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ABSTRACT

Drought is one of the most common natural disasters, which can cause heavy losses on a global scale. Strengthening the research on drought

identification mechanism has an important guiding role in drought disaster prevention and mitigation. The current drought identification is

mostly static in the process of drought, and there is a problem that the historical evaluation information and the drought prediction infor-

mation are not closely combined, with limited application value. Based on the physical cumulative and recessional effects of drought

events, this paper further uses the Standardized Precipitation Index (SPI) to divide the whole drought process into four stages: accumu-

lation→ outbreak→ reaction→ restoration. In addition, this study proposes a new dynamic identification mechanism based on drought

process, and develops a drought prediction model combining singular spectrum analysis and BP neural network (SSA-BPNN), filling the

gap between scientific research and practical application. Using three drought events in the Yulin region of China as examples for simulation

studies, the results show that the use of the new mechanism can not only improve the application value of the SSA-BPNN model, but also

effectively advance the drought preparation time and resistance level.
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HIGHLIGHTS

• The described drought events process is based on Hurst phenomenon.

• SPI was used to divide the stages of drought process.

• A dynamic identification mechanism of drought events was constructed.

• Case simulation was carried out to verify the drought events dynamic identification mechanism.
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GRAPHICAL ABSTRACT

1. INTRODUCTION

Droughts appear more frequently because of extreme weather in recent years, with increasing losses in economy and lives.
Therefore, drought identification and warning have attracted more attention in recent decades, and identifying drought based

on classification is the most popular approach. From a different field’s perspective, drought can be separated into meteoro-
logical drought (Singh et al. 2021), agricultural drought (Zhang et al. 2021), hydrological drought (Kolachian & Saghafian
2021), and socioeconomic drought (Kundu et al. 2021). The release of drought warning signals is based on drought identifi-
cation, which requires scientific quantitative calculation indices. The identification results obtained through visual

observation or human subjective judgment are unreasonable and inaccurate.
Motivated by improving the accuracy of drought identification, more than 100 indices to quantify the drought severity are

proposed (Ali et al. 2019), as well as the threshold values for classification (Ding et al. 2021). Some frequently used indices

include the Percent of Normal Index (PNI) (Zargar et al. 2011), Z-Score Index (ZSI) (Wu et al. 2001), Reconnaissance Drought
Index (RDI) (Tsakiris & Vangelis 2005), Palmer Drought Severity Index (PDSI) (Palmer 1965), Standardized Precipitation
Index (SPI) (McKee et al. 1993), Standardized Precipitation Evapotranspiration Index (SPEI) (Vicente-Serrano et al. 2014),
and remote sensing drought index etc. Nikbakht et al. (2013) used PNI to analyze the severity of streamflow drought in north-
western Iran, and detected the time trend of the severity of streamflow drought. Sridhara et al. (2021) used ZSI, PNI, SPI and
other drought indices to identify and evaluate the drought situation in Chitradurga district of Karnataka, India from 1967 to

2017, and the evaluation results were used to combat the impact of drought. Marini et al. (2019) investigated the spatiotemporal
drought characteristics in Puglia region, Italy, based on the SPI and RDI from 1960 to 2013, and compared the differences
between these two indices in characterizing drought. Javed et al. (2020) studied drought evolution and spatiotemporal changes
under different land cover types in China from 1982 to 2017 based on two remote sensing indices, Normalized Difference Veg-

etation Index (NDVI) (Tucker 1979) and Vegetation Condition Index (VCI) (Kogan 1990), as well as meteorological index SPI.
Berliana et al. (2021) used PDSI identification to analyze the dry and wet seasons of Java Island. Pramudya & Onishi (2018)
applied SPI to analyze the extent and duration of drought in Tegal City, Indonesia, in 2015. Dar & Dar (2021) applied SPI-3 to

study the temporal and spatial variability of drought in India and its impact on agriculture.
Summarizing these studies, the drought identification indices correspond to the whole drought event, which means the

identification is somehow an after-event evaluation. While drought is a time accumulative process, identifying the drought
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severity in a process is more scientifically valid. Therefore, Yun et al. (2012) studied the drought process from July 2009 to

May 2010 in Qianxinan Prefecture, Guizhou Province, China, and divided the evolution process from emergence to disap-
pearance of drought into six stages. However, in general, studies on drought process identification are limited in literature,
and these studies focus on elements such as the identification of the number of drought processes over a period of time.

For example, Cai et al. (2021) used the regional drought process identification method to effectively identify a total of 75
regional drought processes in North China from 1960 to 2019, and evaluated the drought process from multiple perspectives.
Wang et al. (2021) used the daily temperature and rainfall data from eight meteorological stations in Haixi Prefecture, Qin-
ghai Province from 1981 to 2020, identified 192 drought processes based on Meteorological Drought Composite Index (MCI),

and explored the changing characteristics of their disaster causing factors.
Since current drought identification research is based on historical information, it means that the identification results

cannot really help to decrease the drought losses in pre-warning application. As suggested by Sutanto et al. (2020), one of

the most effective strategies to reduce drought losses is to issue timely and targeted warnings to end users one month to sev-
eral seasons in advance. To achieve this aim, some studies tried to predict the drought indices to provide information for
drought warning. For instance, Shin et al. (2020) used PDSI to build a Bayesian network-based drought prediction model

(BNDF-DP) to provide water resources managers with the ability to flexibly respond to adverse drought risks and formulate
drought mitigation action plans. Altunkaynak & Jalilzadnezamabad (2021) applied PDSI to build a drought prediction model
based on discrete wavelet transform (DWT) combined with fuzzy, K-Nearest Neighbor (KNN) and Support Vector Machine

(SVM) to formulate a drought preparedness plan and mitigation measures in advance. Ghasemi et al. (2021) used Multilayer
Perceptron (MLP) neural network, General Regression Neural Network (GRNN) neural network and Gaussian process
regression to three machine learning models to forecast the annual drought index SPEI12 of 79 Iranian weather stations
1–3 months in advance, which greatly helped the agricultural sector to reduce the negative effects of drought. Nasir &

Hamdan (2021) used SPI6 and SPI24 to build a Recurrent Neural Network (RNN) model to predict the degree of drought
in Iraq from 2020 to 2030, and played an important guiding role in Iraq’s future water resources planning and management.
However, these drought predictions could only provide some information for an issued time period, and is time constant

since it did not consider the at time information, for instance, the sudden storm or the influence from the drought response
actions in this process.

This study provides a new solution to the problems of low reliability and flexibility for early stage drought warning and high

time delay of drought response in drought management. In this paper, the whole drought process is divided into four stages by
using SPI, and a new dynamic identification mechanism based on the division of drought stages is proposed, which can effec-
tively advance the preparation time for drought response. In addition, the new mechanism closely integrates historical
evaluation information, real-time feedback information and predicted future information, to closely track the development

of the drought, and take various drought relief actions in time to reduce the economic losses and negative effects.

2. METHODS

2.1. Study area and data

This paper selects Yulin City in northern Shaanxi, China as the research area. Yulin City is located in the northern part of

Shaanxi Province, between 107° 280–111° 150 east longitude and 36 °570–39 °350 north latitude. The area is 385 km long
from east to west and 263 km wide from north to south, covering a total area of 43,578 km2, with an average annual rainfall
of 407.7 mm and very scarce water resources per capita. Figure 1 shows an overview of the entire study area.

The data is the rainfall data from 1955 to 2019 at Yulin Meteorological Station (East longitude: 109 °780, North latitude:
38 °270), from the National Meteorological Information Center (NMIC) (available at http://data.cma.cn/). In addition, the
rainfall data has undergone strict quality inspection by NMIC before release, including the reliability, homogeneity and con-
sistency of the data, and the data quality performance is excellent.

The inter and intra-annual variation of rainfall in Yulin from 1955 to 2019 are shown in Figure 2. From Figure 2(a), the
average rainfall in Yulin from 1955 to 2019 was 407.7 mm, with the largest annual rainfall in 2016 (724.9 mm) and the smal-
lest annual rainfall in 1965 (143.3 mm). The extreme value ratio is as high as 5.06, indicating its high inter-annual variability in

rainfall. Judging from the change trend, there is no obvious stage change trend of rainfall in Yulin, with a fluctuating decreas-
ing trend before 2000 and a fluctuating increasing trend after 2000. The overall trend is increasing. From Figure 2(b), the
annual distribution of rainfall in Yulin is extremely uneven, mainly concentrated in summer, accounting for 61.9% of the
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Figure 1 | Location of study area and Yulin meteorological station.

Figure 2 | Inter-annual and intra-annual variation of rainfall in Yulin City from 1955 to 2019. (a) Variation trend of annual rainfall in Yulin City
from 1955 to 2019. (b) Average monthly rainfall in Yulin City from 1955 to 2019.
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annual rainfall. The average rainfall in August is the largest (113.91 mm), accounting for 28.12% of the annual average rain-

fall; the average rainfall in December is the smallest (1.15 mm), accounting for only 0.28% of the annual average rainfall.

2.2. Process description of drought events

Drought is a gradual disaster, which usually lasts for months or even years, and its essence is a long-term physical accumu-

lation and restoration process. Assuming a unit of days, the drought degree of each day from the beginning to the end of a
drought event can be expressed as the time series D ¼ (d1, d2, � � � , dn). Therefore, we can do the analysis at both micro
and macro scales, and the flow chart is shown in Figure 3.

First, the analysis is done on a micro scale, by considering each day of the drought event as an impact factor and combining
it with the two adjacent days before and after to form a module of three consecutive days. Then the physical evolution process
of the drought event from the beginning to the end is shown in Figure 4.

From Figure 4, in the module (day 1) formed by d1, the drought situation of the day (d1) was not only affected by the

accumulation and decline of the drought on the previous day (d0), but also affected the change trend of the drought on
the following day (d2). When the end of the first day enters the module (day 2) formed by d2, due to the influence of clustering
behavior (or else Hurst phenomenon by Hurst 1951; Tong et al. 2018) from drought, the interaction relationship between d1,
d2, and d3 in the ‘day 2’module is consistent with that in the ‘day 1’ module (Dimitriadis et al. 2021). This interaction

Figure 4 | Schematic diagram of the daily time scale evolution of drought events.

Figure 3 | Flow chart of drought event process analysis.
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continued to the module (day n) formed by dn on the last day of drought. This characteristic of drought is actually the well-

known Hurst phenomenon (Habib 2020). It reflects the result of a long series of interrelated events. What happens today will
affect the future, and what happened in the past will affect the present (Shi et al. 2021). The periodic continuous physical
changes of drought on the time axis can be described as the process of drought events.

Secondly, from the macro scale analysis, all the points in the time series D are connected in sequence to form a complete
timeline of the occurrence and development of drought events. By collecting some typical drought events in history we find
that the duration and extent of drought varies from one drought event to another, and it is not possible to quantify the course
of all drought events in a uniform manner. However, all drought event processes can be roughly divided into two parts: cumu-

lative rise and restoration fall. On this basis, this article further divides these two parts into four stages: accumulation period,
outbreak period, reaction period, and restoration period, and this drought event timeline composed of time series D can be
represented by Figure 5.

The horizontal axis in Figure 5 is time, and the unit can be days, 10 days, months or even years, and the vertical axis is the
degree of drought. Points a, b, c, d, e, and f represent the identification work done throughout the drought event. The points t1,
t2, and t3 represent the turning time points between the four stages, and these three turning points (t1, t2, and t3) can be deter-

mined according to the calculation results of the drought index. This study selects the drought index SPI (McKee et al. 1993)
as an example for illustration. SPI is widely used in drought analysis because of the characteristics of simple calculation data
and multiple time scales (Eris et al. 2020). The SPI formula is given by Equation (1):

SPI ¼ S
t� (c2tþ c1)tþ c0

((d3 þ d2)tþ d1)tþ 1:0
(1)

where the expression form of t is t ¼ (ln(1=P2))1=2, P is the cumulative probability of rainfall on a given time scale, and when
P. 0.5, P¼ 1.0�P and S¼ 1; when P� 0.5, S¼�1.

In the equations above, c0¼ 2.515517, c1¼ 0.802853, c2¼ 0.010328, d1¼ 1.432788, d2¼ 0.189269 and d3¼ 0.001308.
According to the existing related research (Bouaziz et al. 2021) and the research on SPI index in Yulin area (Kong et al.

2021), the SPI drought classification standard is shown in Table 1.

2.2.1. Drought accumulation period

The data used in the current SPI calculation is the monthly accumulated rainfall, and most of them are identified and calcu-
lated once at the end of each month, that is, the frequency of drought identification is on a monthly scale. During the period
before point t1, the SPI value obtained by the identification and calculation for consecutive months showed a continuous

downward trend, but the minimum value did not drop below �0.5, and the drought degree was still close to the normal
range. Until the next month after the time node t1 is identified, the SPI value obtained has dropped below �0.5, and at

Figure 5 | Schematic diagram of the division of the whole process of the drought event.
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this time it has risen from no drought to drought. Therefore, the t1 node is the minimum point where the SPI continues to
decline and does not fall below �0.5. The stage before the point t1 is called the accumulation period of drought.

2.2.2. Drought outbreak period

After several months of accumulation of drought, the quantitative change finally caused the qualitative change. The SPI value
will rapidly drop to light drought or even more severe within 1–2 months after point t1. Therefore, point t2 is the first point

after point t1, and the period t1-t2 is called the drought outbreak period.

2.2.3. Drought reaction period

Drought is a long-term process after all, the SPI value of most drought events will fluctuate up and down after point t2, and
then enter a full-scale recession. Point t3 is the turning point when SPI rises above �0.5 for the first time during the full-scale
recession. The period t2-t3 is called the drought reaction period.

2.2.4. Drought restoration period

A few months after point t3, the SPI rises and returns to a normal state. This stage is called the restoration period of the
drought. At this point, a drought event is completely over, human production and life are on the right track again, and the
impact is gradually eliminated.

2.3. Dynamic identification mechanism based on drought process

2.3.1. Identification and early warning mechanism based on process

It can be clearly seen from Figure 5 that the drought identification at each stage is based on the drought process, and there are
relatively static points on the process line. Therefore, the advantage of the division of the drought process is that through

identification, the current stage can be clarified and early warning signals can be issued at the beginning of the stage to
carry out corresponding response actions. For example, in the accumulation period, it is necessary to prepare a drought
response plan and develop a drought prediction model; in the outbreak period, we should quickly respond to the drought,

transfer rescue materials nearby, and give priority to the disaster victims with the most serious water shortage. At the
same time, the frequency of monitoring and identification should be appropriately increased to facilitate timely follow-up
rescue work. During the reaction period, the deployment of emergency water sources, artificial rainfall, reservoir dispatching

and other water resources should be done well, the effectiveness of rescue measures should be evaluated, and the rescue plan
should be adjusted in time; During the restoration period, it is necessary to do a good job in post-disaster reconstruction and
material replenishment, sum up the experience of drought relief, and organize the resumption of work and production.

2.3.2. Dynamic identification mechanism

In order to give full play to the role of drought identification, this research builds a dynamic identification mechanism that

considers drought prediction and feedback information on the basis of information data collection and drought index calcu-
lation, so as to realize the close application of historical evaluation information and prediction results. On the one hand, the
occurrence of drought can be identified in advance based on the constantly updated basic information during identification,

Table 1 | SPI drought classification standard

Classification SPI

Extremely wet (EW) SPI. 2.0

Very wet (VW) 1.50,SPI� 2

Moderately wet (MW) 1.0,SPI� 1.50

Near normal (NN) �0.5,SPI� 1.0

Light drought (LD) �1.0,SPI��0.5

Moderate drought (MD) �1.50,SPI��1.0

Severe drought (SD) �2.0,SPI��1.50

Extreme drought (ED) SPI��2.0
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on the other hand, it can effectively obtain the emergencies between two adjacent identifications and make a quick response.

The most critical link in the mechanism is rolling identification and early warning, as shown in Figure 6.
First of all, the drought monitoring department uses advanced data collection methods to obtain the latest basic data such

as rainfall, evaporation, and soil moisture during daily identification work. Secondly, select appropriate drought indicators for

the monitored drought types, analyze and calculate the current drought degree, and report the identification results to the
Drought Relief Headquarters. Then, the Drought Relief Headquarters formulated drought management plans and action
plans based on the reported identification results and issued them to the front-line departments for implementation. Finally,
the drought monitoring department evaluates the effects of the collected feedback from water users and emergencies, and

decides whether it is necessary to immediately carry out drought prediction and carry out the second round of identification
work.

2.4. Prediction model development

Machine learning algorithms have been recognized as an effective tool for modeling in the complex hydrology field. The most

common algorithm is artificial neural network (ANN). The neural network model with back propagation is used in drought
identification and prediction in this paper. However, when SPI time series is used as input, because it is a typical nonlinear
and unstable sequence, we use singular spectrum analysis (SSA) to pre-process it and extract the hidden information in the

sequence, so that the prediction model can better capture it.

2.4.1. Singular spectrum analysis (SSA)

SSA is a new rising method in recent years to study nonlinear time series data (Yu et al. 2017). It can effectively mine the
signal information such as periodicity, long-term trend and noise hidden in time series, so as to analyze the structure of

time series and further use it for prediction. Assuming that there is a set of one-dimensional time series (x1, x2, � � � xN ), the
specific steps for performing SSA on it are as follows:

(1) Embedding. Choosing an appropriate window length L (1,L,N) and transform the one-dimensional time series into a
multidimensional time series Xi ¼ (xi , xiþ1, � � � , xiþL�1)

T , i ¼ 1, 2, 3, � � � , K , where K ¼ N � Lþ 1. Combining all the
multidimensional series to obtain the trajectory matrix X as in Equation (2):

X ¼ [X1:X2: � � � :XN ] ¼ (xij)
L,K
i,j¼1 ¼

x1 x2 x3 � � � xK
x2 x3 x4 � � � xKþ1

..

. ..
. ..

. . .
. ..

.

xL xLþ1 xLþ2 � � � xN

2
6664

3
7775 (2)

The size of the window length L generally does not exceed 1/2 of the length of the one-dimensional time series. If the

approximate period of the one-dimensional time series can be determined, L is preferably selected according to an integer

Figure 6 | Schematic diagram of rolling identification warning of drought.
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multiple of its period. In this paper, the size of L is set to 12, so the original SPI-12 time series will get 12 components after

SSA.

(2) Singular Value Decomposition (SVD). Calculating XXT and obtain its L eigenvalues l1 � l2 � � � � � lL � 0, U1, � � � , UL

are their corresponding orthogonal eigenvectors, and d ¼ max{i:li . 0}. If we let Vi ¼ XTUi=
ffiffiffiffi
li

p
(i ¼ 1, � � � , d), then the

singular value decomposition of the trajectory matrix X is as Equation (3):

X ¼ Y1 þ Y2 þ � � � þ Yd (3)

where Yi ¼
ffiffiffiffi
li

p
UiVT

i represents the ith SVD component. In addition, these eigenvalues mainly indicate the importance of
each SVD component to the original signal, therefore, the importance of the SVD component to the original signal

decreases sequentially as the order increases.
(3) Grouping. Dividing the index set I ¼ {1, � � � , d} into several groups I1, � � � , Im, and sum the matrices Yi in each group. The

mathematical expression of the result is as Equation (4):

X ¼
Xm

k¼1

XIk , where XIk ¼
X
i[Ik

Yi (4)

(4) Reconfiguration. Using the diagonal mean method to calculate the diagonal mean of the matrix XIk , and convert the
matrix XIk into its corresponding time series data. Each set of time series data presents the hidden properties of the orig-
inal series, such as long-term trends, periodicity, noise signals, etc. Then the value of the original time series is equal to the

summation of each characteristic decomposition sequence, as shown in Equation (5).

xn ¼
Xm

k¼1

f(k)n , n ¼ 1, 2, � � � , N (5)

where the sequence f(k)n corresponding to each k is the diagonal mean of the matrix XIk .

2.4.2. Back propagation neural network (BPNN)

BPNN is a multi-layer feedforward network trained by the error back-propagation algorithm, and it is one of the most widely
used neural network models. The BP network can learn and store a large number of input-output pattern mapping relation-

ships without revealing the mathematical equations describing this mapping relationship in advance. Its neurons are arranged
in layers, consisting of input layer, hidden layer and output layer, of which the hidden layer may have multiple layers (Liu
et al. 2020). This paper uses a three-layer BPNN, and its network structure is shown in Figure 7.

Each neuron in the input layer is responsible for receiving input information from the outside world and passing it to each
neuron in the hidden layer. The hidden layer is the internal information processing layer, responsible for information trans-
formation. The output layer receives the information transmitted by the hidden layer, and after further processing, outputs the

information processing results to the outside world, and completes a learning forward propagation process. When the actual
output does not match the expected output, it enters the back-propagation stage of the error. The error is back-propagated
layer by layer through the output layer, correcting the weights of each layer in an error gradient descent manner, towards

the hidden and input layers.

2.4.3. The flow of SSA-BPNN model prediction

The SSA-BPNN prediction model is a new type of hybrid prediction model, and its specific prediction process is shown in
Figure 8. The prediction process is roughly divided into the following three steps:

(1) The original time series of the observed SPI-12 can be obtained through the measured monthly rainfall data.
(2) Selecting the appropriate window length (L¼ 12) and performing singular spectrum analysis on the original SPI-12 time

series to extract the hidden information in the original time series and reduce the influence of noise.
(3) The 12 components obtained by singular spectrum analysis are respectively brought into the BPNN model for prediction,

and then the predicted values of the 12 components are summed to obtain the predicted value of SPI-12.
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3. CASE STUDY AND RESULT

In this study, three drought events in recent years in Yulin, northern Shaanxi, China, were taken as examples, and the
dynamic identification mechanism based on the drought event process was used to simulate them respectively.

Case Simulation 1 (May 2005 to July 2007):

Figure 7 | Three-layer BP neural network structure diagram.

Figure 8 | SSA-BPNN model prediction flow chart.
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Drought accumulation period: When the Yulin Hydrological Bureau did daily drought identification calculations at the end

of July 2005, the SPI-12 obtained was greater than �0.5, which was within the normal range and no drought occurred. How-
ever, through the feedback channel of the identification mechanism, the Meteorological Department informed that next
month’s rainfall will be much lower than the same period, and there may be droughts. Therefore, the Hydrological

Bureau used the prediction model SSA-BPNN to predict SPI-12 of Yulin Meteorological Station from May 2005 to July
2007. The model prediction results are shown in Figure 9.

From Figure 9, the Yulin Hydrological Bureau’s prediction of SPI-12 for August 2005 at t2 is �1.1, indicating that a mod-
erate drought will occur in August. The Bureau of Hydrology immediately issued a drought warning signal and reported the

results to the Drought Relief Headquarters to prepare a drought relief plan. According to the method of determining the
drought stage proposed in the second section of this article, it can be concluded that the accumulation period of this drought
event is from May 2005 to July 2005. During this period, SPI-12 showed a continuous downward trend, and the minimum

value appeared at t1 of �0.04.
Drought outbreak period: In August 2005, the observed value of SPI-12 in Yulin was between �1.5 and �2.0, indicating a

severe drought in the area. However, according to the drought identification and warning results reported by the Hydrological

Bureau, the Drought Relief Headquarters had made arrangements in advance, and had taken emergency measures to start
rescue operations at the beginning of the month. From Figure 9, the predicted and actual values of SPI from July 2005 to
August 2005 have the same trend, and both have increased from no drought to drought. Therefore, the outbreak period of

this drought event is August 2005. During this period, the Drought Relief Headquarters not only called in nearby materials,
but also organized an expert consultation meeting to comprehensively study and judge future drought trends and prepare for
long-term drought relief.

Drought reaction period: At the beginning of September 2005, after consultation with experts, a new action plan was for-

mulated and issued to all action departments involved in the rescue. After the water users received relevant rescues, they
would feed back to the rescue operations department whether the drought was alleviated. At the same time, new problems
will also arise during the rescue period, such as sudden rainstorms, whether the use of emergency water sources is effective,

and whether the number of artificial rainfall is sufficient. The Hydrological Bureau collects and evaluates the feedback infor-
mation and new problems through the identification mechanism. On the basis of the evaluation results, continue to carry out
rolling identification and early warning, and continuously report the newly identified results to the drought control

Figure 9 | Drought prediction model results from May 2005 to July 2007.
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headquarters to ensure that the deployment of water resources can keep up with the development of drought. In July 2006,

after 11 months of ups and downs, the drought finally entered a full recession. From Figure 9, the prediction results show that
SPI-12 has been rising in general since July 2006, and it rose to �0.48 at t3 in May 2007, returning to normal. Therefore, the
period from September 2005 to May 2007 is the reaction period for this drought event.

Drought restoration period: After more than a year of drought response, the drought completely ended in May 2007. There-
fore, the restoration period of this drought event was June 2007 to July 2007. During these two months, the relevant
departments organized the aftermath, guided the supplement of emergency supplies, promoted the recovery of production
and life after the disaster, carried out post-disaster work evaluation, summed up experience and lessons, and put the files

in the database to provide reference for subsequent drought relief. At the same time, the Hydrological Bureau restored the
normal frequency of drought identification to ensure the reasonable allocation and use of manpower and material resources.

Case Simulation 2 (November 2010 to November 2011) and Case Simulation 3 (November 2014 to October 2015):

In cases 2 and 3, the SPI-12 observed values of the Hydrological Bureau for several consecutive months showed a continu-
ous downward trend. Therefore, the Hydrological Bureau judged that there would be a drought, so the drought prediction
work was started in time, and the prediction results of the SSA-BPNN model for cases 2 and 3 are shown in Figures 10

and 11, respectively.
From Figure 10, the SPI-12 predicted by the Hydrology Bureau at t2 (April 2011) was �0.56, while the SPI-12 at t1 (March

2011) was �0.25. Therefore, according to the method for determining the drought stage proposed above, the drought accumu-

lation period of case 2 is from November 2010 to March 2011. After the drought event, the follow-up actions in case 2 were
the same as in case 1, so according to Figure 10, it can be seen that the drought outbreak period of case 2 was April 2010. The
predicted SPI-12 at t3 (August 2011) was 0.22 and the subsequent SPI-12 values were all greater than �0.5, marking the end
of this drought event. From this, it can be obtained that the drought reaction period of case 2 is from May 2011 to August

2011, and the drought restoration period is from September 2011 to November 2011.
Using the same reasoning, according to Figure 11, the duration of each stage of case 3 is directly given. The drought

accumulation period was from November 2014 to May 2015, the drought outbreak period was from June 2015, the drought

reaction period was from July 2015 to August 2015, and the drought restoration period was from September 2015 to October
2015.

In the simulation process of cases 2 and 3, the drought reaction period and drought restoration period judged by the pre-

diction results have a one-month error compared with the actual process. This is mainly because the sudden increase in the

Figure 10 | Drought prediction model results from November 2010 to November 2011.
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cumulative rainfall of the month has a decisive impact on the relief of the drought, which makes the SPI-12 value rise too fast,
resulting in the prediction model failing to capture the sudden changes in time and producing certain prediction errors. How-

ever, this error has little effect on a drought that lasts for more than one year, because the drought occurrence and
development trend we simulated and plotted in advance is highly consistent with the actual situation, so effective response
measures have been carried out at each stage.

4. DISCUSSION

Compared with case 1, cases 2 and 3 have shorter duration and less degree of drought, which verifies the point of Section 2
that the duration and intensity of drought events are difficult to quantitatively express uniformly. However, they all experience
two main processes of cumulative rise and restoration fall. On this basis, the research on the division of drought stages has

high application value. In the past, the research on the division of drought stages basically started after the occurrence of
drought. As a result, most of the time we can only passively resist drought, and even no effective measures were taken
after the drought. The identification and early warning of drought lags behind the development of drought, which brings a

lot of unnecessary economic losses. Bandyopadhyay et al. (2020) pointed out that most of the existing drought policies are
passive in nature. In addition, the guidelines for each stage of drought management must be strong specific drought policies
proposed by the country, and the focus of drought policy should be on preparation for future droughts of any intensity, fre-

quency and duration. An important contribution of this paper is that the proposed four-stage division of drought includes the
new concept of drought accumulation period, which can effectively advance the preparation time for early drought resistance
and do sufficient mobilization work, thereby changing passive drought resistance to active drought resistance. At the same
time, a clear division of drought stages is more conducive to the implementation and adjustment of drought policies.

In addition, Brockhoff et al. (2022) used a new mechanism-based approach to analyze the future of the Dutch drought gov-
ernance system, and argued that multifaceted research on mechanisms can accelerate and guide future management of
drought. The new dynamic identification mechanism based on the drought process proposed in this paper can combine

the historical evaluation of drought with real-time feedback information, closely track the development trend of drought
and improve the timeliness of drought action. Moreover, the maximum value of such a high-precision prediction model as
SSA-BPNN can be fully utilized to provide new management ideas and operation methods for comprehensive drought

Figure 11 | Drought prediction model results from November 2014 to October 2015.
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disaster fighting, and solve the problem of poor integration between scientific research and practical application. This is rarely

mentioned in the previous drought research.

5. CONCLUSION

From the drought management expectation, in this study, the drought event is identified as a process according to the SPI
value, and the warnings vary with time by considering the prediction and the influence from the drought response actions.
Validated by the application case study, the following conclusions can be achieved:

(1) Considering drought as a process rather than a whole event could capture more valuable information for drought
identification;

(2) Drought warning should change with timely updated conditions in the drought process, rather than only the historical
information;

(3) The division of drought stage can effectively advance the preparation time for drought response and help to order the

reactions in drought responses.

The above conclusions are deduced based on the content of current study, and more work could be done in the future. Such

as:

(1) In the selection of drought indexes, we used SPI in this article. In the future, we will try more drought indexes to study the

drought process. In particular, some multi-variate standardized indexes, such as PDSI, SPEI, etc., can be used to assist in
judging the different stages of drought events.

(2) Hurst index has been proved to be effective in improving drought prediction level and contributing to the trend analysis of
the drought process. In subsequent research, we will try to consider introducing the Hurst index into the division of

drought process and the construction of a drought prediction model, to further improve its rationality and reliability.
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