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ABSTRACT

Groundwater is an essential source to supply water for various sectors. This paper aimed to predict the quantitative and qualitative changes

in groundwater over time and to evaluate the efficiency of different modeling methods. This study is based on three steps. In the first step,

quantitative and qualitative piezometers were clustered by the Growing Neural Gas Network (GNG) method, and the central piezometer of

each cluster was used on behalf of each cluster. In the second step, four different Artificial Intelligence (AI) models were applied, namely

Artificial Neural Network (ANN), Adaptive Neuro-Fuzzy Inference System (ANFIS), Support Vector Machine (SVM), and Emotional Artificial

Neural Network (EANN). As a post-processing approach three different ensemble methods were used: simple average ensemble (SAE),

weighted average ensemble (WAE), and nonlinear neural network ensemble (NNE). In the third step, the outputs of single AI models were

used to enhance the evaluation results. Therefore, the results demonstrate that the NNE led to reach the better performance for three

GWL, TDS, and TH parameters up to 37, 29, and 23% on average, respectively. Study results will lead to the improvement of AI applications

in groundwater research and will benefit groundwater development plans.
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HIGHLIGHTS

• Artificial intelligence methods were used to predict quantitative and qualitative changes in groundwater.

• The GNG method was used for clustering.

• Ensemble artificial intelligence-based modeling was employed to enhance the individual modeling results.

• The results show better performance when using ensemble artificial intelligence-based modeling.
1. INTRODUCTION

Throughout the world, groundwater is a major source of fresh water for many uses like drinking, agricultural and industrial
purposes. According to Gintamo et al. (2022), population growth and increased groundwater consumption pose considerable
threats to aquifers. Today, the development of communities living in semi-arid areas, where food production is tightly con-
trolled by the amount and distribution of rainfall and groundwater, depends on people’s effort to manage limited water

resources. Thus, it can be seen that in the near future, the interaction between the growth of urbanization and the application
of an efficient management method to conserve water resources will continue. Due to costly and time-consuming solutions to
groundwater problems and even in many cases the impossibility of a complete solution, analysis of these valuable resources is

vital.
Neural networks have also been applied successfully for studies of quantitative and qualitative changes in groundwater.

Groundwater modeling is complicated by the influence of natural and/or human factors such as complexity, nonlinearity,

multi-scales, and randomness, all of which affect quantitative and qualitative assumptions (Nourani et al. 2014). These
specific models cannot provide explicit equations and physical relationships which are not easily predictable. So in complex
phenomena, black-box models are generally used. The efficiency of the model is strongly influenced by the quality and
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quantity of input and output data. Semi-distributive or conceptual models are the interface between the above two models

(Nourani 2017). The use of Black-box AI (Artificial intelligence) approaches has gained popularity in current years because
of its good performance, specifically [i.e. Artificial Neural Networks (ANN), Adaptive Neuro-Fuzzy Inference Systems
(ANFIS), Support Vector Machines (SVM), and, Emotional Artificial Neural Network (EANN)] which are capable of hand-

ling complex phenomena have become prominent in water resource issues. The artificial neural network has been used as a
different approach to estimating aquifer water quality (Maier & Dandy 1996). Moreover, Derbela & Nouiri (2020), employed
ANN models to predict the dynamic changes in piezometric levels in Nebhana aquifers. Correlation analysis demonstrated
that the piezometric levels were toughly influenced by monthly rainfall, evapotranspiration, and initial water table level, Also

this study revealed that ANN models can be adopted for future groundwater prediction to estimate trends in piezometric
levels. Dehghani & Torabi Poudeh (2022) concluded that ANN’s performance can be enhanced effectively through combi-
nation with other models. During another study analyzing groundwater quality, Shwetank & Chaudhary (2022) used four

ANFIS models to identify the best one. The results, however, determined that all four models were dependable. SVM is
another AI-based model for reliable estimation of groundwater level and quality. This method tries to minimize the operation
risk. Nordin et al. (2021) in a comprehensive study, compared four widely used AI methods [ANN, ANFIS, EA (evolutionary

algorithm), and SVM] for modeling and forecasting groundwater quality. As a result of their generalization and faster optim-
ization, EA, and SVM have surpassed ANN and ANFIS in predictive modeling applications. Hydrological studies have been
successfully implemented using EANN, a novel version of the classic ANN model. As part of their research in the area of

modeling rainfall-runoff in watersheds, Nourani (2017) applied an emotional Artificial Neural network method. He predicted
the runoff level by two methods of modeling named EANN and FFNN using the parameters of two catchments with different
climate conditions and the results showed that EANN can have 13 and 34% higher efficiency in terms of training and vali-
dation, respectively. In addition, in the field of GWL, another study was conducted to assess the efficacy of the EANN model

for forecasting one month in the field of GWL.
Today, soft computing tools and artificial intelligence, by accepting that the results can be inaccurate in some parts and by

focusing on the human mind and nature, are used to model nonlinear hydraulic and hydrological processes. But using different

models to solve a specific issue may lead to distinct results. It is obvious that some models will show higher performance than
other models. in other words, no single model is better than another for the analysis and study of hydrological processes
(Shamseldin et al. 1997). Using a collection of individual models in combination, the ensemble method can provide results

with high predictive accuracy and low errors using the advantages of all models at the same time. Sharghi et al. (2019) used
the ensemble method and a 19% increase was gained by using these models. Nadiri et al. (2015) incorporated four models includ-
ing a feed-forward neural network (FFNN), backpropagation neural network, ANFIS, and, SVM to predict GWL inMeshgin plain.
Despite the ability of all models, the results show the superiority of the ensemble method over any of the individual AI models.

Undoubtedly, the best way to understand the behavior of an aquifer system is through long-term research for each region.
Therefore, with data mining and clustering tools, indicators can be obtained with acceptable accuracy, based on which
necessary decisions can be made regarding aquifer management (Al-adamat et al. 2003). Classifying different objects has

always been one of the most important human activities and this is part of the learning process that explains why cluster
analysis in many cases is considered a branch of cognitive pattern and artificial intelligence. One of the problems in studying
an aquifer through AI methods is the number of observation wells in the aquifer, the analysis of each one is time-consuming

alone. One of the statistical methods for presenting the distribution map and quantitative and qualitative distribution of sev-
eral parameters in groundwater aquifers is the use of cluster analysis. The idea of clustering is to collect objects that are similar
with the least possible difference between them in a set of specific groups (Kim et al. 2020). Clustering is a way of categorizing

multidimensional inputs into homogenous groups, which can be extracted from unlabeled inputs to form clusters with the
greatest degree of similarity within groups and the greatest degree of dissimilarity between groups (Nourani & Kalantari
2010). There are several clustering methods commonly used, e.g. k-means (Hsu et al. 2002) and C-means (Ayvaz et al.
2007) which are typically based on the number of clusters (Nourani et al. 2013). Recent works on unsupervised clustering

using self-organizing (SOM) maps have been able to find many applications in hydrology (e.g., Hsu et al. 2002; Kalteh
et al. 2008; Toth 2009; Nourani & Parhizkar 2013; Nourani et al. 2013). SOM-based Growing Neural Gas Network
(GNG) algorithms allow for the learning of complex relationships without knowing any prior knowledge. A topology is cre-

ated by GNG using the competitive Hebbian tutorial. There is a limit to how many data points can be clustered using most
existing techniques, but SOM and GNG provide a solution by quantifying the data, and despite the similarities between the
two methods, GNG has been proven to be the best option thus far (Ventocilla & Riverio 2020; Ventocilla et al. 2021). This
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framework has been used in a variety of fields as a tool for multipurpose analysis specifically because of its high level of flexi-

bility for recognizing complex patterns (Shi et al. 2014; Viejo et al. 2014; Santos & Nascimento 2016; Abdi et al. 2017).
Considering the research background and the ability of the GNG method in clustering and pattern recognition also, being
aware of no groundwater investigations done with this method at this time, in this article, the mentioned method has

been hired for clustering groundwater piezometers. Due to the successes achieved in hydrological studies using black-box
models, the focus of this research is on investigating the efficiency of AI methods to predict and investigate changes in ground-
water parameters. On the other hand, the vacancy of a deep and comprehensive study that can evaluate the ability of
mentioned and especially ensemble methods, on the groundwater of Ardabil plain is felt. Groundwater studies have not pre-

viously employed the GNG clustering method. Also, this report is the first to combine four AAN, ANFIS, SVM, and EANN
techniques in the field of groundwater.

In this study, the GNG clustering method was used to investigate fluctuations in groundwater level and quality parameters

such as TDS and TH to reduce the volume of inputs and classify piezometric stations. A primary objective of the study is to
examine how the ANN, ANFIS, SVM, and, EANN techniques perform in groundwater studies. In this regard, four single AI-
based models, which are the feed-forward neural network (FFNN), adaptive neuro-fuzzy inference system (ANFIS), support

vector machine (SVM), and emotional artificial neural network (EANN) were used for groundwater parameters modeling.
Thereafter, the results of individual models were combined using three different ensemble methods named Simple Average
Ensemble (SAE), Weighted Average Ensemble (WAE), and Neural Network ensemble (NNE) to improve the predictive per-

formance. In general, the effectiveness of combined models was compared to individual models.
2. MATERIALS AND METHODS

2.1. Study area and data Set

Ardebil plain (38°03’–38°27’N and 47°55’–48°20’E) is situated in north-western Iran and covers an area of 990 km2. In

Figure 1 the study area is shown geographically. The wettest and driest months are May and August, respectively. The
Figure 1 | Study area.
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GWLs are analyzed with 39 piezometers on the plain. The monthly GWLs information is available for quantitative analysis.

The chemical properties of the available data include the sum of the major cations and anions present in the water, the elec-
trical conductivity (EC), the sodium adsorption ratio (SAR), and the total hardness (TH), and the total solid dissolved in water
(TDS). Groundwater quality variables are measured twice a year in wet and dry months. Data used for the application covers

20 years (1996–2019) of observations, from which 70 percent are used for training and the rest for validation randomly. All
data used in this study were obtained from Ardabil Regional department.

AI-based modeling relies on the careful selection of inputs to produce optimal results. Thus, to increase modeling efficiency
and optimize the input layer, quantitative and qualitative data of groundwater were estimated and, clustered using the GNG

method. Lately, studies proved that the highest correlation between the present groundwater level values was with its pre-
vious values. According to this explanation based on a trial and error procedure, previous time steps (t� 1, t� 2, …) until
lag 6 were considered as inputs, while the current groundwater level (t) was the output of the model. The proposed method-

ology takes three steps into account. The spatial clustering method GNG was employed, first, to classify quantitative
piezometers using the GWL parameter, and then to classify qualitative piezometers based on the GWL and quality par-
ameters. It is noteworthy that the input data were mapped to a value between �1 and 1 before clustering. In step 2, first,

in the qualitative field, each cluster was fitted with data from the central piezometer. Comparing different input candidates
and the output of selecting dominant inputs and lags of the model using Mutual Information (MI) showed that groundwater
quality parameters (TDS and TH) were primarily influenced by variations in (So4, Cl, Ca, Mg, TDS, TH) and GWL fluctu-

ations. Then, the dominant inputs for quantitative and qualitative analysis of groundwater in each cluster are imposed into
the ANN, ANFIS, SVR, and EANN, respectively. In the third step, to improve the obtained results of modeling, the outputs
of individual models were considered as the dominant input of the combined model. The following sections contain a sum-
mary of the results obtained. As a result, in this study, three ensemble methods were used to boost single model accuracy.

Figure 2 depicts the ensemble approach schematically.

2.2. Growing neural gas network-GNG

The GNG algorithm can be considered as one of the most powerful ways to train unsupervised and incremental neural net-

works as it can build and update the network’s structure without depending on size and shape information. This method
determines the structure of the data by creating a topological map. The formation of the algorithm begins with the creation
of a diagram consisting of two nodes, each node is created using a random instance. During this process, the position of the
nodes evolves so that the node position vectors are updated to model the data topology, and then large structures are subdi-

vided into smaller structures, each of which forms a cluster shows (Subba Rao 2012). This network is primarily for adding
new nodes to a small primary network (Cirrincione et al. 2012). The GNG neurons compete for alignment with the input
data set to choose the most similar ones (Morell et al. 2014).

2.3. ANN

Part of the inspiration for this network comes from the way the biological neural system processes data and information, to
learn and generate knowledge. One of the outstanding features of the artificial neural network is its ability to be used in any
Figure 2 | Schematic view of the processes.
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case that requires learning linear and nonlinear mapping. ANN must first know what it does not know, that is being taught

first, and then expect to be able to solve the problem in this way. Generally, artificial neural networks are comprised of three
layers, the input, the middle and, the output layers. Several processing elements are found in each layer known as neurons. As
each neuron receives an input signal, it converts it into an activated value by using an activation function called a sigmoid.

The observational data are given to the input layer and then the input data are processed in the middle layer, and finally, the
values predicted by the neural network are obtained from the output layer (Nourani et al. 2011). In comparison with all other
methods, feed-forward and back-forward propagation neural networks trained using Levenberg–Marquardt (FFNN-LMB) are
the most practical and useful. In terms of predicting groundwater levels, these two approaches were more effective and, suc-

cessful (Daliakopoulos et al. 2005; Sujatha & Kumar 2010; Chitsazan et al. 2013).

2.4. ANFIS

This system was first introduced in 1993 by Jang (Jang 1993). To form this system, two structures of neural networks and a

fuzzy system have been combined. This method uses each method’s advantage to increase decision-making power in con-
ditions of uncertainties (Abraham 2005). The analysis operation is performed by the fuzzy inference operator. Various
fuzzy inference operators that can be used for this purpose, among these operators, Sugeno and Mamdani are very

common (Lin & Chen 2005; Nourani et al. 2011). This method is done by Fuzzy the inputs through the membership func-
tions, in which the input values are mapped by a relation to the range of [0–1]. In the ANFIS structure, each approach has two
or more membership functions, to which these system parameters must be sent. Figure 3 shows the three trapezoidal, Gaus-

sian, and triangular membership functions. An example of a simple membership function is a triangular function with straight
lines. The Trapezoidal membership function is a triangular function cut at the top, these two membership functions have the
advantage of simplicity. The most popular membership function is the Gaussian function, which has the advantage of softness
and non-zero value at all points.

2.5. SVM

One of the relatively new machine learning methods is the support vector machine method, which was introduced in 1995 by
Kurtz and Vapnik. The mentioned network can be considered a method of supervised learning. As opposed to other neural

networks, a support vector machine evaluates the operational risk of the objective function, instead of minimizing its model-
ing error. In SVM, instead of using a line to separate, a confidence margin is used. In Figure 4 H1 line does not properly
separate the two categories of data shown. Contrariwise H2 and H3 lines do this operation correctly. The difference between

H2 and H3 lines is the operational risk or the risk of not being properly classified. Perceptron neural networks do not dis-
tinguish between these two dividing lines, but for a support vector machine network, H3 is better than H2. Also, the main
goal of this network is to reach H3. Another version of SVM for regression was provided in 1997 by Vapnik (Vapnik et al.
1996). SVM, the most common form of which is the support vector regression (SVR) is the method used in this study
(Basak et al. 2007). The general objective of this procedure is to perform a linear regression and then apply a kernel to
result to create a nonlinear regression.

2.6. EANN

The EANNmodel is a new generation of classical ANN model. A component of this model involves an artificial emotion unit
that release hormones to regulate neuron function, as well as modifying hormonal weights based on values generated by
neuron, input and output. Figure 5, illustrates how each hidden layer of EANN information undergoes constant transform-

ation between input and output layers. In addition, these nodes generate the dynamic hemorrhages Ha, Hb, and Hc.
Figure 3 | Trapezoidal, Gaussian and triangular membership functions.
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Iterating in the training process improves the coefficients that are assumed in this model using the pattern between the input

and output data. Education process affects other node units (neurons) through hormonal coefficients, such as activation,
weight and, net function. In Figure 5, the dashed and plotted lines show the hormonal and neural pathways of information
(Nourani 2017).

2.7. Ensemble

One of the important advances in artificial neural networks during the last decade is the model combination method. Essen-
tially, it is a way to enhance final model performance by merging the outputs of various models (Sharghi et al. 2018). In this
multi-model method, the main objective is to maximize the estimation accuracy by using the specific capability of each model.

By combining different models, the prediction performance with this method can be increased compared to the performance
of individual models. Combining various methods can significantly improve modeling performance, as demonstrated by
theoretical and experimental evidence (Zhang 2003). In this research, the model combination method has been performed
://iwa.silverchair.com/ws/article-pdf/22/9/7140/1116535/ws022097140.pdf
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using three methods: a simple linear averaging (SAE), a linear-weighted averaging (WAE) and, a nonlinear neural ensemble

technique (NEE). The formula used for the simple averaging model is:

�f(t) ¼ 1
N

XN
i¼1

fi(t)

where f(t) depicts the output of the simple ensemble model, N indicates the number of single methods, and fi shows the results
of every single model.

Combination is performed using the following formula according to linear-weighted averaging:

�f(t) ¼
XN
i¼1

wifi(t)

In this formula, wi is the weight applied to the result of ith model and it is calculated as follows:

wi ¼ DCi

PN
i¼1

DCi

where DCi is the ith method efficiency.

With a neural ensemble model, the outputs from individual models are imported into another FFNN for training as inputs
and then a nonlinear ensemble is produced. A trial-and-error process was then employed for determining the ideal number of
epochs and hidden layers.
2.8. Efficiency criteria

During the spatial clustering phase, the silhouette coefficient was used to measure the validity of the clustering. In a cluster,
this coefficient measures the degree of similarity between the members, as shown in the equation below:

S(i) ¼
b(i)� a(i)

max {a(i), b(i)}

S(i) is the silhouette value of member i. Higher values of S(i) indicate more similarity of members in the same cluster. The

quality of clustering can be determined by measuring the average width of the silhouette across the entire data set. Distances
between clusters are measured as Euclidian distances by using the mean dissimilarity of the clusters a(i). b(i), which expresses
the least average dissimilarities between member i and the members of other clusters.

To measure the accuracy of the models, two criteria of determination coefficient (DC) and root mean square error (RMSE)
have been used. The results in both stages of training and validations should be in the desired range, which for DC is close to 1
and for RMSE close to zero. The values of the mentioned statistics were obtained using the below functions:

DC ¼ 1�

Pn
i¼1

(yi � xi)
2

Pn
i¼1

(yi � �yi)
2

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn
i¼1

(xi � yi)
2

n

vuuut

In the above formulas, yi is the data related to the model calculation, xi is the observational data, n is the number of data
points and �y and �x are the average of the mentioned data.
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3. RESULTS

This section discusses the results obtained from each part separately.

3.1. Results of clustering

To study the groundwater conditions on the Ardabil plain, it is crucial to categorize quantitative and qualitative piezometers
and distinguish the dominant piezometer (central) on the plain. Piezometers that exhibit similar and dominant behavior were

identified using GNG. A trial-and-error method was employed for determining the optimal number and the quality of the
formed clusters. The clustering results of quantitative piezometers into three clusters and qualitative piezometers for TDS
and TH parameter studies into three and four clusters are shown in Table 1, respectively. In addition, clusters are shown

in Figure 6. According to the table, central piezometers have the highest value of silhouette coefficient.
The central piezometers are given in the fifth column of Table 1. Among the central piezometers, the third cluster with the

highest coefficient values is the best clustering, and also among the qualitative piezometers, the second cluster is the best clus-
ter for the TDS and TH parameters. This paper revealed, the GNG method scores best in comparison with the others. Thus,

due to the obtained results, the GNG can be considered as a reliable method for groundwater level and its chemical par-
ameters clustering.

3.2. Result of single AI models

In the second stage, the best results of each model have been presented in the following sections, which use only one AI

method to train and verify. In this case, the current time step is determined by its previous time steps until lag 6. The time
steps h(t� 1), h(t� 2), …, h(t� 6) were thus fed into four different methods (ANN, ANFIS, SOM, and EANN) for estimating
GWL value h(t) at the current time step.

The value of the SO4, Ca, Mg, Cl parameters, and GWL, which were more proportional to TDS and TH based on MI pro-

cessing, was fed as input into the mentioned individual methods for the qualitative process. It was essential to determine the
number of middle neurons and calibrate the network at the right number of iterations in order to prevent overfitting in the
FFNN model. It is important in order to avoid too small neurons, which may capture inconsistent information, and too many

neurons, which may cause overfitting.
To select the most efficient model, training iterations of 2–100 were conducted using the Levenberg–Marquardt algorithm

and log-sigmoid function. Here, 2–15 middle neurons were also tested to select the optimal network. Table 2 presents the

optimal results of FFNN for both qualitative and quantitative studies.
Another AI-based model is ANFIS, which is characterized for its ability to be used for handling nonlinear processes with

uncertainly by employing a fuzzy concept. The Sugeno operation was utilized for the calibration of membership function

(MF) parameters. Additionally, MFs of triangular, Gaussian, and trapezoidal shapes showed a good ability for predicting
Table 1 | Results of clustering

Parameter
Cluster
no. Piezometers Silhouette coefficient

Central
piezometer

GWL 1 P26,P7,P2,P31,P35,P23,P14,P39,P24,
P16,P17,P36,P38,P32

0.13,0.24,0.31,0.41,0.52,0.56,0.59,0.64,0.67,0.68,0.69,0.72,0.74,0.78 P32

2 P10,P6,P18,P13,P11,P1,P25,P33,P12,
P19,P9,P4,P27,P20

0.15,0.22,0.26,0.37,0.38,0.41,0.43,0.53,0.55,0.64,0.68,0.69,0.73,0.75 P20

3 P5,P30,P15,P34,P8,P22,P28,P3,P29,
P21,P37

0.21,0.24,0.44,0.46,0.53,0.7,0.7,0.71,0.74,0.81,0.82 P37

TDS 1 P2,P4,P14,P23,P8,P1,P19,P3,P16 0.01,0.13,0.53,0.61,0.62,0.77,0.82,0.83,0.84 P16

2 P15,P13,P7,P12,P17,P5,P10,P24,P11,
P18,P22,P21

0.45,0.51,0.52,0.72,0.82,0.83,0.83,0.84,0.85,0.85,0.86,0.87 P21

3 P20,P26,P9,P25 0.37,0.46,0.66,0.67 P25

TH 1 P3,P1,P8,P19 0.32,0.64,0.67,0.69 P19

2 P7,P12,P22,P5,P10,P11,P17,P24,P18,
P21

0.4,0.79,0.87,0.87,0.88,0.89,0.9,0.91,0.92,0.93 P18

3 P23,P2,P4,P16,P15,P13,P14 0.45,0.47,0.63,0.68,0.71,0.76,0.8 P14

4 P20,P26,P9,P25 0.4,0.57,0.69,0.74 P25
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Figure 6 | GNG clustering (a): GWL, (b): TDS, (c): TH.

Water Supply Vol 22 No 9, 7148

Downloaded fr
by guest
on 09 April 202
and analyzing groundwater as well as a consistent MF in the output layer. The best model was determined by comparing two
and three MFs and the number of 5–500 iterations using a trial-and-error method. The outcomes of optimum ANFIS method

are tabulated in Table 2.
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Table 2 | Outputs of single models

Piezometers Models Model architecture

DC RMSE

train verify train verify

P32 ANN (3-5-1) 0.84 0.73 0.08 0.38
ANFIS Triangular shaped-2 0.73 0.52 0.33 0.41
SVR (50-0.3-0.1) 0.82 0.79 0.26 0.28
EANN (10-10) 0.86 0.78 0.22 0.21

P20 ANN (3-11-1) 0.89 0.87 0.31 1.6
ANFIS Gaussian shaped-2 0.84 0.78 1.6 2.17
SVR (60-0.2-0.5) 0.89 0.86 0.58 1.4
EANN (10-8) 0.82 0.8 0.21 0.18

P37 ANN (3-7-1) 0.85 0.78 0.28 0.34
ANFIS Gaussian shaped-2 0.76 0.70 0.12 0.15
SVR (50-0.1-0.33) 0.87 0.68 0.25 0.38
EANN (10-10) 0.75 0.64 0.14 0.15

TDS1 ANN (5-12-1) 0.75 0.71 0.22 0.24
ANFIS Triangular shaped-2 0.74 0.73 0.22 0.25
SVR (20-1-1) 0.83 0.7 0.17 0.26
EANN (10-12) 0.64 0.61 0.28 0.24

TDS2 ANN (5-6-1) 0.89 0.78 0.09 0.11
ANFIS Gaussian shaped-2 0.82 0.78 0.14 0.17
SVR (50-1-0.2) 0.86 0.74 0.12 0.19
EANN (10-10) 0.89 0.76 0.10 0.17

TDS3 ANN (5-6-1) 0.79 0.64 0.17 0.27
ANFIS Triangular shaped-2 0.70 0.68 0.19 0.22
SVR (20-0.1-0.33) 0.69 0.56 0.22 0.22
EANN (10-10) 0.53 0.51 0.27 0.24

TH1 ANN (5-8-1) 0.84 0.69 0.05 0.29
ANFIS TrimF-2 0.72 0.70 0.28 0.3
SVR (50-1-1) 0.86 0.78 0.08 0.28
EANN (10-6) 0.81 0.67 0.23 0.32

TH2 ANN (5-14-1) 0.85 0.79 0.16 0.2
ANFIS TrimF-2 0.84 0.79 0.17 0.18
SVR (50-0.2-0.33) 0.9 0.82 0.08 0.2
EANN (10-10) 0.82 0.78 0.18 0.22

TH3 ANN (5-9-1) 0.79 0.66 0.26 0.3
ANFIS Gaussian shaped-2 0.80 0.77 0.20 0.27
SVR (60-0.2-0.5) 0.82 0.78 0.24 0.28
EANN (10-8) 0.81 0.7 0.26 0.28

TH4 ANN (5-10-1) 0.65 0.61 0.28 0.31
ANFIS Triangular shaped-2 0.86 0.73 0.09 0.25
SVR (60-0.01-0.33) 0.75 0.65 0.23 0.28
EANN (10-10) 0.80 0.73 0.24 0.21
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The third AI-based method exploited in this investigation was SVR. To model SVR, the radial basis function (RBF) kernel

can produce more accurate results because of its smoothness assumption, even though it includes fewer tuning parameters
than a model using other kernels (Noori et al. 2011). The results of optimal SVM models are tabulated in Table 2.

The last AI applied in this study was EANN. This method can model through hormonal glands and gives accurate out-

comes in learning application (Lotfi et al. 2014). The EANN was designed utilizing the Sigmoid activation function and
1–10 hormone parameters, 1–10 neurons, and 1–2 training iterations were used to select the network with high productivity.
Table 2 indicates the ideal results of EANN models.

Examining the results of quantitative studies, it can be seen that the DC of training for all three central piezometers has a

higher value than the DC for validation, which may have originated from a large number of data at this stage. The results of
://iwa.silverchair.com/ws/article-pdf/22/9/7140/1116535/ws022097140.pdf
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validation’s DC in P20 are 16% higher than other piezometers on average. The reason for the low value in the other two piezo-

meters can be the presence of illegal wells and lots of agricultural land in this area. Also, P20 is located in the south of this
plain. Considering that the highest amount of nutrition of the Ardabil plain aquifer is from the southern parts where the river
enters it, so it can be considered as a reason for the high DC of piezometer in this area. Regarding the observed outcomes

from qualitative modeling, it can be seen that the DC of training data is more than the DC of validation data. Conversely,
modeling the amount of the total solid dissolved in water (TDS) in cluster 2 and the total hardness (TH) in cluster 2 have
shown better evaluation results up to 20 and 14% on average in contrast with other clusters, respectively. According to
Figure 6, it can be seen that these two clusters are almost scattered in the central and eastern parts of Ardebil plain which

can be a reason to justify the relative highness of this criterion according to Daneshvar Vousoughi et al. (2013). This
study stated that the water quality situation in the northern and southwestern of this regions is unfavorable compared to
other areas. Also, from clusters in which prediction and evaluation have been done with high accuracy, can be seen that

the most correlation is seen between the selected inputs and groundwater quality. Qualitative study results reveal the fact
that the FFNN model outperformed other methods in averaging DC of GWL validation data set modeling. The average
DC of TDS validation results for the ANFIS method was higher than other methods and for the TH study, SVM had a

higher result compared with other models. Also in a few results, EANN outperformed the other methods. The estimation per-
formance of the models employed in this study was best visualized through scatter plots. Figure 7 illustrates the scatter plots of
the single model result compared to the observed result. It is evident in this figure that, in some models, some methods over-

estimate observed values while others underestimate them. As shown in Figure 7. A, point 1 of the EANN model provided a
closer estimation of the record value (i.e. the difference between the observed and computational data in the EANN case is
only 2 units, while this difference in the SVR case increases to 10), which was countered by the SVR model at point 2 (4 units
Figure 7 | Recorded vs. estimated precipitation values obtained by ANN, ANFIS, SOR and EANN methods in the testing phase for (a): GWL,
(b): TDS, (c): TH parameters. (Continued).
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versus 14), even when the two dates are in close proximity. There are also some times that none of the models could simulate

the observed data with good accuracy. Therefore, different models at different time points can lead to different performances,
according to the results from the selected points. Furthermore, a study was developed to examine the effectiveness of com-
bined (GA-EANN) models over the use of single models (EANN, FFNN, GRNN) for predicting one-month ahead

groundwater levels. In comparison to the developed single AI-based models, the GA-EANNmodel offered a marked improve-
ment in performance (Roshni et al. 2019). Consequently, ensemble methods can provide more accurate groundwater field
estimations. On this subject, a possible method for improving the efficiency of models is to combine the outputs of multiple
methods.

3.3. Results of ensemble modeling

The third step in the modeling process involved combining the results from four independent artificial intelligence models to
enhance prediction efficiency. The linear SAE model outperformed developed AI single models in some piezometers and
clusters. It is a fact that the linear averaging of the data set often yields a value lower than the highest and a value higher
than the lowest (Nourani et al. 2020). It is possible that WAE is slightly better than SAE as a second ensemble model.

This might be the case due to the weighting assigned to the parameters based on their importance. As with FFNN, NNE
was also trained using the Levenberg–Marquardt algorithm. In addition, both the output and hidden layers were activated
by the sigmoid activation function.
Table 3 | Outputs obtained by linear, weighted and non-linear ensemble methods

Piezometer Iteration Model architecture

DC RMSE

Train Verify Train Verify

P32 Simple linear averaging (4,13,1) 0.81 0.7 0.22 0.32
Weighted averaging 0.81 0.72 0.26 0.27
Non-linear averaging 0.85 0.82 0.23 0.21

P20 Simple linear averaging (4,22,1) 0.86 0.83 0.67 1.33
Weighted averaging 0.86 0.83 1.12 1.73
Non-linear averaging 0.96 0.93 0.19 0.14

P37 Simple linear averaging (4,10,1) 0.8 0.7 0.19 0.25
Weighted averaging 0.81 0.7 0.22 0.3
Non-linear averaging 0.89 0.8 0.1 0.14

TDS1 Simple linear averaging (4,6,1) 0.74 0.68 0.22 0.24
Weighted averaging 0.74 0.69 0.23 0.24
Non-linear averaging 0.85 0.79 0.16 0.21

TDS2 Simple linear averaging (4,11,1) 0.86 0.76 0.11 0.16
Weighted averaging 0.86 0.76 0.22 0.16
Non-linear averaging 0.95 0.88 0.07 0.12

TDS3 Simple linear averaging (4,10,1) 0.67 0.59 0.21 0.23
Weighted averaging 0.69 0.6 0.21 0.23
Non-linear averaging 0.85 0.74 0.16 0.12

TH1 Simple linear averaging (4,20,1) 0.8 0.71 0.16 0.29
Weighted averaging 0.81 0.71 0.22 0.29
Non-linear averaging 0.92 0.82 0.15 0.2

TH2 Simple linear averaging (4,12,1) 0.85 0.79 0.14 0.2
Weighted averaging 0.85 0.79 0.11 0.2
Non-linear averaging 0.95 0.9 0.08 0.12

TH3 Simple linear averaging (4,11,1) 0.8 0.72 0.24 0.28
Weighted averaging 0.8 0.73 0.24 0.28
Non-linear averaging 0.87 0.83 0.2 0.23

TH4 Simple linear averaging (4,22,1) 0.76 0.68 0.21 0.26
Weighted averaging 0.77 0.68 0.23 0.26
Non-linear averaging 0.82 0.78 0.19 0.24
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In a trial and error process, the number of middle neurons and the number of iterations for training varied between 2 and

25, and between 5 and 300, respectively. As a combination technique in hydrological modeling, non-linear neural networks
have been successfully used (Elkiran et al. 2018; Sharghi et al. 2018; Nourani et al. 2021). The obtained results of ensemble
models are presented in Table 3. As shown in this table, all ensemble methods can be used to enhance the performance of

single models in GW modeling.
As revealed by the results, all three methods of the model combination were able to outperform the individual models in

the majority of cases, and in Figure 8 an appropriate correspondence is apparent between the observational and compu-
tational data in this method. On the scatter plots, this figure illustrates how the NNE model performs in the estimations

of GWL, TDS, and TH. Also, it shows less spread of points for observed and estimated GWL, TDS, and TH parameters.
As mentioned, all models and techniques have their own merits and demerits. Some methods offered higher estimates,
while others offered lower estimates. Therefore, the mentioned combination methods show more preferable results compared
Figure 8 | correspondence of the observational and computational data for (a): GWL, (b): TDS, (c): TH parameters.
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Figure 9 | Radar diagrams of (a): GWL, (b): TDS, (c): TH modeling.
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to individual models due to the unique capabilities of each model. In general, the outputs of the simple and weighted ensem-

ble were quite the same because the efficiency of the simple and weighted ensemble techniques followed the same path. As
can be seen in Table 3, nonlinear averaging is capable in all cases of being more powerful than linear ensemble methods. In
terms of DC, it is necessary to mention that the nonlinear neural ensemble technique came up with better validation outputs

up to 57, 19, and 25% for P32, P20, and P37 piezometers and 30, 12, and 45% for TDS1, TDS2, and TDS3 and finally 22, 15, 26
and 28% for TH1, TH2, TH3 and TH4 index, respectively. All in all, the ensemble models in general, and single AI models
specifically, perform well in GW estimations. In Figure 9 for all GWL, TDS, and TH models, radar diagrams are used to
create a visual representation of the comparison between single and ensemble methods. The clustering method has been

used previously to classify the observed piezometers of the Ardebil plain. The SVM and ANN methods were combined to
predict the GWL. The results showed that the best values of DC in training and verification were 0.94 and 0.89 respectively.
In this study, however, GNG clustering method was applied and two other AI methods (ANFIS and EANN) were added to

the prediction stage. These steps improved the accuracy of prediction up to 0.96 for training and 0.93 for verification stages.

4. CONCLUSION

In this study, changes in groundwater levels and their quality were studied and predicted using artificial intelligence networks.

In this regard, the GNG clustering technique was used to divide the whole study area into several groups. Furthermore, the
piezometers in the quantitative and qualitative wells were modeled. In the next step, to increase the efficiency and accuracy of
modeling, the model combination method was performed using simple linear averaging, linear-weighted averaging, and non-

linear neural ensemble procedures. In the end, the obtained results were compared. Based on the outputs, the ensemble
model could result in a promising improvement in groundwater parameters modeling, conversely, the efficiency of simple
linear averaging and linear-weighted averaging is directly related to individual models, therefore the poor results of each

model affect these ensemble models. Among the three different methods of ensemble modeling, the nonlinear neural tech-
nique is more efficient. Comparing the results of the third ensemble method with the best result obtained from individual
ones, TDS2 showed the highest improvement of 12%, while P37 indicated the lowest progress of 2%. Considering that in

this study only static averaging of the results of individual methods was used, it is suggested that in future studies, by a
dynamic and comparative selection of the results of individual methods in terms of minimizing estimation error, the efficiency
of the model combination method will be improved. In this study, an ensemble unit is developed using only black-box models.
Thus, physical-based models should be included in GW studies, alongside AI models, to investigate and combine their

performances.
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