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E-mail: bkiziloz@isu.gov.tr

BK, 0000-0001-5243-8889

ABSTRACT

In this study, 41 models used for the prediction of daily failure rates in water distribution networks have been designed via the Serial Triple

Diagram Model (STDM) and artificial neural network (ANN) methods. For this purpose, daily failure data measured coordinately in the water

distribution system network in Gebze and transferred to the geographic information system (GIS) has been used. The data has been normal-

ized through the min-max technique to scale it at regular intervals and develop the model prediction performance. In this study, certain

meteorological variables such as temperature and precipitation have been taken into account as model input for the first time. According

to the increasing values of these two variables, it is observed in the model results that daily failure rates tend to increase. The expected

model accuracies in failure rate prediction could not be obtained through the suggested ANN models. The higher prediction performances

have been obtained through the STDM, a structure that enables visualization of the model results by making inferences. The STDM method is

a significant alternative approach to determine the relationship of the variables on the failure and to predict the failure rate. It is predicted that

the suggested STDM charts will contribute to the decision-makers, experts, and planners to determine effective infrastructure management.

Also, investment planning prioritization will be able to reduce failure rates by interpreting prediction charts.
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HIGHLIGHTS

• Counter maps have been used for predicting and interpreting failure rates.

• Temperature and precipitation effect has been directly taken into consideration for the first time.

• The highest accuracy has been achieved with the least input in models.
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GRAPHICAL ABSTRACT

LIST OF ABBREVIATIONS

The following symbols are used in this paper:

Acronym Definition
AC Asbestos-cement
ANN Artificial neural network
APP Average pressure of pipe
AWWA American Water Works Association
BI Bias
CI Cast iron
DFR Daily failure rate
DI Ductile iron
DMA District metered area
DMT Daily mean temperature
DTR Daily total rainfall
FFBP Feed forward back propagation
FR Failure rate
GIS Geographic information system
GRP Glass reinforced plastic
HDPE High-density polyethylene
IWA International Water Association
LM Levenberg-Marquardt algorithm
LS-SVM Least-squares supportive machine
MAE Mean absolute error
MAP Mean age of pipe
MARS Multivariate adaptive regression splines
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MDP Mean diameter of the pipe
MGM Turkish Meteorological Service
MLP Mean length of pipe
MSE Mean square error
NRWR Non-revenue water ratio
PMS Pressure management system
PRV Pressure reducing valve
PVC Polyvinyl chloride
R2 Coefficient of determination
RF Random forest
SCADA Supervisory control and data acquisition system
SI Scatter index
ST Steel
STDM Serial triple diagram model
SV Semi-variogram
SVM Support vector machines
TDM Triple diagram model
WDN Water distribution network

INTRODUCTION

Water utilities are responsible for delivering quality purified drinking water to consumers without any interruption through
water distribution networks (WDNs). Failures that may occur in WDNs and their components (such as valves, fire hydrants,
pumps, service connection, etc.) bring significant problems for the water utility as they cause a decrease in network pressures,
deterioration of water quality, increase in consumer dissatisfaction, and excessive water loss. For this reason, rapid detection

and appropriate repair are significant in terms of reducing these problems. Water utilities, domain experts, and decision-
makers need to review their current management and operating approaches on WDNs due to environmental, economic,
and social impacts of failures. So it is important to determine the rates of failures, their frequencies and densities, and the

factors causing the failures (Aydogdu & Fırat 2015). In the literature, failure rate is considered as the ratio of the failure num-
bers to the network length.

Failures in WDNs can arise out of physical (pipe age, pipe diameter, pipe material, pipe installation, etc.), environmental

(climate, pipe location, seismic activity, pipe bedding, groundwater, etc.), and operational (water quality, pressure, flow vel-
ocity, leakage, etc.) factors (Trifunović 2012). Researchers have made failure predictions by using different methodologies
(Rajani & Kleiner 2001; Pelletier et al. 2003; Wilson et al. 2017; Robles-Velasco et al. 2020). Cooper et al. (2000) have
made failure predictions in the WDN of London through the model based on probabilistic approach and geographic infor-

mation system (GIS) by using certain variables such as pipe density function, soil corrosivity class, number of buses per hour,
and pipe diameter. The authors believed that model results contribute to prioritization of the operational and investment
plans of water utilities to reduce in WDN failures. Iličić (2009) has studied the factors affecting the failure frequency in

the WDN of Zagreb, the capital city of Croatia, through the statistical log-linear analysis method. He stated that there are
significant parameters affecting failures such as pressure regulation, pipe age, pipe diameter, and pipe material. Carrión
et al. (2010) have analyzed the recorded failure data in WDNs through the non-parametric and semi-parametric methods

to evaluate failure probabilities. The analysis results showed that certain pipe characteristics such as traffic conditions, diam-
eter, material, and length have an impact on failures. Kakoudakis et al. (2017) have preferred the evolutionary polynomial
regression model to predict the failures in UK WDNs by using pipe age, length, and diameter characteristics. The developed

approach contributed to obtaining higher model output accuracies, reducing prediction errors in networks with excessive fail-
ures. Winkler et al. (2018) have set up the failure model for replacing plans of urbanWDNs by using the decision tree learning
technique. They indicated that the models can be a good alternative to traditional statistical failure approaches. Wols et al.
(2019) have researched the effect of meteorological parameters such as air temperature, wind, and drought on failures in

drinking WDNs of the Netherlands. At the end of the study, it is stated that temperature is a significant parameter for cast
iron (CI) and asbestos-cement (AC) pipes. Failures have increased in high temperature for AC pipes and increased in low
temperature for CI pipes. Also, it is stated that winds uprooting trees and drought periods cause failures.

Researchers have developed prediction models for failure rate (FR) using different methods. Wang et al. (2009) have rec-
ommended deterioration models to predict annual FR through the multiple regression method considering certain variables
such as diameter, pipe age, pipe type, length, and depth of installation. According to the model results, the network length is
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quietly effective on FR prediction. Tabesh et al. (2009) have predicted the FRs in WDNs in Iran by using the neuro-fuzzy sys-

tems, and multivariate regression methods. In this analysis, pipe depth, diameter, age, length, and average pressure variables
have been used as input. Researchers indicated that artificial neural network (ANN) models have more accuracy and realistic
results compared to the neuro-fuzzy systems and multivariate regression models. Jafar et al. (2010) have developed some

models through the ANNs by using materials of pipes, the diameter of pipes, length of pipes, thickness, age, soil type, location,
and pressure variables to predict the failure rate in the WDN of north France. The ANN models can help decision-makers to
determine the best strategy for network replacing and maintenance investments. Asnaashari et al. (2013) have modeled FRs
in their studies through the multiple linear regression (MLR) and ANN approaches. The model inputs in both studies are the

following variables; pipe age, length, diameter, soil type, break category, pipe material, the year of Cathodic Protection (if
applicable), and the year of Cement Mortar Lining (if applicable). The ANN model that was applied by the researchers at
Etobicoke WDN in Canada gave better prediction results than MLR with R2¼ 0.94. On the other hand, Shirzad et al.
(2014) have developed models using the ANN and support vector regression (SVR) methods to predict FRs at Mashhad
WDN in Iran. Practitioners have used length, age, the hydraulic pressure of pipes, and installation depth diameter model vari-
ables as input, and model results showed that the ANN was a better predictor than the SVR. Aydogdu & Firat (2015) have

modeled the FR through the least-squares supportive machine (LS-SVM) and fuzzy clustering approaches by using certain
variables such as length, age, and diameter in the WDN of Malatya city. In their study, the FR and the effective factors on
this rate have been analyzed. In this context, high FRs have been observed in the pipes with a length in the range of 0–

200 m, pipes with a diameter of 110 m, and pipes between the ages of 15 and 20 years. The authors emphasized that
using clustering analysis and LS-SVM methods together can be useful to obtain more effective performance in the prediction
of FRs. In another study, annual failure rates at Scarborough WDN in Canada have been predicted by Sattar et al. (2019)
through the extreme learning machine (ELM) model. For the model, 50 neurons maximum have been employed in the

hidden layer. The prediction models showed that the most effective input variable was pipe diameter. Kutyłowska (2019)
has predicted the FR through the support vector machines (SVMs) and non-parametric regression methods using operational
parameters (distribution pipes, house connections, total network length) in WDNs of Polish cities. The linear kernel function

has been recommended to obtain the best prediction model. Motiee & Ghasemnejad (2019) have applied four different
regression models (Poisson regression, logistic regression, exponential regression, and linear regression) to predict the FR
in the WDN of Tehran by using length, material, pressure, age, and diameter variables. It is clear according to the all-

model results that the ductile iron pipes among the others types such as ductile iron, asbestos-cement, cast iron, and high-den-
sity polyethylene have a significant role reducing failure number. Shirzad & Safari (2020) have been designed FR prediction
models through the random forest (RF) and multivariate adaptive regression splines (MARS) techniques by using certain vari-
ables such as hydraulic pressure, pipe diameter, pipe age, pipe installation depth, and average, pipe length in the city network

of Mahabad city, located in the north-east of Iran. In the first case study, MARS model outputs had higher prediction perform-
ance than RF.

Another approach used for the modern prediction models is the triple diagram method (TDM), a mapping technique based

on the Kriging method. Counter charts are used to visualize the collective behavior of two independent variables and a depen-
dent variable, and to provide the most ideal interpolation for prediction (Özger & Sen 2007). The TDM method enables to
design of the most suitable surface model and to interpret the variable behaviors despite the extreme data scattering of the

variables (Kızılöz & Şism̧an 2021). Şism̧an & Kizilöz (2020) have used the TDM structure to predict the non-revenue
water ratio (NRWR). In another study conducted by the researchers, the NRWR has been predicted with high accuracy
through the serial triple diagram model (STDM) (Kızılöz & Şism̧an 2021).

The aim of this study is to predict the FR in WDNs through the mapping technique based on ANNs, an artificially intel-
ligent application, and Kriging methods. For this purpose, (1) the precipitation, temperature, diameter, age, pressure, and
length variables have been selected as model inputs to predict the FR; (2) the data set has been normalized to scale model
inputs and outputs to a certain scale, and to increase the model performance; (3) ideal ANN and STDMs have been designed

by analyzing separately the effect of each variable on FR; (4) the best model accuracy with the least input has been analyzed.

STUDY AREA AND DATA

The district of Gebze is selected for the modeling, which is the biggest district of Kocaeli city in terms of population density.
Gebze, which is a significant trade, transportation, and logistics route between the European and Asian continents, is located
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in the east of the Marmara region and the north of Iżmit Gulf (Figure 1). The district is located on the border of Istanbul, and

has been rapidly growing in population with 392,945 people in 2020. As of 2020, the number of water consumers was 157,412
people (ISU 2020), and its total surface was 584 km2. The infrastructure network of Gebze is operated by the ISU (Kocaeli
Water and Sewerage Administration). In the region, there are two drinking and domestic water ponds, one drinking water

treatment facility, seven natural water springs, 26 water tanks, and two drinking water pumping stations.
The total network length of the modeling area is 1,401 km and the service connection length is 420,78 km. The existing

water distribution network consists of pipes with different material properties such as 4.75% steel (ST), 1.28% glass reinforced
plastic (GRP), 18.66% ductile iron (DI), 39.78% high-density polyethylene (HDPE), and 35.53% polyvinyl chloride (PVC)

(Figure 1). Daily measured failures on WDNs have been recorded by the ISU, Department of Water and Wastewater Tech-
nologies, and the Branch Office of Geographical Information Systems. In this modeling study, 5117 data in total, including
731 data for each model variable (measured and recorded daily values between 2019 and 2020) have been used to analyze,

Figure 1 | General view and network type of Gebze.
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map, and make inferences on FRs. Each independent variable of the WDN measured daily at failure points has been given in

Table 1. Different variables are available in this modeling data such as the mean diameter of the pipe (MDP), the mean age of
pipe (MAP), the average pressure of pipe (APP), mean length of pipe (MLP), and daily FR (DFR). Also, certain meteorological
variables such as daily mean air temperature (DMT) and daily total rainfall (DTR) have been used for the first time as model

input and their relationships with FR have been analyzed. Daily mean temperature and precipitation data have been obtained
from the Turkish Meteorological Service (MGM). Statistical properties of all variables used as model inputs and output are
available in Table 1.

In the study area, 5,986 failures have occurred within the two-year periods (Figure 2). The 866 failures have occurred in the

network (14.46%) and 5,120 in service connections (85.54%). On the other hand, the distribution of the failure network is as
follows; 344 of PVC, 17 of GRP, 43 of DI, and 460 of HDPE. In this study, as in many literature studies, it is seen that most of

Table 1 | Variable summary in the study model

Variables Unit Min Mean Max Median Std.D.

MDP mm 32 50.79 441 39.60 38.15

MAP year 2 19.02 33 19.50 4.13

APP m 39.60 50.78 61.88 50.77 3.39

MLP km 10.13 30.17 55.37 29.76 4.76

DMT °C �0.90 15.42 26.40 15.60 6.99

DTR mm 0 1.44 45 0 4.25

DFR – 0.02 0.27 0.93 0.25 0.17

Figure 2 | Spot distribution of failures occurred in the study area.
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the failures in the WDN have occurred in service connections. The service connection failure rate in total failure has been

calculated as Nicolini et al. (2014) 58%, Aydogdu (2014) 60%, and Boztas ̧ et al. (2019) 77.4%.
The standard water balance budget suggested by American Water Works Association (AWWA) and International Water

Association (IWA) is available in Table 2 for the region of Gebze. According to this table, the total amount of water entering

the system is 30,777,924 m3/year, the amount of water loss is 6,670,870 m3/year, and the amount of unbilled unmetered con-
sumption is 409,884 m3/year (Table 2). It is seen in the table that the water loss amount arising out of failures is at the level of
1.33%. The related water utility tries to reduce this level up to 1% and water loss rate up to 20% through DMA, PM, minimum
night flow monitoring, and active leakage control methods. If failures repeat intensively at the same point despite the above-

mentioned activities, old networks and service connections will be replaced.

METHODOLOGY

In this study, the DFR has been predicted via ANNs and STDMs. The stages of the model studies are given below respectively:

1. The daily failure number of the WDN of Gebze that was measured and recorded coordinately for model study between the
years of 2019 and 2020 has been calculated.

2. The min-max normalization technique has been used to increase model prediction accuracy and measure the data on a

certain scale.
3. Different combinations of model have been analyzed to predict the FR with the least input with the help of model input

number increase, from one to three. The best prediction model has been obtained by the combination of two inputs.

4. Some statistical indicators such as R, MSE, BIAS, MAE, and SI have been used to evaluate model performances.
5. Model predictions have been made on the basis of the Kriging interpolation technique.
6. An STDM has been used to increase the input number and accuracy in prediction charts.

7. The prediction accuracy of the STDM has been evaluated through the same statistical indicators.
8. The FR prediction model with the highest accuracy has been determined by comparing the ANN and STDMmodel results.

Min-max normalization

Certain values on the input variable data set used for model applications can be bigger or lower than zero. Especially, extreme

values affect negatively model results due to the differences between the input values. To remove any undesirable condition,
the data can be normalized by scaling in the same interval. In the literature, there are different normalization methods pre-
ferred frequently such as Statistical or Z-Score, Min-Max, Median, Sigmoid, and Statistical Column.

In this study, the min-max normalization method, a method linearly normalizes the data, has been used to convert data into
numerical values between 0 and 1. The most significant advantage of this method is to protect all relationships in data (Jaya-
lakshmi & Santhakumaran 2011). The min-max method is available below (Equation (1)).

xn ¼ xi � xmin

xmax � xmin
(1)

Table 2 | Water balance components of Gebze in 2020
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where, xn, represents the normalized data, xi, the input value, xmin, the lowest value in input data set, and xmax represents the

highest value in input data set.

ANNs

An ANN is a machine learning method used frequently for solving nonlinear complex engineering problems. The ANN is a
system modeled by inspiring the biological behaviors of neurons in the human brain. A typical ANN structure is composed
of three independent layers; input, hidden, and output (Figure 3). Also, there are five basic elements in the ANN structure
named as inputs, weights, transfer function, activation function, and outputs besides the existing layers.

The information from the input layer (x1, x2,…, xn) is transferred to the transfer function being multiplied by weights. The
weights (w1, w2,…, wn) show the importance of the information coming into the artificial cell and their effects on neurons.
Also, the correct determination of the weights increases the learning performance of ANN models. The transfer function is

used to calculate the net input coming into the cell as a result of multiplying the input and weights. The transfer function
frequently used is given in Equation (2).

f(net) ¼
Xn
i¼1

wixi þ bias (2)

where xi, represents the inputs, wi, the weight values, n, the total input number, and f(net) represents the net input value.
The model output is calculated by passing f(net) obtained as a result of transfer function through the activation function. In

the literature, there are various activation functions such as linear, sigmoid, hyperbolic tangent, step, and ramp. In this study,

the sigmoid activation function that is used frequently has been preferred. The model output obtained by using this function is
available below (Equation (3)).

y ¼ f(net) ¼ 1
1þ exp[�(net)]

(3)

Another issue after the determination of the ANNmodel structure is to train outputs to be produced in response to inputs in
the network. The forward transfer to obtain target output throughout the model inputs is called Feed-Forward and the back-
transfer to the input layer of the network, in case of any difference between target output and actual output, is called

back-propagation (Kizilöz 2021). To reduce this difference at the acceptable levels in the stage of back-propagation, the
weight and bias values of the network are changed iteratively, and thus, the train process of the network is completed. In
addition, the weights that are assigned randomly at first are repeated continuously until achieving the required values. The

Equation below is used to arrange the weights.

Ew ¼ 1
2

Xn
k¼1

(yp � za)
2 (4)

Figure 3 | The ANN structure used in the study.
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where, Ew, indicates the sum of square errors, n, the weight number, yp, the prediction, and za indicates the actual output

values.
The Levenberg-Marquardt (LM) algorithm, a back-propagation algorithm, has been used for the training of ANN models in

this study. This algorithm is a repetitive method used for non-linear least-square problems. The LM algorithm is a combi-

nation of gradient descent and Gauss-Newton methods. This algorithm is preferred frequently by researchers due to its
speed and stability in the training of prediction models (Kizilöz et al. 2015; Şism̧an & Kizilöz 2020; Kizilöz 2021).

Determination of ideal hidden layer and neuron numbers in the ANN structure is also significant in achieving model pre-
dictions. In the literature, ANN applications with single and multi-hidden layers have been studied commonly by model

designers to solve complex engineering problems (Zealand et al. 1999; Rajurkar et al. 2004; Şen et al. 2021; Kizilöz et al.
2022). As the hidden layer with a higher number preferred in most studies cannot develop the model prediction, the ANN
model structure with a single hidden layer has been preferred in this study due to its easy application and prevalence (Kizilöz

et al. 2015; Kizilöz 2021). On the other hand, there is no mathematical approach to determining the most effective neuron
number in the hidden layer (Kizilöz 2021). This number is determined generally through the trial-and-error method (Kizilöz
2021). Also, in this modeling study, MDP, MAP, APP, MLP, daily mean temperature DMT, and DTR variables have been used

as input, and DFR has been used as output.

STDM

Differently from classical statistical methods, geo-statistics is a statistical method taking into account the relationship between
the points and their coordinates based on the stationary randomness in the theory functions. The first stage of geo-statistical
analysis is to make the semi-variogram (SV) analysis. This function is explained as the variance of the difference between two

variables that are apart from each other as h distance. Also, changes based on the distance of spatial variables are identified by
this function. The SV is available below (Equation (5)) for all measured space.

g(h) ¼ 1
2N(h)

XN(h)

i¼1

[Z(xi)� Z(xj þ h)]2 (5)

where g(h) means the SV value, h, i and j the distance between the points, N(h) the dot pair number in h length, Z(xi) the
measured value of the variable in i point, and Z(xj þ h) the measured value of the variable in j point.

The analysis of the SV is completed by adapting a theoretical model to the experimental SV and by making the goodness-of-
fit test determining model parameters. The theoretical SV models used frequently in hydrological and hydro-meteorological
studies are linear, spherical, Gaussian, exponential, and circular. In this study, the linear SV model structure has been pre-

ferred (Equation (6)).

g(h) ¼ C0 þ h
C
A0

� �
(6)

where, C0 is the nugget variance; C is the structural variance; A0 is the range parameter; h is the vector distance between the
observation pairs.

The interpolation technique applied after the theoretical SV structure has been mathematically determined to predict vari-

able values from measured points to unmeasured points is called Kriging method (Krige 1951; Matheron 1963). In general,
the prediction is made through the weighted average of the know values. The basic equation used for the Kriging method has
been given below.

Zu(x0) ¼
Xn
i¼1

1jz(xi) (7)

where, n is the number of points to be used in the Kriging prediction; z(xi), the measured values; 1j, the weight coefficients;
and Zu(x0), the Kriging value predicted in the x0 point.

The Kriging approach is based on the least error squares method and is known as the best linear unbiased estimator. The
weights determined through this approach, which depend on the SV and the spatial position of the data, are calculated as the
mean of the difference between the prediction and actual values is zero and the prediction error variance is the smallest.
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Researchers take advantage of various Kriging methods according to the study area and data structure such as Indicator

Kriging (Armstrong 1998), Universal Kriging (Lark et al. 2014), Simple Kriging (Elbasiouny et al. 2014), Co-Kriging
(Chica-Olmo et al. 2014), Ordinary Kriging (Sanusi et al. 2014), Block Kriging, and Punctual Kriging methods (Şism̧an &
Kizilöz 2020). In this study, the Point Kriging method has been preferred to predict data at unmeasured points.

Model predictions can be made through the contour maps based on the above-mentioned variogram analysis and different
Kriging methods. While changes of two variables each other that are composed of one dependent variable and one indepen-
dent variable can be seen easily in coordinates in the X and Y planes, the behavior between them can be seen through these
maps when the number of independent variables increases to three (Sırdas & Şen 2003). Model predictions with two inputs

and one output are made by using input variables in the X and Y coordinates and output variables in the Z coordinate of these
maps that also called the TDM structure. If the model results are not as accurate as desired, the predictions are repeated
through the second TDM structure that is formed by the error terms (difference between the measured value and prediction)

obtained after the modeling and new independent variable addition (Kızılöz & Şism̧an 2021). Thus, the model accuracy can
be increased by designing a model structure with four inputs and one output through the error terms obtained from the first
TDM and three independent input variables measured (Kızılöz & Şism̧an 2021). Sequential models can be repeated until

achieving the prediction accuracy demanded by the model designer. The calculation steps of these maps are called the
STDM by Kızılöz & Şism̧an (2021), and a sample model structure is available in Figure 4.

P1j ¼ f [ m1j, m2j] (8)

P2j ¼ f [ m3j, e1j] (9)

P(1j) ¼ a1j �m1j þ b1j �m2j (10)

e1j ¼ Mj � P1j (measured DFR � predicted DFR) (11)

P2j ¼ c1j:m3j þ d1j:e1j (12)

mij ¼ ij: measured input data of i: series as MAP, APP, and etc. (i ¼ 1, 2, 3); j ¼ 1, 2, . . . . . . , n where n is the record length,
Mj ¼measured DFR as output data, j ¼ 1, 2, . . . . . . :, n where n is the total number of data,

Pij ¼ ij: model output as prediction DFR, (i ¼ 1, 2)

e1j ¼ 1j: 1. model error terms
e2j ¼ 2j: 2. model result errors
a1j, b1j, c 1j and d1j ¼model constant

Model assessment criteria

Some statistical performance indicators have been used to evaluate the prediction accuracy of models, for example, coeffi-
cient of determination (R2), mean square error (MSE), root mean square error (RMSE), bias (BI), mean absolute error

Figure 4 | STDM structure for model predictions.
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(MAE), and scatter index (SI).

R2 ¼

Pn
i¼1

(Ai � �A)(Pi � �P)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

(Ai � �A)
2 Pn
i¼1

(Pi � �P)2
s

2
66664

3
77775

2

(13)

MSE ¼ 1
n

Xn
i¼1

(Ai � Pi)
2 (14)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

(Ai � Pi)
2

vuut (15)

BI ¼ 1
n

Xn
i¼1

(Ai � Pi) (16)

MAE ¼ 1
n

Xn
i¼1

(jAi � Pij) (17)

SI ¼ RMSE
�A

(18)

where, n is the total number of data points, Ai is the actual data, and Pi is the predicted data. Finally, �A and �P are the means of

the actual and prediction data.

RESULTS AND DISCUSSION

Before starting model applications, 731 raw data belonging to the MDP, MAP, APP, MLP, DMT, DTR variables that were

measured and recorded daily between the 2019 and 2020 time period have been reduced in the range of [0 1] standardizing
them through the min-max normalization method to scale the data in a certain range and increase model performances.

After the normalization process, various combinations have been formed through the ANNs to predict daily failure rates
(DFRs). The model application has been made by using the Neural Network Fitting Toolbox in the MATLAB software. In this

study, the three-layer feed-forward back propagation network structure, FFBP, with a single input, hidden, and output layer
has been preferred (Figure 3). Also, the linear activation functions in the output layer and sigmoid function in the hidden layer
have been used. The model data has been classified randomly; 60% training (439 data), 30% validation (239 data), and 10%

testing (73 data). Before the training process, each model which has irregular weights and biases at the beginning has been
initialized again (Kizilöz et al. 2015; Şism̧an & Kizilöz 2020; Kizilöz 2021). The Levenberg-Marquardt back propagation
(trainlm) that is preferred frequently due to its speed and sensitivity has been used for the training algorithm of the ANN

models in the study (Kizilöz et al. 2015; Şism̧an & Kizilöz 2020; Kizilöz 2021). The neuron number in the hidden layer
that is effective on the model accuracy has been defined via the trial-and-error methods. Firstly, a single neuron was used
in the hidden layer, and then the model performances were evaluated by increasing the neuron numbers one by one. Accord-

ing to the results, the best model performance was obtained when five neurons were used in the hidden layer. Therefore, it
was decided to have five neurons in the hidden layer.

To analyze the effect of some independent variables such as MDP, MAP, APP, MLP, DMT, DTR, ANN models with one
input and one output have been designed and their model performances have been given in detail in Table 3. According to the

model results, the most effective variables are DMT and MAP, respectively. The DMT prediction model has the highest coef-
ficient of determination (R2¼ 0.30) and the lowest mean square error (MSE¼ 0.021). It is seen in Figure 5(a) that the
scatterings are too excessive with 52.64%, according to the 1:1 straight line (45°) used for the comparison of actual and pre-

dicted data of the DMTmodel. A similar effect of temperature, which is a meteorological variable, on the failure has been also
revealed by certain researchers such as Wols & Van Thienen (2014), Pietrucha-Urbanik (2015), and Wols et al. (2019). The
determination coefficient of the MAP model, another independent variable effective on DFR, is 0.23 and its mean square
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error is only 0.023. In the studies conducted by Wang et al. (2009), Shi et al. (2013), and Aydogdu & Firat (2015) on the MAP
variable, it is also emphasized that the network age is an effective factor on the FR. The ANN models with a one-input that

have been applied in this study showed again that the MAP, MDP, APP, and NLP variables are effective on the DFR.
Additionally, meteorological variables such as DMT and DTR have been used as model input in this study for the first
time to make DFR predictions.

The predictions belonging to the twelve different combinations that formed model structures with single input and single
output have been sorted in Table 4 according to some statistical performance indicators such as R2, MSE, BI, MAE, and SI to
increase model accuracies of DFRs. According to this sorting, the best prediction model has been obtained through the MAP-

DMT combination (Figure 5(b)). When the prediction model results with two inputs are compared with the model results
with single input given in Table 3, a performance development is observed over 46%.

Various model combinations with three inputs have been designed increasing input number to develop prediction accuracy

of ANN models. Twelve prediction models evaluated according to the five different performance criteria are available below
in Table 5. When these model results are compared with model results with two inputs, there is no remarkable improvement.
The determination coefficients of the models given in Table 4 change between 0.22 and 0.44. These coefficients change
between 0.21 and 0.40 in Table 5. In brief, the desired predictive accuracies have not been obtained through the model results

with three inputs.
When thirty different models with one, two, and three inputs that applied to predict the DFR through the ANN approach

are analyzed together with R2, MSE, BI, MAE, and SI statistical performance indicators, it is seen that the best model pre-

diction has been achieved by the MAP-DMT model combination. The best actual-prediction relationship with one and
two inputs is given together in Figure 5. Model structure with single input is insufficient for predictions. On the other
hand, the expected development of prediction is not also obtained through the model structure with three inputs. When

Table 3 | Accuracy of ANN models with one input variable

Model no Model inputs R2 MSE BIAS MAE SI%

ANN-1.1 DMT 0.30 0.021 �0.008 0.113 52.64

ANN-1.2 MAP 0.23 0.023 �0.004 0.119 54.98

ANN-1.3 MDP 0.18 0.024 �0.002 0.123 56.49

ANN-1.4 MLP 0.15 0.025 �0.005 0.125 57.73

ANN-1.5 APP 0.12 0.026 �0.002 0.128 58.70

ANN-1.6 DTR 0.10 0.028 0.004 0.135 61.13

Figure 5 | Scatter graphs for (a) DMT and (b) MAP-DMT models.
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ANN model results are examined all together, it is clear that some variables such as MDP, MAP, APP, MLP, DMT, and DTR
are effective factors in the DFR prediction. In a conclusion, after being observed that the desired model performances cannot

be obtained through the ANN model approach for the DFR predictions, it has been tried to obtain predictions models with
high accuracy through the STDM.

In this study, two-dimensional contour charts with three variables have been used through the Surfer program to make pre-

dictions with the STDM structure. It is necessary to have one dependent output and two independent variables (input) to
obtain a contour chart through the Surfer program for problem-solving. While the independent variables are shown on
the X and Y-axis in the prediction charts, the dependent variable values are shown on the Z-axis with curves depending
on independent variables. The STDM structure has been applied for the first time for model charts to predict the DFR.

This structure is composed of different model prediction charts that are linked to each other and have two inputs. In the
beginning, the first model prediction has been made with two independent variables that are effective on the DFR. In case
the model outputs of these charts are not in the desired accuracy, a new model prediction is made through the prediction

errors of the first model and with the help of a third independent variable. Thus, an STDM structure with one output and
four inputs is formed through the prediction error of the first model and three independent variables. STDM structures
can be developed providing forward model flows by each model prediction error being the input of the next model.

Table 4 | Accuracy of ANN models with two input variables

Model no Model inputs R2 MSE BIAS MAE SI%

ANN-2.1 MAP-DMT 0.44 0.016 0.005 0.101 46.68

ANN-2.2 DMT-MLP 0.41 0.017 0.002 0.102 48.15

ANN-2.3 MDP-DMT 0.38 0.018 0.005 0.105 49.11

ANN-2.4 MAP-NL 0.35 0.019 �0.004 0.108 50.58

ANN-2.5 MDP-MAP 0.31 0.020 0.001 0.111 51.77

ANN-2.6 AAP-DMT 0.30 0.021 0.003 0.111 52.21

ANN-2.7 MDP-NL 0.28 0.021 �0.003 0.113 52.95

ANN-2.8 MAP-APP 0.28 0.021 0.009 0.113 53.33

ANN-2.9 MDP-APP 0.24 0.022 �0.002 0.119 54.37

ANN-2.10 MAP-DTR 0.24 0.022 0.005 0.116 54.60

ANN-2.11 APP-NL 0.23 0.023 0.007 0.116 54.87

ANN-2.12 MDP-DTR 0.22 0.023 0.007 0.119 55.28

Table 5 | Accuracy of ANN models with three input variables

Model no Model inputs R2 MSE BIAS MAE SI%

ANN-3.1 MDP-MAP-DMT 0.40 0.018 0.006 0.104 48.56

ANN-3.2 APP- DMT -MLP 0.39 0.018 �0.001 0.104 48.85

ANN-3.3 DMT -DTR- MLP 0.38 0.018 0.007 0.103 49.43

ANN-3.4 MAP – APP – DMT 0.38 0.018 �0.012 0.106 49.36

ANN-3.5 APP – DMT – DTR 0.33 0.020 �0.001 0.110 51.21

ANN-3.6 MDP – APP – DMT 0.33 0.020 �0.008 0.111 51.33

ANN-3.7 MAP – APP – MLP 0.31 0.020 �0.003 0.111 51.78

ANN-3.8 MDP – MAP – APP 0.27 0.021 0.003 0.115 53.26

ANN-3.9 MAP- APP – DTR 0.25 0.022 0.008 0.117 54.02

ANN-3.10 MDP – MAP – DTR 0.25 0.022 0.002 0.116 54.30

ANN-3.11 MDP – APP – MLP 0.24 0.022 0.007 0.114 54.67

ANN-3.12 MDP – MAP – MLP 0.21 0.023 �0.001 0.119 55.55
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Table 6 | Accuracy of STDMs with four input variables

Model no First model inputs Second model inputs R2 MSE BIAS MAE SI%

STDM.1 MAP-DTR Error-DMT 0.93 0.002 0.000 0.033 16.62

STDM.2 MDP-APP Error- DMT 0.92 0.002 0.000 0.034 18.01

STDM.3 APP – DTR Error- DMT 0.92 0.002 �0.001 0.035 18.39

STDM.4 MAP – APP Error- DMT 0.90 0.003 0.000 0.039 20.18

STDM.5 MDP – MAP Error- APP 0.89 0.003 �0.003 0.041 21.50

STDM.6 MAP – MLP Error- APP 0.88 0.003 �0.003 0.042 21.77

STDM.7 MDP – MLP Error- APP 0.88 0.003 �0.001 0.044 22.23

STDM.8 DTR – MLP Error- APP 0.87 0.004 �0.004 0.043 22.71

STDM.9 MDP – DMT Error- MAP 0.84 0.004 0.001 0.050 25.19

STDM.10 MDP – DTR Error- APP 0.84 0.005 �0.002 0.049 26.04

STDM.11 DMT -MLP Error- APP 0.83 0.005 �0.004 0.052 26.24

Figure 6 | The STDM structure with MAP, DTR, Error, and DMT inputs.
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In this study, the statistical performance indicators of eleven models developed by the STDM structure are available below

in Table 6. According to this table, the R2 values are between 0.93 and 0.83, MSE values are 0.002–0.005, BI values are
�0.004 to 0.001, MAE values are 0.033–0.052, and SI values are in the range of 16.62–26.24%. When the forty-one model
accuracies in this study are analyzed together, it is observed that the STDM predictions are higher in comparison with the

ANN predictions.
The best STDM prediction model charts exist in Figure 6. The model charts given in Figure 6(a) and 6(b) have been pre-

pared using MAP, DTR, and DMT variables. Thus, prediction models with four inputs (MAP-DTR-Error-DMT) have been
developed for the DFR. According to the model charts, there is a directly proportional relationship between the DMT and

DFR. Similarly, the failure increase depending on the increasing temperature has been also revealed in the studies conducted
by Wols & Van Thienen (2014) and Wols et al. (2019). The failure reasons depending on the temperature are briefly as fol-
lows; excessive soil shrinkage, absence of appropriate depth of excavation according to the meteorological conditions, and

especially deformation of service connections due to not being covered. The performance of the STDM output given in
Figure 6(c) has been determined by comparing actual model predictions by referencing the 45° (1:1) straight line shown in
red. According to the model charts, the highest prediction model accuracy has been obtained with an R2 value of 0.93

and an SI value of 16.62%.

Figure 7 | The STDM structure with MDP, MLP, Error, and APP inputs.
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Another STDM structure recommended for predicting the DFR is available in Figure 7. The model predictions charts

designed using the MDP, MLP, and APP independent variables have been given in Figure 7(a) and 7(b). It is seen in the
STDM output prediction chart given in Figure 7(b) that the DFRs tend to increase distinctly depending on the increasing
pressure. This problem is at the forefront to be solved for water utilities due to increasing failure rates cause a large

amount of water loss. The relationship between the pressure and failure/leaks rates has been also revealed in detail through
the studies conducted by Kanakoudis & Muhammetoglu (2014) and Kizilöz (2021). According to these researchers, failure
and leakage increases are inevitable under the influence of high pressure. Water utilities and practitioners think that the
most effective pressure management method is the PM for reducing failures. Failures can be reduced by providing ideal net-

work operating pressure by separating the WDN into controllable and measurable isolated areas (district metered areas) and
placing pressure-reducing valves (PRVs) into the points that are determined as a consequence of hydraulic model studies.
According to the STDM chart given in Figure 7(c), the R2 value is 0.88, and the SI value is 22.23% of the MDP-MLP-

Figure 8 | The STDM structure with MDP, DMT, Error, and MAP inputs.
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Error-APP model. Also, according to the actual values of the STDM chart, values above the 45° straight line show that model

predictions are higher than values below this line.
Another prediction model has been made through the MDP, DMT, and MAP variable combination (Figure 8). The increase

of DFR can be seen clearly in this model depending on the MAP increase. In the pipes exposed to high pressure and lost their

material properties due to age, failures increase. A similar failure increase is seen in excessive temperatures in old service
connections that are not buried deep enough or completely uncovered. In Figure 8(c), the actual DFR and model prediction
values have been given comparatively referencing the 45° straight line. Scatterings are below the straight line according to this
figure. The R2 value of the DFR prediction model composed of the MDP- DMT-Error-MAP inputs has been calculated as 0.84.

CONCLUSION

In this study, the ANN and STDM approaches have been used to predict the DFR in the water distribution system in Gebze.
The higher prediction performances have been obtained through the STDM, a structure that enables to visualization of the

model results by making inferences. The best STDM model has been obtained through the MAP-DTR-Error-DMT combi-
nation with four inputs. It is seen that the MDP, MAP, APP, and MLP variables used as model inputs are affected on the
DFR in keeping with the previous studies.

In this study, prediction models have been developed by using some meteorological variables for the first time, for instance,
DMT and DTR. It is understood that each of these variables is effective on the DFR. A significant DFR increase has been
observed through the STDM method in increasing temperatures. Similar increases are also available in MAP and APP vari-

ables as such in DFRs. Increases in temperature, age, and pressure values cause serious failures, especially in service
connections, so undesired water losses occur. Water utilities can reduce water losses by applying various activities such as
district metered area design, pressure management, and active leakage control method.

In the FR predictions, preferring models allowing the interpretation of outputs such as STDM, contributes to the network
management strategies to be developed by water utilities, experts, and researchers. Thanks to the prediction model results,
water utilities can prioritize their future investments and plans, and thus water losses can be reduced systematically. FR pre-
dictions can be made in further studies by taking some variables into account, for instance, depth of excavation, hydraulic

radius, speed, pipe thickness, and area of failure point.
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