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ABSTRACT

The estimation and application of Intensity-Duration-Frequency (IDF) curves depend on the assumption of stationarity of the rainfall series,

which is that the intensity and frequency of extreme hydrological events remain unchanged in the future. Climate change will have a signifi-

cant impact on the collection and utilization of rainwater and its spatial characteristics. When the Gray-Green infrastructure is designed, if

only historical precipitation is adopted to calculate the urban design rainstorm intensity formula (DRIF) and the total annual runoff control

rate, it may be difficult to meet the demand of future precipitation changes on the city’s ability to accommodate rainfall. Therefore, it is

very important to study the impact of climate change on the IDF curve. This study proposes an overall optimization solution framework

for historical and future DRIF. The impact of the extreme value on the IDF curve during the historical period is analyzed. The calculation

method of the IDF curve in the future period is established. The changes of the rainstorm intensity in the historical and future period

(SSP1-2.6,SSP2-4.5,SSP3-7.0,SSP5-8.5) were analyzed for the 15 durations and eight return periods in Beijing, China. The results of this

study show that the nondominated sorting and local search (NSLS) has the best accuracy in fitting the statistical samples of precipitation

for different durations. The best methods to judge and process the extreme value of the statistical sample are Z-score and average value

of series greater than critical value (AVG). Under the four SSP scenarios, the estimated IDF value is larger than the observed value in the

historical period. The results of the equivalent return period calculated using the DRIF show that the the four SSP scenarios are smaller

than the historical period for the return period greater than five years. Taking 120 min of short-duration precipitation as an example, the

100-year equivalent return periods of the observation under the four SSP scenarios are 35-, 20-, 54-, and 17-years, respectively. The research

can provide valuable reference for the design and planning of the drainage facility under climate change.
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HIGHLIGHTS

• The best methods to judge and process the extreme value of IDF are Z-Score and average value of series greater than critical value (AVG).

• Under the four SSP (SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5) scenarios, the estimated IDF value is larger than the observed value in the

historical period.
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GRAPHICAL ABSTRACT

1. INTRODUCTION

As one of the most sensitive and vulnerable areas affected by climate change, extreme weather and disaster events occur fre-
quently in China. Geological disasters such as urban waterlogging, farmland waterlogging, mountain torrents and mudslides

caused by heavy rainfall have caused serious influence to people’s production and life. With regard to the future global cli-
mate change, the fifth assessment report of the IPCC (Intergovernmental Panel on Climate Change) indicated that evolutions
in precipitation and melting of snow and ice in many regions are changing the hydrological system, affecting the quantity and

quality of water resources (medium confidence) (Pachauri et al. 2014). From 1880 to 2012, the global average temperature
increased by 0.85 °C (Zhang et al. 2021). Under the influence of climate change, glaciers close to the global scale are shrink-
ing continuously (high confidence), affecting the downstream runoff and water resources (medium confidence). Climate

change is causing warming and thawing of permafrost at high latitudes and altitudes (high confidence). The extreme weather
and climate events caused by the impact of human activities include the decrease of low-temperature extreme events, the
increase of high-temperature extreme events, the increase of extremely high sea levels and the increase of the number of
heavy precipitation events in some regions. The number of heavy precipitation events may show an increasing trend in

more land areas than in areas with decreased precipitation. All the emission scenarios evaluated predict that the surface
temperature will increase in the 21st century. The frequency of heat wave is likely to be higher and longer, and the intensity
and frequency of extreme precipitation in many areas will increase. The oceans will continue to heat up and acidify, and the

global average sea level will also continue to rise. The results of the above analysis show that the probability and frequency of
extreme weather will have a significant increasing trend for a long period in the future, which brings great challenges to
countries around the world to deal with disastrous weather.

The design rainstorm intensity formula (DRIF) is an important basis for reflecting the regularity of rainfall, guiding the
design of urban drainage and waterlogging prevention projects and the construction of related facilities. The accuracy of
its calculation has an important impact on the project cost, drainage capacity, people’s property and life safety (Mirhosseini

et al. 2013; Fadhel et al. 2017). The rainstorm intensity of short-duration heavy precipitation becomes larger under climate
change. Compared with the original DRIF, the precipitation for the same return period and the duration will increase.
The original DRIF can no longer meet the design requirements of future projects.

The DRIF is obtained by fitting the intensity-duration-frequency (IDF) curves. The IDF assumes that the historical precipi-

tation is stationary, so it can be used to characterize future changes in extreme precipitation. When climatic conditions
change rapidly, IDF curves generated only based on historical data will erroneously represent future climate changes
(Mailhot et al. 2007; Srivastav et al. 2014). In urban hydrology, the design of drainage infrastructure has traditionally been

based on statistical analysis of historical precipitation records. It is assumed that the intensity and frequency of past events
are statistically representative of what may happen in the near future. However, in the context of climate change, the assump-
tion must be revisited and design criteria for drainage infrastructure revised to account for expected changes in the intensity
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and frequency of heavy rainfall. Otherwise, it will have a serious impact on the future design, operation and maintenance of

drainage facilities (Mailhot et al. 2007; Tfwala et al. 2017).
Considering the increase of observed heavy rainfall events, IDF curves should be updated to take into account the changing

climate, especially for the design of urban infrastructure. Beijing is the capital of China, with complex terrain, high population

concentration, and severe rainstorms (Lu & Cui 2022). For example, in 2012 and 2016, Beijing experienced torrential rains
on July 20th and July 21st, respectively, which caused severe urban waterlogging and massive economic losses. To the best of
our knowledge, there are currently no studies evaluating the impact of climate change on the IDF curve in Beijing. Few
studies have calculated future DRIF based on IDF curves under climate change. At present, the research on IDF curve

mainly has the following problems: (1) When the extreme value of sub-daily precipitation in one year is much higher than
that in other years, it will lead to poor fitting effect of the tail of the frequency distribution curve. Overfitting to the tail
will result in smaller rainstorm intensity for the fitting of head; (2) For the calculation of future IDF, many studies have modi-

fied the historical IDF curve to obtain the future IDF according to the proportion of rainstorm intensity values in different
return periods of future and historical climate models. This solution method using proportional increments does not consider
the correlation between future IDF and observed values.

The objectives of this study are as follows: (1) Based on the minute-level precipitation data, the influence of this extreme
value on the shape and fitting accuracy of the historical frequency distribution curve is analyzed: (2) The calculation process
of future IDF curve based on the Coupled Model Intercomparison Project Phase 6 (CMIP6) is given; (3) The variation of the

equivalent return period before and after climate change is analyzed; (4) The historical and future DRIFs of Beijing under
climate change are calculated. This research can provide a reference for the planning and design of water resources projects
in Beijing or other areas in the future.

2. STUDY AREA AND DATA SERIES

2.1. Study area

Beijing is the capital of China and one of the most populous cities in the world (Song et al. 2019; Xu et al. 2022). It is located
at the northern tip of the North China Plain (Figure 1). The metropolitan area of Beijing has a total area of 16,410 km2 and
has a complex topography (Song et al. 2014). Beijing is located in the transitional zone between mountains and plains,with
62% of the mountains and 38% of the plains (Jia et al. 2017). The annual average temperature ranges from 11 to 13 °C. The

average annual precipitation in Beijing is 508.8 mm/year from 2001 to 2015 (Ren et al. 2018). Beijing has a typical mon-
soon-driven semi-humid to humid continental climate. It is hot and humid in summer and cold and dry in winter. The
number of rainfall days and precipitation in Beijing is mainly concentrated in summer, accounting for about two-thirds of

the total annual precipitation (Yang et al. 2019).

2.2. Data series

The minute-level precipitation for the observation comes from the Guanxiangtai Weather Station in Beijing, the range of
which is from 1951 to 2012. CMIP6 was adopted as projected precipitation for future climate change analysis. Its range
includes historical periods (1951–2012) and future periods (2023–2100). In this study 12 models were selected for accuracy

evaluation, which are listed in Table 1. The results of this evaluation show that the accuracy of CanESM5 is the best. The
PBIAS and RMSE of CanESM5 are the smallest for annual precipitation, which are �7.33 and 239.66, respectively. The
trend of the change is more consistent with the observed value. The CC of CanESM5 and the observed monthly precipitation

is 0.59. CanESM5 is chosen to describe changes in precipitation for future period. The process of evaluation and selection for
CMIP6 is not described in detail in this study. For the method of this evaluation, refer to Dong & Dong (2021); and Guo et al.
(2021). The latest CMIP6 combines RCPs and shared socioeconomic pathways (SSPS) to produce a more reasonable future
scenario (Peng & Li 2021; Su et al. 2021). Four combinations of SSP-RCP scenarios are adopted in this study,which are SSP1-

2.6 (sustainability), SSP2-4.5 (middle of the road), SSP3-7.0 (regional rivalry), SSP5-8.5 (fossil fuel development) (Su et al.
2021). ‘Nominal Resolution’ is 100 and 250 km. ‘Variant Label’ is r1i1p1f1. They describe possible future worlds and rep-
resent different combinations of mitigation and adaptation challenges. SSP1-2.6 has significant changes for landuse,and

cover ratio of its global forest will increase. The landuse and aerosol pathways of SSP2-4.5 are not extreme relative to
other SSPs. It combines intermediate societal vulnerability with an intermediate forcing level. SSP3-7.0 is a scenario with
a large number of land use changes (especially decreased global forest cover) and high NTCF emissions (especially SO2).
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Figure 1 | Distribution map of study area.

Table 1 | List of the CMIP6 GCMs used in this study

No Model Institution Country Resolution

1 CESM2-WACCM US National Center for Atmospheric Research (NCAR) USA 288� 192

2 CMCC-CM2-SR5 Euro-Mediterranean Center on Climate Change (CMCC) Italy 288� 192

3 CMCC-ESM2 Italy 288� 192

4 MPI-ESM1-2-HR Max Planck Institute for Meteorology (MPI-M) Germany 288� 192

5 MRI-ESM2-0 Meteorological Research Institute (MRI) Japan 320� 160

6 NorESM2-MM NorESM Climate modeling Consortium consisting of CICERO (NCC) Norway 288� 192

7 FGOALS-g3 Chinese Academy of Sciences (CAS), China China 180� 90

8 TaiESM1 Research Center for Environmental Changes (AS-RCEC) China 288� 192

9 ACCESS-CM2 Commonwealth Scientific and Industrial Research Organisation (CSIRO) Australia 192� 144

10 ACCESS-ESM1-5 192� 145

11 CanESM5 Canadian Centre for Climate Modelling and Analysis (CCCma) Canada 128� 64

12 MIROC6 Japan Agency for Marine-Earth Science and Technology,
Atmosphere and Ocean Research Institute,
National Institute for Environmental Studies,and
RIKEN Center for Computational Science (MIROC)

Japan 256� 128
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SSP3-7.0 is a scenario with both substantial land use change. SSP5-8.5 is the only SSP scenario with emissions high enough to

produce a radiative forcing of 8.5 Wm�2 in 2100.

3. RESEARCH METHODOLOGY

3.1. Research framework

The research framework of the study is illustrated in Figure 2. The basic data is preprocessed, which contains: (1) Interp-

olation of minute-level precipitation and synthesis of precipitation with different durations; (2) Download and extraction
of CMIP6 and interpolation of daily data for models with calendar ‘noleap’. The frequency distribution parameters of precipi-
tation for the observed sub-daily and the CMIP6 daily are calculated. Previous studies usually choose GEV or Gumbel for

fitting of frequency distribution, and this method cannot guarantee that the effect of fitting for discrete frequency points is
optimal. Four distribution functions (GEV, Gumbel, Pearson3, and Exponential) were adopted in this study to obtain the
best fitting frequency distribution curve. For the historical IDF curve, it is necessary to consider whether there is an extra
large value and deal with it before fitting. The existence of this extra large value will increase the rainfall in the high

Figure 2 | Research framework of the study.
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return period and the design cost of engineering facilities. When the extra large value is processed, the non-linear relationship

between the observation and the model is established between the quantiles of different return periods in the historical
period. The non-linear contains the functional relationship between the modeled daily and the observed sub-daily curve.
This function is applied to the future quantile values of the model. Rainstorm intensity of the model are calculated for differ-

ent sub-daily and return period in the future. The future IDF curve is established. Finally, the historical and future DRIFs are
obtained by fitting the IDF curve using a multi-objective optimization algorithm.

3.2. Outlier detection in extreme value series

Outliers are extreme values that stand out from the distribution of the data in the graph or table. Outliers in the series will

affect the statistical results of samples, such as mean, standard deviation, coefficient of variation, skewness coefficient and
kurtosis coefficient, thus affecting the parameters of the distribution function. Seven detection methods of outliers were
adopted in this study, which are Z-Score (ZS), 3-sigma (3σ), Modified Z-Score (MZS), median absolute deviation (MADe),

Box-Plot Method (BPM), Grupps-Beck Test (GBT), Stedinger Test (ST) (Grubbs 1969; Crosby 1994; Kannan et al. 2015;
Asikoglu 2017; Lu et al. 2018).

(1) The Z-score assumes that sample x follows normal distribution, which is Xi � N(m, s2). The Z-score is calculated as fol-
lows:

Zi ¼ xi � x
s

(1)

where xi is the sample X; x is mean of sample X; s variance of sample X. When Zi. γ, xi is the outlier. For the γ, the
thresholds used in Asikoglu (2017) and Kannan et al. (2015) are 2.5 and 3, respectively. The γ can be adjusted according

to the distribution range of abnormal values of sample data, which is 2.5 in this study. The Z-score is greatly affected by
outliers and is not suitable for the detection of outliers in small samples.

(2) The 3-sigma is also known as the 68-95-99.7 rule. It is similar to the calculation principle of the Z-Score. When the γ of the

Z-Score is equal to 3, it is the 3-sigma. It assumes that the sample follows a normal distribution, and when the positive or
negative moments of the sample data are outside σ, 2σ or 3σ, the data is considered to be an outlier (Figure 3). The

Figure 3 | Distribution diagram of confidence intervals for a normal distribution with 3-sigma rule.
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probabilities of x falling within different confidence intervals are as follows:

P(m� 1s � x � mþ 1s) � 0:682689492137086 (2)

P(m� 2s � x � mþ 2s) � 0:954499736103642 (3)

P(m� 3s � x � mþ 3s) � 0:997300203936740 (4)

(3) The modified Z-score adopts median and median absolute deviation instead of mean and standard deviation, which

solves the problem of poor detection ability of Z-score for outliers in small sample data (Kannan et al. 2015). When
jzij. 3.5, there are outliers in the sample data. The formula is as follows:

zi ¼ 0:675(xi � x0:5)=MAD (5)

MAD ¼ median(jxi �median(x)j) (6)

where xi is the sample X; N is the number of data.
(4) MADe is a stable detection method that is less affected by extreme values. The study adopts the 3MADe method, as

follows:

2MADe: xoutlier [ (�1, Median� 2S)< (Medianþ 2S, þ1) (7)

3MADe: xoutlier [ (�1, Median� 3S)< (Medianþ 3S, þ1) (8)

S ¼ 1:4826�median jxi �median(x)j (9)

where xoutlier is the outlier; xi is the sample X.
(5) The boxplot obtains the interquartile range IQR by calculating the difference between the upper quartile Q3 and the

lower quartile Q1 of the sample, and which is suitable for dealing with symmetric and skewed data. In the study,

IQR15 is adopted as the judgment criterion for outliers (Saleem et al. 2021):

IQR ¼ Q3 �Q1 (10)

IQR15 [ (�1, Q1 � 1:5IQR)< (Q3 þ 1:5IQR, þ1) (11)

IQRM [ (Q1 � 3IQR, Q1 � 1:5IQR)< (Q3 þ 1:5IQR, Q3 þ 3IQR) (12)

IQR30 [ (�1, Q1 � 3IQR)< (Q3 þ 3IQR, þ1) (13)

where IQR is interquartile range; IQR15 is the outlier; IQRM is potential or moderate outliers; IQR30 is extreme outliers.

(6) The Grupps-Beck Test defines a set of high and low thresholds XH and XL. When the sample x is greater than XH, it is a
high outlier, or when the sample x is less than XL, it is a low outlier:

XH ¼ �xþ kN � Sx (14)

XL ¼ �x� kN � Sx (15)

where x is mean of sample X; kN is the threshold at different significance levels, this study adopts the 0.01 significance
level. Its value can refer to Grubbs & Beck (1972); Sx is standard deviation.
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(7) Stedinger Test defines a set of high and low thresholds XH and XL. When the sample x is greater than XH, it is a high

outlier, or when the sample x is less than XL, it is a low outlier:

yi ¼ ln xi (16)

XH ¼ exp (�yþ kN � Sy) (17)

XL ¼ exp (�y� kN � Sy) (18)

kN ¼ �0:9043þ 3:345
ffiffiffiffiffiffiffiffiffiffiffiffi
logN

p
� 0:4046 logN (19)

where xi is sample X; �y is mean of yi;Sy is standard deviation of yi; kN is the threshold.

3.3. Processing of extreme value

For extreme values, this study focuses on outliers that have a greater effect on the higher return period of the frequency curve.
When the series of the sample is judged to have an extreme value, the extra-large value will be processed in three ways: (1)
Extracting the second maximum value of the daily precipitation in the ith year(SMV); (2) Extract the average value of the

daily precipitation in the ith year that is greater than the critical value(AVG); (3) Extracting the maximum value of the
daily precipitation in the ith year which is less than the critical value (MVL). First, the maximum daily precipitation for
each year is extracted to form a statistical sample. When it is judged that there is an extreme value in this sample, the
data of the year in which the extreme value is located will be processed. The data of this year are sorted in descending

order, and the second largest value is extracted and used to replace the ith extreme value in the sample. This processing
method is the principle of SMV. The calculation methods of AVG and MVL are similar to SMV. They extract respectively
the average value of daily data greater than the critical value and the maximum value of daily data less than the critical

value in the year where the extreme value is located.

3.4. Calculation of IDF curve under climate change

Step 1: The climate model was corrected using a quantile delta mapping method of daily precipitation based on frequency
(DFQDM). The method can correct the frequency and value of wet days of precipitation. This 95th percentile was used to
divide monthly precipitation into normal and extreme precipitation. A mixed Gamma distribution was used to fit the cumu-
lative distribution frequency(CDF) of the two parts of the daily precipitation. A quantile delta map was used to correct for

precipitation.
Step 2: xOBS

i,j,max is the maximum value of the extracted observations in the jth duration of the ith year. The number of
durations of the precipitation in this study contains 15, which are 5, 10, 15, 20, 30, 45, 60, 90, 120, 150, 180, 240, 360,

720 and 1440. This duration takes into account both short and long-duration precipitation. The simulation of urban drainage
system is more concerned with the simulation of short-duration precipitation process.

Step 3: xGCM,REF
i,daily,max and xGCM,FUT

i,daily,max are the maximum daily precipitation (1440 min) of the ith year in the historical and future

periods of the extracted model, respectively;
Step 4: Frequency distributions of observation and model are fitted:

Prob(OBS) ¼ f(uOBS,subdaily, xOBS
subdaily,max) (20)

Prob(GCMREF) ¼ f(uREF,daily, xREFdaily, max) (21)

Prob(GCMFUT ) ¼ f(uFUT ,daily, xFUT
daily,max) (22)
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Step 5: The rainstorm intensity under different quantiles or return periods is calculated. The return period ranges from 2- to

100-years, and the interval is taken as 0.5-year:

YOBS,subdaily
RP ¼ F�1 1� 1

RP

� �
juOBS,subdaily

� �
(23)

YREF,daily
RP ¼ F�1 1� 1

RP

� �
juREF,daily

� �
(24)

YFUT ,daily
RP ¼ F�1 1� 1

RP

� �
juFUT ,daily

� �
(25)

Step 6: A non-linear relationship between the quantiles of observed sub-daily and modeled daily is established over the
historical period. The purpose is to obtain a quantitative relationship between the CDF curves of observation and model
under different return periods:

YOBS,subdaily
RP ¼ A� YREF,daily

RP þ b (26)

Step 7: It is assumed that the non-linear relationship applies to the future period of model. The rainstorm intensities of sub-
daily under different return periods for the future period are calculated. The result can be extracted to obtain the IDF table or

fitted to obtain the DRIF:

YFUT ,subdaily
RP ¼ A� YFUT ,daily

RP þ b (27)

3.5. Design rainstorm intensity formula (DRIF)

The frequency distribution curve for different return periods and durations has a large number of parameters. It is very incon-
venient for the designer to apply it. A common practice is to adopt DRIF to fit the IDF table. The form of DRIF adopted in
China are as follows:

q ¼ A1(1þ C � lgP)
(tþ b)n

(28)

where A1, b and c are the parameters to be solved; q is rainstorm intensity, mm/min; t is the duration, min; If the unit of q is

converted to [L/(hm2·s)], the right side of the above equation will be multiplied by 167.

3.6. Frequency distribution and multi-objective optimization algorithms

GEV, Gumbel, Pearson3, Exponential are adopted to compare and obtain the best distribution function of empirical fre-

quency points in this study. In the process of parameter optimization of the frequency distribution curve and DRIF, this
study adopts several widely used solution methods. They are respectively L-moment (Kotz & Nadarajah 2000), Multistart
search least squares algorithm(MSLSA) (Ugray et al. 2007), Non-dominated sorting genetic algorithm II(NSGAII) (Deb

et al. 2002), Multi-objective particle swarm optimization (MOPSO) (Coello & Lechuga 2002), Multi-objective evolutionary
algorithm based on decomposition(MOEA/D) (Zhang & Li 2007), Nondominated sorting and local search (NSLS) (Chen
et al. 2014). The formula for the error of the fitting accuracy for DRIF is as follows:

(1) Mean absolute root mean square error (MARMSE):

Xm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

(q0 � q)2

vuut (29)
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(2) Mean relative root mean square error (MRRMSE):

Um ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

q0 � q
q

� �2
vuut � 100% (30)

where q0 is rainstorm intensity fitted to theoretical frequency curve (Xm) or DRIF (Um), mm/min; q is the rainstorm intensity
fitted by empirical frequency curve (Xm) or theoretical frequency curve (Um), mm/min; n is the number of sample data.
The selection of the distribution function is based on the performance of MARMSE and MRRMSE for the DRIF. In China,

the regulations promulgated by the Ministry of Housing and Urban-Rural Development (MOHURD) require that when the
return period is two to 20 years, MARMSE should not be greater than 0.05 mm/min in areas with general rainstorm intensity,
and MRRMSE should not be greater than 5% in areas with large rainstorm intensity. The accuracy of this calculation was
evaluated using two- to 100-years when the DRIF was fitted. The interval of this return period is taken as 0.5 years. The accu-

racy requirements for MRRMSE and MARMSE are for DRIF rather than IDF in this study. These two indicators can be used
as an evaluation index for the accuracy of the fitting of the IDF curve.

4. RESULTS

4.1. Changes in annual precipitation for historical and future periods

The annual precipitation of SSP3-7.0 is the maximum in many years (Figure 4). In the historical period, the annual average
precipitation of the observation and the model is 592.8 and 590.6 mm, respectively. The annual mean precipitation of the

corrected model is very close to the observation. The annual average precipitation of the model in the future period is
765.2, 793.4, 848.9, and 927.9 mm, respectively. With the increase of radiation, the annual average precipitation is gradually
increasing. The order of the magnitude is SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5. Under the four scenarios, the variation
of the model relative to the observation was 29.09, 33.84, 43.21 and 56.52%, respectively. The maximum values of precipi-

tation of observation and model are 1406 and 1336 mm in the historical period. The maximum precipitation of the model
is respectively 1506.9, 1628.9, 1661.3 and 1981.8 mm in the future period. The maximum annual precipitation of the obser-
vation occurred in the year 1959, which was 1406 mm. The precipitation in the future period showed a significant increase

trend, and the rates of change were 1.6, 3.3, 2.6 and 6.3 mm/year, respectively.

Figure 4 | Change of annual precipitation for model and observation.
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4.2. Calculation of DRIF for historical periods

It can be seen from Table 2 that the solution method and frequency distribution of DRIF to meet the requirements of the
fitting accuracy are the Exponential optimized by NSGA-II, the Gumbel optimized by MOEA/D, and the Gumbel distribution

optimized by NSLS. The optimized accuracy of NSLS is better than that of NSGA-II, NSGA-III and MOEA/D, and the
Gumbel has the best performance. The MARMSE and MRRMSE of NSLS were 0.045 and 3.475%, respectively. The
MRRMSE is the lowest among all distributions. The coefficient of determination (R2) is close to 1. In this 100-year return
period and different durations, the intensity of the rainstorm varies from 0.169 to 4.124 mm/min. The MARMSE and

MRRMSE of the L-moment do not meet the accuracy requirements. L-moment was established by Hosking in 1990 and is
widely used in fields such as hydrology and civil engineering (Wan Zin et al. 2009). Compared with other methods of
moments, the main advantage of the L-moment method is that it is less affected by the variability of the samples (Bílková

2012). The L moment is more stable and the solution speed is faster, and it can provide safer results in the case of small
samples. When the IDF table needs to be obtained quickly, the L-moment method is an optimal choice. MOPSO has the
advantages of easy implementation and fast search. The main disadvantage of this algorithm is that the non-dominated sol-

utions of uniform distribution in the solution space are poorer and the diversity of solutions is insufficient (Zhang et al. 2016).
NSGA-II and MOEA/D are the most widely used multi-objective optimization algorithms. The disadvantage of NSGA-II is
that it performs poorly on high-dimensional problems when the number of objective functions exceeds three (Zhao & Li
2014; Huang et al. 2019). The probability of crossover and mutation of NSGA-II is not perfect, and its process of calcu-

lation is very time-consuming. MOEA/D has problems such as reduced population evolution efficiency and poor evolution
quality in the calculation process. It may be due to the above shortcomings that the performance of these algorithms is not
as well as that of NSLS. NSLS is able to find better distributions of solutions and better convergence to true pareto optimal

frontiers (Chen et al. 2014). The Gumbel optimized for the NSLS will be adopted to compute the historical DRIF in this
study.

Table 2 | Results of parameter optimization and accuracy evaluation for DRIF in historical periods

Optimization method Type of frequency distribution R2 MARMSE MRRMSE (%) A1 C b n

L-moment Pearson3 0.997 0.060 5.489 16.834 0.993 22.036 0.768
Gumbel 0.999 0.028 7.494 12.379 0.801 14.732 0.704
GEV 0.995 0.077 5.524 14.916 1.419 23.958 0.782
Exponential 0.999 0.033 7.988 9.591 1.373 15.047 0.699

MSLSA Pearson3 0.997 0.067 5.097 17.580 1.424 26.131 0.800
Gumbel 0.999 0.035 7.043 13.227 0.897 16.422 0.716
GEV 0.994 0.092 5.660 12.427 3.317 31.603 0.840
Exponential 0.999 0.044 6.783 11.175 1.466 18.175 0.726

NSGA-II Pearson3 0.996 0.068 4.983 18.572 1.411 26.979 0.809
Gumbel 0.999 0.036 6.206 13.562 0.923 16.897 0.725
GEV 0.994 0.092 5.867 11.454 3.329 30.337 0.826
Exponential 0.998 0.049 3.909 14.419 1.521 21.900 0.781

MOPSO Pearson3 0.994 0.086 15.924 38.189 1.278 36.406 0.931
Gumbel 0.986 0.127 8.850 8.020 3.991 25.825 0.834
GEV 0.992 0.110 6.712 2.486 20.776 32.658 0.858
Exponential 0.995 0.081 10.794 41.307 1.198 34.180 0.949

MOEA/D Pearson3 0.997 0.064 4.519 23.098 1.435 29.792 0.855
Gumbel 0.998 0.045 3.876 20.595 0.924 22.230 0.807
GEV 0.995 0.088 5.247 11.680 3.637 31.456 0.845
Exponential 0.998 0.051 3.755 15.762 1.564 23.558 0.801

NSLS Pearson3 0.997 0.068 4.496 19.380 1.516 28.121 0.827
Gumbel 0.998 0.045 3.475 15.335 1.107 19.922 0.771
GEV 0.994 0.092 5.713 11.086 3.489 30.400 0.828
Exponential 0.997 0.059 7.625 7.015 2.250 15.877 0.701
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The IDF curve optimized by the NSLS is shown in Figure 5. The error of the fitting for Gumbel is larger at higher return

periods. The same effect occurs with the Pearon3. The fitting effect of GEV and Exponential is better for the tail of the IDF
curve. However, these two distribution functions are too close to the rainstorm intensity for the return period of more than 60-
years, which leads to poor fitting accuracy for the low return period. The 10 and 20-min curves of the GEV may intersect after

the 100-year return period. This would result in the same rainstorm intensity for different durations in a certain return period,
which is unreasonable. At the same time, the rainstorm intensity for the high return period will increase significantly com-
pared with the low return period. This phenomenon indicates that there may be an extreme value in this series. Affected
by extreme values, IDF has a better effect on the simulation of low return periods and is poorer for high return periods.

The design of urban drainage system pays more attention to short duration and low return period precipitation. The precipi-
tation for this return period in the range of two-year to 20-years is important. In order for the IDF curve to take into account
the accuracy of the simulation for both high and low return periods, the extreme values of the sample should be treated as

more reasonable ranges.

4.3. Calculation of DRIF considering the influence of extra-large value on IDF

Figure 6 shows the size and number of the critical value for different judgment methods of extreme value. Since the critical
values of Z-Score and Modified Z-Score are constant, they first transform on the original data and then compare the size with
the critical value. Therefore, their critical values do not change with different durations in the figure. This study only com-

pares the magnitude of the critical value for other methods. Critical value of Stedinger is the largest. The critical values
for MADe and Boxplot are minimal since the values of the samples are all smaller than the critical value of Stedinger.

Figure 5 | IDF curve optimized by NSLS without outlier handling.
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The number of extreme values detected by Stedinger is 0. The number of extreme values judged by MaDe at the 360 is the
largest, which is 6.

Table 3 indicates that the accuracy of the DRIF is optimized by the NSLS after the outliers are processed. There are many

judgment methods for outlier processing that meet the accuracy requirements of the fitting. The c omprehensive rating index
(CRI) was adopted in this study to select the best outlier handling method for the fitting (Zhang et al. 2018). The CRI can
calculate a comprehensive index by ranking the different evaluation indicators. In this study, R2, MARMSE and
MRRMSE were selected to calculate the CRI. It can be seen from Table 3 that the Boxplot of SMV, the Z-Score of AVG

and the Z-Score of MVL have the highest CRI, which are all 0.583. From the optimization results of this IDF curve, it can
be seen that the error of SMV in the high return period is still larger (Figure 7). The reason is that when extracting the
second value of the year in which the outlier is located, the second rainstorm intensity is very close to the first one. Therefore,

the distribution of this empirical frequency point has not changed much. The accuracy of the fitting for AVG is better and the

Figure 6 | Critical values for different outlier judgment methods: (a) The size; (b) The number.

Table 3 | Accuracy of fitting after outliers are processed

Handling Method Judgment method R2 MARMSE MRRMSE(%) CRI

SMV 3-sigma 0.9980 0.0482 4.2961 0.208
Z-Score 0.9990 0.0345 6.8189 —

Modified Z-Score 0.9989 0.0348 6.0390 —

MADe 0.9990 0.0341 6.9258 —

Boxplot 0.9989 0.0345 4.9678 0.583
Grupps-Beck 0.9987 0.0381 4.5642 0.542
Stedinger 0.9989 0.0356 6.9546 —

AVG 3-sigma 0.9990 0.0332 5.5602 —

Z-Score 0.9985 0.0402 3.9388 0.583
Modified Z-Score 0.9991 0.0320 7.4550 —

MADe 0.9992 0.0294 8.5145 —

Boxplot 0.9963 0.0629 6.3776 —

Grupps-Beck 0.9986 0.0407 4.1338 0.542
Stedinger 0.9989 0.0356 6.8886 —

MVL 3-sigma 0.9982 0.0445 4.6060 0.208
Z-Score 0.9986 0.0377 4.2271 0.583
Modified Z-Score 0.9977 0.0490 4.1278 0.250
MADe 0.9993 0.0268 8.0646 —

Boxplot 0.9949 0.0692 6.9804 —

Grupps-Beck 0.9992 0.0308 6.2984 —

Stedinger 0.9989 0.0360 5.8671 —
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distribution of the empirical frequency point is better. The rainstorm intensity of MVL in the high return period is obviously
reduced, and the rainstorm intensity greater than the 30-year return period is very close. When the maximum value is less
than the critical value, it will seriously underestimate the rainstorm intensity in this high return period. Z-score and AVGs

are recommended for the judgment and treatment of outliers in the study.

4.4. Comparison of IDF values before and after processing of extra large values

After the outliers are processed, the rainstorm intensity is slightly reduced in different return periods compared with before
processing. In Table 4, the color of dark red represents a larger proportion of reduction, and the color of dark green represents
a smaller proportion of reduction. The proportion of this reduction increases as the return period increases. The scale of this

reduction varies from �0.1 to �3.1%, with a slight decrease in value. The Z-score method did not change the value of the
sample points significantly, and the ratio was the largest at 60-min.

The calculation results of the DRIF for the historical period are as follows:

(1) No handling of outliers (2) Handling of outliers

q ¼ 15:335(1þ 1:107� lgP)

(tþ 19:922)0:771
q ¼ 15:618(1þ 0:937� lgP)

(tþ 18:686)0:761

4.5. Calculation of DRIF under climate change

The future scenario is fitted separately by four distribution functions. The optimal combination of the function is shown in
Table 5. This combined distribution function is adopted to reflect the change of the real frequency point as much as possible,
which is different from other studies. For example, both Butcher & Zi (2019) and Tousi et al.(2021) adopted the GEV when

Figure 7 | Optimization results of IDF curves after outlier processing. (a) SMV; (b) AVG; (c) MVL.
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fitting the CDFs of observation and model. Srivastav et al. (2014) adopted the Gumbel. For all scenarios, a single distribution
may not be optimal for reflecting the change of CDF. It can be seen from Figure 8 that the performance of this fitting is very
good. The fitting of the frequency curve of the observation has not been processed by outliers. MARMSE and MRRMSE in
Table 5 are both small.

Figure 9 shows that the fitting results of the rainstorm intensity of the quantile under different durations of observation and
model in the historical period. There is a perfect non-linear relationship between the rainstorm intensity of the modeled daily
and the observed sub-daily. The expression and precision of this fitting are shown in this figure. The R2 is close to 1 and the

RMSE is close to 0. This expression can quantitatively reflect the relationship of CDF between the model and the observation.
The form of this functional relation is the same as that obtained by Requena et al. (2021). This quantitative relationship is
assumed to apply for the future period of the model. The IDF table for the future period is calculated. This study adopts

3D surfaces to compare the size of IDF in space (Figure 10). This duration is divided into four parts: the first part (5-, 10-
and 15-min), the second part (20-, 30- and 45-min), the third part (60-, 90-, 120- and 150-min), the fourth part (180-, 240-,
360-, 720- and 1440-min). The order of the size of the SSP is different for different return periods in the future. When the
return period is greater than 40 years, SSP2-4.5. SSP5-8.5. SSP1-2.6. SSP3-7.0.Observation. The design of urban drai-

nage system mostly adopts the process of short-duration precipitation. For duration of the 120-min, SSP5-8.5. SSP3-7.0.

SSP1-2.6. SSP2-4.5.Observation at return periods of two, three, five, and 10 years. At 20- and 30-year return periods,
SP5-8.5. SSP2-4.5. SSP1-2.6. SSP3-7.0.Observation. At 50- and 100-year return periods, SSP2-4.5. SSP5-8.5. SSP1-

2.6. SSP3-7.0.Observation. Models do not have a fixed size order in future scenarios.
The calculation results of DRIF from 2023 to 2100 are as follows:

Table 4 | The percentage of change in rainstorm intensity before and after outlier processing

Table 5 | Fitting results of frequency distribution of different scenarios in the future

Model Frequency distribution R2 MARMSE MRRMSE (%)

Ref Pearson3 0.98 0.003 4.801

SSP1-2.6 GEV 1.00 0.002 6.083

SSP2-4.5 GEV 0.97 0.006 7.642

SSP3-7.0 GEV 0.99 0.003 4.211

SSP5-8.5 Pearson3 0.98 0.004 5.920
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SSP1-2.6: q ¼ 17:597(1þ 0:925� lgP)

(tþ 19:494)0:75
SSP2-4.5: q ¼ 7:500(1þ 4:287� lgP)

(tþ 22:388)0:776

SSP3-7.0: q ¼ 22:705(1þ 0:638� lgP)

(tþ 20:357)0:772
SSP5-8.5: q ¼ 24:647(1þ 0:744� lgP)

(tþ 21:374)0:768

Optimization results of parameters of DRIF from 2023 to 2100 are shown in Table 6.

4.6. Changes in equivalent return periods for historical and future periods

Figure 11 indicates that the change in the observation for the historical period relative to the equivalent return period of the

four scenarios (SSP1, SSP2, SSP3, SSP5) for the modeled projected period. The return period under the future scenario cor-
responding to the return period of this historical period of two, three, five, 10, 20, 30, 50, 100 years is calculated. The change
of equivalent return period for 60-, 120-, 180- and 1440-min is shown in Figure 11. Except for SSP2-4.5, the return period of

the observations in the historical period is larger than the equivalent return period under other SSP scenarios. Equivalent
return periods at two and three years for SSP2-4.5 are slightly larger than observations. For the 100-year return period, the
equivalent return period of the observation is all less than the 70-year in the future period. The equivalent return period of
SSP1-2.6, SSP2-4.5 and SSP5-8.5 of the 100-year for the observation is less than 40-, 30- and 20-year, respectively. The

100-year equivalent return period under SSP3-7.0 is larger than other future scenarios, which are all less than 70 years.
The results show that the design return period of urban drainage facilities will gradually decrease in the future period. The
design return period of the built project can no longer meet the requirements of future waterlogging prevention. For SSP2-

4.5, the equivalent return period of two- and three is very close to the historical period. For the short-duration precipitation
of 120-min, the 100-year equivalent return periods under the four scenarios are 35-, 20-, 54- and 17-year, respectively. This
analysis shows that the current infrastructure is only able to resist rainstorm with a 30-year return period under the future

Figure 8 | Fitting results of empirical frequency curves of observation and model for historical and future periods.
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SSP1-2.6. Therefore, design of the infrastructure during the historical period should take into account the increase in the
intensity of rainstorms in the future.

5. DISCUSSION

At present, there are few relevant studies on the influence of extreme values on the IDF curve. A variety of judgment methods
and replacement schemes for outlier are adopted in this study, and the purpose is to propose a more reasonable method for

generating IDF curves. This combined method can prevent IDF curve from overestimating the rainstorm intensity in the high
return period. In this study, this method is only compared and verified in a weather station, so it may have some uncertainty
and still needs further verification. This study proposes a suitable method for replacement of the extreme value for the IDF.

For the solution of IDF curve in the future, the previous research mainly includes four methods: (1) After the climate model is
corrected, the frequency distribution of historical and future precipitation is fitted. It is assumed that the ratio of rainstorm
intensity on daily and sub-daily of observation under different return periods does not change in the future. The daily IDF
of the future period is corrected by the ratio to obtain the IDFs of the sub-daily (Tousi et al. 2021); (2) This second

method is similar to the first method. Daily frequency curves for model and observation are calculated. The ratio of daily pre-
cipitation under different return periods of model for the historical and future period is calculated. This ratio is used to obtain
the future IDF by correcting the frequency curve of the observed sub-daily. This method is a simplified processing method

(Zhou et al. 2018); (3) First, the frequency distribution of historical periods is calculated. Quantile mapping is adopted to
establish the non-linear relationship between the rainstorm intensity of modeled daily and the observed sub-daily in the his-
torical period. Estimates of rainstorm intensity for different return periods and durations of the model over the historical

Figure 9 | Results of non-linear fitting of the rainstorm intensity for the quantile of different durations.
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period were calculated. Then, adopting the same method as (2), the estimated value of the modeled IDF of in historical period
is modified to obtain the IDF of the future period. Srivastav et al. (2014) adopts this method to calculate the IDF for the future

period. However, this study has many shortcomings. It does not adopt equidistant quantile mapping (EQM). The non-linear
relationship of the IDF curve established by this study is the relationship between the modeled future daily and the observed
sub-daily. This relationship cannot express the relationship between the IDF of future daily and sub-daily; (4) High-resolution

precipitation for this future period is generated based on the random weather generator (Mirhosseini et al. 2013; Doi & Kim
2021). The method has great uncertainty for the generation of precipitation. The IDF tables for future periods generated by
the models of different weather generators may be different.

Figure 10 | Surface plots of the IDFs of model under the future different durations and return periods. (a) 5-, 10-, 15-min; (b) 20-, 30-, 45-min;
(c) 60-, 90-, 120-, 150-min; (d) 180-, 240-, 360-, 720-, 1440-min.

Table 6 | Optimization results of parameters of DRIF for future period

Scenarios R2 MARMSE MRRMSE(%) A1 C b n

SSP1-2.6 0.998 0.048 4.351 17.597 0.925 19.494 0.750

SSP2-4.5 0.997 0.080 4.795 7.500 4.287 22.388 0.776

SSP3-7.0 0.998 0.045 3.699 22.705 0.638 20.357 0.772

SSP5-8.5 0.998 0.055 4.104 24.647 0.744 21.374 0.768
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The difference between this study and others is that the precipitation of the model is corrected to establish a non-linear

relationship between the model and the observation in different sub-dailys of the historical period. The non-linear relationship
of the maximum precipitation in different years for the historical period is also applicable in the future period, especially for
the near and medium term of the future period. The daily CDF of this future period is calculated using the non-linear relation-

ship established by the historical period to obtain the IDF table of the sub-daily. Therefore, the method established by this
study should be more reasonable. In Figure 10, the IDF of different scenarios in this future period are all larger than the obser-
vation in the historical period. However, Tousi et al. (2021) indicated that the rainstorm intensity of SSP2 of MPI-ESM1-2-HR

for the partial return period of 1440-min is smaller than the observation. Therefore, it may be unreliable to directly use the
corrected climate model to calculate the IDF table for future periods. The choice of the climate model should first be eval-
uated for accuracy in the historical period. The model with the best performance of this accuracy can then be used to

calculate the IDF table for the future period. The study finally calculates three types of DRIFs, which are respectively: (1)
historical periods without outlier processing, (2) historical periods with outlier processing, (3) future periods with different
SSP scenarios. The specification of MOHURD does not mention a requirement for the accuracy of the fit of the DRIF for
future periods. According to the requirements of the accuracy of this observation, this future DRIF does not meet the con-

ditions. However, the error of the future DRIF calculated by this study is very low, which can meet the design
requirements of the infrastructure.

6. CONCLUSION

This research has established an overall framework for calculating DRIF, which includes historical and future periods. This

DRIF is obtained based on the fitting of IDF table. Therefore, this research focuses on the generation of the IDF curve. In the
historical period, the judgment of extreme value for the statistical sample and its influence on IDF curve are analyzed. Based
on the non-linear relationship for different quantile values of between the model and the observation in the historical period,

Figure 11 | Change of equivalent return period of observation under climate change. The duration of the precipitation is respectively (a) 60-
min; (b) 120-min; (c) 180-min; (d) 1440-min.
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the study establishes a solution method for generation of IDF curve in the future period. The conclusions drawn from the

study are as follows:

(i) The optimization accuracy of the parameters of the DRIF by the NSLS algorithm is the best. In the historical period of

Beijing, the variation range of the rainstorm intensity of different durations for the 100-year return period is 0.169–4.124
mm/min;

(ii) For the processing of this outlier, the Z-Score was recommended to judge the outlier in this study. The best alternative to

the outlier is the AVG method, which takes the average of the series in the sample that are larger than the critical value.
The error of SMV in the high return period is still larger. The rainstorm intensity of MVL in the high return period is
obviously smaller. After the outliers are processed, the value of the IDF table is slightly reduced. The percentage of
reduction for IDF varies from �0.1 to �3.1%.

(iii) There is a perfect non-linear relationship between the model and the observation at different quantiles over the historical
period. The projected IDF under the four scenarios for this future period are all larger than the observation.

(iv) Except for the two- and three-year of observation in SSP2-4.5, the return periods of observation in the historical period

are all larger than equivalent return periods in future period.
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