by following Standard Methods
for the Examination of Water and Wastewater (American
Public Health Association ). The procedure includes
blank samples of distilled water and three duplicate samples

for each parameter measured. The averages of samples were
used in the analysis. Details of the experimental methods
om http://iwa.silverchair.com/wst/article-pdf/76/6/1510/449464/wst076061510.pdf
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and equipment used are given elsewhere (American Public

Health Association ; Chounlamany ).

Multivariate statistical methods

Cluster analysis

CA is an unsupervised pattern recognition technique that

uncovers the intrinsic structure or underlying behavior of
a data set without making a priori assumption about the
data, in order to classify the objects of the system into cat-

egories or clusters based on their nearness or similarity
(Vega et al. ; Shaw ). Hierarchical clustering is
the most common approach, in which clusters are grouped

sequentially, by starting with the most similar pair of objects
and forming higher clusters step by step, and is typically
illustrated by a dendrogram. A dendrogram provides a
visual summary of the clustering processes, presenting the

map of groups with a dramatic reduction in dimensionality
of the original data.

Principal component analysis

PCA is a multivariate statistical technique which is designed

to transform the complexity of input variables with a large
volume of information into new, uncorrelated variables,
called principal components (Shaw ). It allows identifi-

cation of hidden patterns in the data. In terms of statistical
analysis, PCA mainly involves the following six major
steps (Shaw ): (1) start by coding the variables x1, x2,
x3,…, xp to have zero means and unit variance, and standar-

dize the variables to make sure they have equal weight in the
further analysis; (2) calculate the covariance matrix; (3) cal-
culate the correlation matrix; (4) calculate the eigenvalues

and the corresponding eigenvectors; (5) rank eigenvalues
and corresponding eigenvectors by the order of numerical
values and discard components interpreting a small part of

total variance in the data set; (6) develop the variable load-
ing matrix to infer the principal parameters.
RESULTS AND DISCUSSION

Descriptive measures of river water quality data

PCA and CA of water quality data sets were performed using
XLSTAT software (version 2014.1), and all experimental

data was normalized to zero mean and unit variance
(Shaw ). The range, mean and coefficient of variation



Table 1 | Range, mean and CV of water quality parameters at five stations

Parameter M1 M2 M3 M4 M5

Temp. (WC) Range 23.6–27.9 23.4–28.2 23.7–29.2 23.8–29.1 24.1–31.3

Mean (CV) 25.9 (0.055) 26.0 (0.061) 26.1 (0.064) 26.2 (0.06) 27.1 (0.097)

pH Range 7.3–7.9 7.6–8.1 7.2–8.1 7.3–8.0 7.5–8.0

Mean (CV) 7.7 (0.027) 7.9 (0.025) 7.8 (0.036) 7.7 (0.031) 7.7 (0.021)

EC (μS/cm) Range 175–457 296–823 168–544 213–568 209–548

Mean (CV) 355 (0.273) 607 (0.283) 387 (0.333) 436 (0.280) 415 (0.301)

Turb. (NTU) Range 82–468 79–423 67–497 61–420 57–555

Mean (CV) 217 (0.627) 205 (0.512) 239 (0.573) 199 (0.598) 199 (0.824)

DO (mg/L) Range 1.74–6.73 0.68–5.20 1.09–6.36 1.06–6.38 0.19–6.33

Mean (CV) 3.75 (0.464) 2.46 (0.646) 3.42 (0.544) 3.16 (0.576) 2.41 (0.938)

TDS (mg/L) Range 109–289 194–526 108–348 138–363 133–351

Mean (CV) 229 (0.275) 390 (0.279) 252 (0.313) 282 (0.273) 270 (0.304)

COD (mg/L) Range 10–34 28–136 13–52 18–70 16–66

Mean (CV) 21 (0.433) 77 (0.475) 28 (0.457) 37 (0.395) 35 (0.460)

BOD (mg/L) Range 6–30 16–79 9–74 3–25 6–46

Mean (CV) 18 (0.549) 34 (0.749) 26 (0.940) 11 (0.736) 23 (0.753)

Cl� (mg/L) Range 5.8–23 14.5–99 7.6–34 8.3–42 8.7–34

Mean (CV) 17.2 (0.336) 43.3 (0.576) 21.6 (0.391) 26.0 (0.414) 23.1 (0.392)

SO2�
4 (mg/L) Range 15–63 15–61 14–64 14–61 16–67

Mean (CV) 30.98 (0.418) 31.8 (0.444) 30.6 (0.480) 32.8 (0.473) 30.29 (0.431)

NO�
3 (mg/L) Range 0.65–1.65 0.09–1.23 0.55–1.88 0.54–2.47 0.43–1.84

Mean (CV) 1.21 (0.347) 0.53 (0.774) 1.20 (0.392) 1.19 (0.479) 1.11 (0.405)

PO3�
4 (mg/L) Range 0.22–0.98 0.23–1.58 0.25–1.11 0.26–1.02 0.26–1.39

Mean (CV) 0.60 (0.700) 0.79 (0.544) 0.63 (0.397) 0.69 (0.362) 0.74 (0.446)
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(CV) of the water quality data of Marikina River are given in
Table 1. The mean values of temperature as well as pH at
different stations do not vary much, and the CVs (given in

parentheses) are small, implying that spatial and temporal
effects are relatively minor. This is consistent with tropical
environments like the Philippines (Flores & Balagot ).

Singh et al. () also observed similar behavior in their
study of Gomti River in India.

EC, turbidity, DO, TDS, COD, BOD, Cl� SO2�
4 , NO�

3 and

PO3�
4 show high dispersion of data (high CV). The highest

mean values of EC, TDS, COD, BOD and Cl� are observed
at M2, whereas the smallest mean values of DO are at M2
and M5. M1 has the highest average DO value and the

lowest average COD. The highest variation in mean values
between stations is observed in the case of DO, BOD and
COD, which confirms the high organic content coming

from pollution sources as well as decomposition. Singh
et al. () also observed similar variation between sampling
://iwa.silverchair.com/wst/article-pdf/76/6/1510/449464/wst076061510.pdf
stations in their study of a river with point and non-point
sources of pollution. It is also observed that TDS and Cl�

have high mean values at M2 compared with other stations,

which implies high inorganic loading from landfill (Kjeldsen
et al. ; Yusof et al. ). Mean values of inorganic par-
ameters SO2�

4 , PO3�
4 and NO�

3 (except M2) are not

substantially different between stations, implying minor
spatial effects. However, the CVs of these parameters at
different stations are relatively high, confirming substantial

temporal variation resulting from seasonal factors such as
rain, flooding and agricultural activity.

Table 2 summarizes the results of a correlation analysis.
Note that data from all river sampling stations were com-

bined to calculate the correlation matrix. EC correlates
well with TDS and Cl�, while turbidity also shows good cor-
relation with TSS. TDS and Cl� represent inorganic matter,

which naturally correlates well with EC (Davis & Cornwell
). Turbidity correlates well with TSS because it depends



Table 2 | Correlation matrix of physico-chemical parameters (p< 0.01 with one-tailed test)

Variables Temp. pH EC Turb. DO TDS TSS COD Cl� NO�
3 SO2�

4 PO3�
4

Temp. 1

pH �0.640 1

EC 0.386 0.056 1

Turb. �0.342 �0.054 �0.460 1

DO �0.491 0.210 �0.769 0.359 1

TDS 0.382 0.062 0.999 �0.465 �0.771 1

TSS �0.346 �0.018 �0.478 0.873 0.389 �0.488 1

COD 0.104 0.194 0.713 �0.180 �0.452 0.710 �0.262 1

Cl� 0.360 �0.117 0.799 �0.168 �0.625 0.797 �0.205 0.763 1

NO�
3 0.421 �0.457 �0.103 �0.377 �0.158 �0.101 �0.296 �0.376 �0.207 1

SO2�
4 0.131 �0.442 �0.090 0.660 �0.065 �0.098 0.583 0.014 0.175 �0.159 1

PO3�
4 0.335 �0.297 0.487 0.115 �0.690 0.476 0.082 0.370 0.679 �0.080 0.372 1
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on the suspended solids in the water. TDS also correlates

well with Cl�, whereas COD shows strong correlation
with Cl�. Cl� and COD correlation could be due to the
same source of origin from leachate (Kjeldsen et al. ).
DO shows negative correlation with temperature, since the
solubility of oxygen decreases with temperature (Li & Liao
). COD, Cl�, TDS and PO3�

4 are also negatively corre-

lated with DO, as organic matter is partially oxidized by
DO, while nutrients cause eutrophication of water, which
results in an increase of organic matter, leading to a further
increase in oxygen demand (Li & Liao ).
Temporal similarity and period grouping

Figure 2 shows a dendrogram generated by temporal CA that
confirms the 10-month monitoring period can be represented

by three temporal clusters. Cluster 1 (the first period) includes
January to May and July, generally corresponding to the dry
season in the Philippines (traditionally December to April),

which is the low flow period of the river.
Cluster 2 (second period) includes October and Decem-

ber, representing the transition period from wet to dry

season, approximately corresponding to the typical mean
flow period. Cluster 3 (third period) includes June and Sep-
tember, corresponding to the wet season (traditionally May
to November) involving high flow rates. July was quite dry,

while heavy rain was noted in August and November (no
data collected) with dangerously high water levels and
high flow rates.

Figure 2 confirms that river monitoring must be done at
least three times, corresponding to the three clusters. It also
om http://iwa.silverchair.com/wst/article-pdf/76/6/1510/449464/wst076061510.pdf
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shows that the temporal patterns of water quality data have

to take into consideration the transition from wet to dry
season as well as localized weather patterns within a year.
A good example is the month of July, which would normally

be considered a wet month but was relatively dry in 2013.
Other researchers also found that temporal clusters do not
necessarily align with traditional dry and wet seasons, and

adjustments are needed to recognize the actual seasonal
weather patterns (Wang et al. ).
Spatial similarity and station grouping

Figure 3 shows that the stations can be grouped into four

clusters, which also implies pollution from different
sources and quality of water. Group 1 consists of Station
M1, the upstream station treated as the base station for pol-

lution assessment. Station M3 belongs to Group 2;
however, the dendrogram indicates that M1 and M3 can
be clustered into a single group (see also Table 1). This be-

havior implies that the river still retains some self-
purification capacity, as Payatas creek adds a substantial
organic load between M1 and M3. Group 3 consists of

downstream stations M4 and M5, where pollution is
increased (see Table 1) due to agricultural and domestic
waste disposal through several creeks. Group 4 consists
of Station M2, which is directly affected by leachate load-

ing from Payatas Creek. Table 1 shows that M2 is more
polluted compared with the other four stations based on
the average values of COD, BOD, DO, TDS and Cl�. In

summary, the station clustering observed here is similar
to the three clusters noted by Singh et al. () associated



Figure 2 | Dendrogram showing clusters of monitoring periods.

Figure 3 | Dendrogram showing clusters of monitoring stations.
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with relatively low (M1 and M3), moderate (M4 and M5)

and high pollution (M2) states.
The results from CA indicate that efficient and rapid

assessment of water quality of Marikina River segment is

possible using the representative sites from temporal and
spatial groups. This would lead to the design of an optimal
monitoring strategy with fewer sampling stations and moni-
toring times at reduced costs (Cui et al. ; Wang et al.
). According to the CA results, the frequency of monitor-
ing can be decreased to three times a year (e.g. January, June
and October) and only four (or three) stations are needed

(M1 and/or M3; M2; M4 or M5).
Figure 4 | Box plots of (a) temperature, (b) pH, (c) turbidity, (d) TSS, (e) EC, (f) TDS, (g) DO, (h)

om http://iwa.silverchair.com/wst/article-pdf/76/6/1510/449464/wst076061510.pdf
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Box plots of water quality parameters

The box plots of the individual water quality parameters
showing the temporal variations corresponding to the

three periods from CA are shown in Figure 4. These were
prepared by combining data at all stations corresponding
to each period as shown in Figure 2 for a given parameter.
The median value, first (Q1) and third (Q3) quartile values,

lowest value and highest values for a given period were
determined for each parameter by analyzing the data for
all stations for the specific period. The line across the box

shows the median concentration and the bottom and top
COD, (i) Cl�, (j) SO2�
4 , (k) NO�

3 and (l) PO3�
4 for different temporal clusters.
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of the box correspond to Q1 and Q3. The vertical lines that

extend from the bottom and top of the box correspond to the
lowest and highest observations.

The box plots of temperature and pH are similar, indi-

cating minor influence of seasons and river flow rates as
well as changes in pollution loading. However, turbidity,
TSS, TDS, DO, EC, Cl�, COD, SO2�

4 , NO�
3 , and PO3�

4

show substantial variations between the three periods and

quite different individual patterns. DO shows (Figure 4(g))
a larger magnitude from the first period (dry season) to
the third period (rainy period). This is due to increasing

river flow rates that cause more aeration as well as aeration
directly resulting from raining (Davis & Cornwell ).
The distribution of DO data is quite balanced during the

first and second periods, but during the third period the dis-
tribution is skewed towards the lower concentrations
(longer whisker at the bottom).

Turbidity and TSS concentrations increase from period

1 to period 3 due to heavy rain bringing more sediment
from upstream, nearby agricultural land as well as erosion
of river banks (Wang et al. ). EC, TDS, COD, and

NO�
3 show a decreasing magnitude from the first period to

the third period. This is due to the fact that during dry sea-
sons the river flow rate is low and pollution loading from

landfill and non-point sources results in higher concen-
trations of these parameters. As the river flow rate
increases substantially during the rainy months, the concen-

trations get reduced. Furthermore, the box plots of these
variables for the first period show long whiskers, implying
a large spread of magnitudes and distributions skewed
towards either higher or lower concentrations. This also

implies a higher effect of pollution sources during dry
season. In general, the second period, which corresponds
to transition from wet to dry season and stable river con-

ditions, shows, the smallest box plots, implying relatively
stable conditions along the river.

Cl�, SO2�
4 and PO3�

4 show decreases from the first

period to the second period, then an increase in the
third period. As noted by Chounlamany () through
creek water sample testing during dry months, the concen-

trations of these water quality parameters are relatively
high. In addition, their distribution is also larger except
for SO2�

4 . The second period (transition from dry to
rainy months) has moderately high river flow rates that

cause dilution of water quality parameters. The concen-
trations increase during the rainy months (third period)
as regional flooding and drainage increase the pollution

loading coming into the river from domestic, agricultural
and other sources.
://iwa.silverchair.com/wst/article-pdf/76/6/1510/449464/wst076061510.pdf
It was noted during field visits that a substantial amount

of domestic waste got carried away into the river through
creeks and regional flooding during heavy rain. During
rainy months, the concentration of some chemical cons-

tituents increases at the upstream station M1 due to
contributions from sources upstream of M1, which also
results in a general increase of concentrations at down-
stream stations. Based on the box plots shown in Figure 4,

it can be concluded that water quality characteristics of
the stretch of the Marikina River under study are generally
better during the rainy season compared with the dry

season. The lowest spatial variations of water quality par-
ameters are observed during the second period (transition
from wet to dry season), while both dry and wet seasons

show substantial variations of water quality along the river.
A second set of box plots are shown in Figure 5 to exam-

ine the influence of the spatial clustering shown in Figure 3.
The Group 1 and Group 2 box plots are similar with rela-

tively small differences of mean values, as noted
previously, through CA. pH and temperature show minor
dependence on the grouping and smallest seasonal changes.

Turbidity and TSS also show closer median values between
the groups. However, as these box plots have a larger
spread, the influence of seasonal changes is significant.

Group 4 box plots are the largest for EC, TDS, COD, Cl�

and PO3�
4 in Figure 5 and show the highest spread of data

with larger bottom and/or top whiskers for these par-

ameters. This means that seasonal variations as well as
concentrations are highest at M2, confirming the significant
role of Payatas landfill leachate. The DO concentration in
Figure 5(g) shows a decreasing magnitude from Group 1

to Group 4. This confirms again that M1 is the least polluted
amongst the five stations in terms of organic content and M2
has the highest organic pollution level. This observation is

also consistent with the increasing magnitude observed in
Figure 5(h) for COD for the different groups, as DO and
COD are negatively correlated (Table 2) (Li & Liao ).

The SO2�
4 concentration does not show substantial differ-

ences between the four groups, as the SO2�
4 loading from

Payatas creek (also leachate) was relatively low (Chounla-

many ). The concentration of NO�
3 shows not much

variation from Group 1 to 3 but shows a reduction at M2,
possibly due to consumption of nitrites by pollutants from
Payatas creek (David & Cornwell ). The municipal

creek also causes a noticeable increase in the pollution
level of Marikina, as DO levels decrease and TDS, EC,
COD, Cl� and PO3�

4 levels increase for Group 3 (Stations

M4 and M5) due to discharge from three small creeks carry-
ing domestic waste and agricultural runoff. River pollution



Figure 5 | Box plots of (a) temperature, (b) pH, (c) turbidity, (d) TSS, (e) EC, (f) TDS, (g) DO, (h) COD, (i) Cl�, (j) SO2�
4 , (k) NO�

3 and (l) PO3�
4 for different spatial clusters. (Continued.)
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characteristics observed in Figure 4 are quite similar to the
observations of Singh et al. ().

PCA of river water quality data

PCA of the water quality data set covering the five stations
was performed and corresponding eigenvalues obtained.

Following Boyacioglu & Boyacioglu (), eigenvalues
greater than 1 were retained. It is found that the first three
eigenvalues together explain over 82% of the variance or
information contained in the original data set. The percen-

tage of variances corresponding to the first two (64%) and
three (84%) eigenvalues are better than the variances of
the first two and three eigenvalues reported in the previous

studies focused on river pollution (e.g., Singh et al. ; Cui
et al. ; Cai et al. ; Wang et al. ). This confirms the
om http://iwa.silverchair.com/wst/article-pdf/76/6/1510/449464/wst076061510.pdf
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strong applicability of PCA to the current set of data. Based
on the theory of PCA (Shaw ), the projections of water
quality parameters on the axes of PCs are called loadings

and represent the correlation coefficients between PCs and
variables. Table 3 shows the loading of the retained PCs.
According to Liu et al. (), factor loadings were classified

as ‘strong’, ‘moderate’ and ‘weak’ for absolute loading values
of >0.75, 0.75–0.50 and 0.50–0.30, respectively.

PC1 corresponds to 42% of the variance and is strongly
(>0.7) contributed by EC, TDS, COD, BOD, Cl� and DO

(negative) and moderately (0.5–0.7) by PO3�
4 (nutrients

from leachate and other pollutant sources), TSS (negative)
and turbidity (negative). These water quality parameters

also showed similar positive or negative correlation in
Table 2. This PC represents organic pollution indicator par-
ameters associated with anthropogenic pollution sources



Figure 5 | Continued.
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(Li & Liao ). Dissolved organic matter at higher concen-
trations consumes large amounts of oxygen and undergoes
anaerobic fermentation processes leading to formation of

ammonia and organic acids. Hydrolysis of these acidic
materials could also cause a decrease of water pH values,
as noted by the negative loading of pH in Table 2 (Wang

et al. ). Furthermore, the negative loading of DO, TSS
and turbidity agrees with past studies and negative correlation
of these parameters with anthropogenic pollution sources.
PC2 is strongly contributed by turbidity, TSS and SO2�

4 and

moderately by PO3�
4 (increased flow of suspended solids

and nutrients from leachate and other sources during rain)
and NO�

3 (negative). This PC represents the effect of seasonal

factors such as rain and agricultural activity. PC3 is strongly
contributed by pH and NO�

3 (negative) and moderately by
://iwa.silverchair.com/wst/article-pdf/76/6/1510/449464/wst076061510.pdf
temperature (negative). PC3 is contributed by physiochemical
sources of variability (Shrestha & Kazama ). The nega-
tive correlation between pH and temperature and pH and

NO�
3 can also be seen from Table 2.
Figure 6 displays a plot of the water quality parameters

in the first two principal components space. PC1 has

strong to moderate positive loading on COD, TDS, Cl�,
BOD and PO3�

4 and is influenced by inorganic and organic
pollution from Payatas leachate and domestic wastewater
through several creeks. PC1 has strong negative loading on

DO, similar to the observations by Zhao et al. (), and
confirms the negative correlation of DO with organic pol-
lution (Li & Liao ; Singh et al. ). PC2 has

positive loading on TSS, turbidity and SO2�
4 (associated

with leachate, domestic wastewater and agricultural



Table 3 | Factor loading of water quality parameters

PC1 PC2 PC3

Temperature 0.549 �0.083 �0.673

pH �0.135 �0.159 0.892

EC 0.944 0.031 0.199

Turbidity �0.533 0.801 �0.014

DO � 0.856 �0.087 0.183

TDS 0.944 0.021 0.204

TSS �0.592 0.719 0.030

COD 0.704 0.254 0.448

Cl� 0.840 0.376 0.106

NO�
3 0.037 �0.505 �0.701

SO2�
4 �0.074 0.820 �0.374

PO3�
4 0.604 0.558 �0.215

BOD 0.573 0.328 0.482

Eigenvalue 5.042 2.645 2.254

Variability (%) 42.020 22.042 18.784

Cumulative (%) 42.020 64.062 82.846
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runoff), which are mostly increased by rain, flooding and
soil erosion. These parameters negatively correlate with

organic/inorganic pollution and have negative PC1 loading.
Figure 6 | PC1 and PC2 loading of water quality parameters.

om http://iwa.silverchair.com/wst/article-pdf/76/6/1510/449464/wst076061510.pdf
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Inorganic pollutants primarily affect EC, whereas TDS is

affected by both organic and inorganic pollution. Moderate
negative loading of PC2 on NO�

3 points to the use of fertili-
zer and agriculture activity, which often happens during dry

season and at the end of rainy season. Both PC1 and PC2
have weak negative loading on pH, as it is known to nega-
tively correlate with BOD, and rain increases the acidity of
water (Zhao et al. ).

Figure 7 shows a score plot of the river water quality
status at different stations and months in the first two
principal components space. It is clear that the highest

state of pollution is observed at station M2 from March
to May 2013 (dry season). With respect to the stations
M3 and M5, the worst pollution is observed in May

2013, whereas for station M4 it is in April 2013. The
lowest inorganic and organic pollutants (high DO con-
tent) are found in September at M1, M2 and M3 and in
December at M4 and M5. The highest seasonal effect

was found in October at M4 and M5 and in June at
M1, M2 and M3. Comparison of the water quality state
of different stations from Figure 7 clearly shows that

station M2 is significantly affected compared with other
stations.

In general, it can be concluded that pH and NO�
3 do not

influence the Marikina River stretch under consideration. It



Figure 7 | Representation of temporal and spatial behavior of sampling network in the principal component space.
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is therefore recommended that in the next sampling study, it

is unnecessary to measure these parameters. Since turbidity,
TSS and SO2�

4 have influence mostly during raining season,
these parameters can be measured only during wet season,

whereas temperature and pH require only one measurement
per year. The most significant parameters for the Marikina
River pollution are TDS, Cl�, DO, COD, BOD and PO3�

4 .
CONCLUSIONS

CA shows that the monitoring period can be divided into
three temporal clusters representing dry, wet and dry-wet
://iwa.silverchair.com/wst/article-pdf/76/6/1510/449464/wst076061510.pdf
transition periods. The five sampling stations represent

four spatial groups, and the frequency of monitoring can
be limited to three times per year using only four river
stations, M1, M2, M3, and M4 or M5.

PCA confirms that three latent factors are responsible
for the present water quality data set explaining 83% of
total variance. TDS, Cl�, DO, COD, BOD and PO3�

4 are
the most significant water quality parameters for Marikina

River, indicating that pollution is mainly from point sources
of anthropogenic/eutrophication nature. TSS, turbidity and
SO2�

4 are mostly influenced by seasonal factors and soil ero-

sion. pH and NO�
3 have a minor influence on Marikina

River. The highest state of pollution is observed at M2
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from March to May 2013 and for M3 and M5 in May. These

findings could guide design of a comprehensive river water
quality monitoring program for Marikina River and regional
water bodies.
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