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ABSTRACT

In this study, modeling of discharge was performed in compound open channels with non-prismatic floodplains (CCNPF) using soft compu-

tation models including multivariate adaptive regression splines (MARS) and group method of data handling (GMDH), and then their results

were compared with the multilayer perceptron neural networks (MLPNN). In addition to the total discharge, the discharge separation

between the floodplain and main channel was modeled and predicted. The parameters of relative roughness coefficient, the relative area

of flow cross-section, relative hydraulic radius, bed slope, the relative width of water surface, relative depth, convergence or divergence

angle, relative longitudinal distance as inputs, and discharge were considered as models output. The results demonstrated that the statistical

indices of MARS, GMDH, and MLPNN models in the testing stage are R2¼ 0.962(RMSE¼ 0.003), 0.930(RMSE¼ 0.004), and 0.933(RMSE¼
0.004) respectively. Examination of statistical error indices shows that all the developed models have the appropriate accuracy to estimate

the flow discharge in CCNPF. Examination of the structure of developed GMDH and MARS models demonstrated that the relative parameters:

roughness, area, hydraulic radius, flow aspect ratio, depth, and angle of convergence or divergence of floodplain have the greatest impact on

modeling and estimation of discharge.
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HIGHLIGHTS

• Estimation of discharge was performed in compound open channels with non-prismatic floodplains using soft computation models.

• Discharge separation between the floodplain and main channel was predicted.

• Effective parameters for determining the discharge are introduced.

• The accuracy of each of the methods is calculated.

• The performance of the developed models was compared with the ANFIS model.
NOTATIONS
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adaptive neuro-fuzzy inference system

Ar
 relative area

CCNPF
 compound open channel with non-prismatic floodplains

fr
 relative roughness

GMDH
 group method of data handling

MARS
 multivariate adaptive regression splines

MLPNN
 multilayer perceptron neural networks

R2
 coefficient of determination

RMSE
 root mean square error

Rr
 relative hydraulic radius

S0
 bed slope

SVM
 support vector machine

xr
 relative longitudinal distance
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convergence or divergence angle

α
 relative width

Dr
 relative flow depth

δ*
 flow aspect ratio
INTRODUCTION

Rivers are one of the most important resources of water for agriculture, industry, and drinking. Easy access and availability
have led to the formation of human civilizations in their neighborhood for a long time (Torfi et al. 2021). Also, some industrial

projects have been built near rivers to reduce water transfer costs. Floods are one of the most dangerous natural disasters that
occur in river sections. These phenomena with different recurrence periods (from low-flow floods to high-flow floods), can
cause very serious damage to human communities, agricultural lands, and industrial projects. The study of river hydraulics

is the first important step in the study and control of floods (Graf & Altinakar 1998; Dingman 2009). In estimating damages
due to floods, estimating the discharge in the floodplains and the main section is very important. By the estimation of flow
discharge in floodplains, the depth, flooding zone, and also the time of submergence of the floodplains can be estimated.

Normally, the stream flows in its main channel in the river, but in flood conditions, the stream leaves its bed and enters the
surrounding areas (floodplains). In this condition, the cross-section of the stream consists of the main channel and flood-
plains. As the flow enters the floodplains, its properties differ from the single channel. For example, the velocity in

floodplains is lower than the main channel, and their roughness is higher than the main channel (Bousmar et al. 2006).
The difference in velocity in these regions leads to shear stresses and vortices at the boundary between the main channel
and the floodplains. In the past two decades, good efforts have been made to more accurately simulate hydraulics of flood
in compound sections at rivers. In compound open channel hydraulics, the flow characteristics at the main channel and

floodplains as well as their interaction with each other are considered. So far, many types of research have been conducted
on the hydraulics of flow in compound open channels (Roushangar et al. 2021). Most of them have focused on determining
the relation between stage-discharge, velocity distribution (Knight & Demetriou 1983), and shear stress in the main channel

and floodplains, secondary flow, and turbulence characteristics. Sellin (1964) showed that the interaction of the flow in the
main channel and the floodplains cause vortices in their common boundary, which cause the head loss of flow, and conse-
quently the total flow rate is reduced. Mohanty et al. (2011) investigated the shear stress changes in the compound open

channel focusing on the boundary range between the main channel and the floodplain. Their studies demonstrated that
the shear layer depends on the geometric and hydraulic conditions of the flow. By increasing the ratio of floodplain width
to the width of the main channel, the shear layer expansion range decreases, and with the decrease of the ratio of the
flow depth in the main channel to the floodplain, it will increase. Parsaie et al. (2016) investigated the accuracy of empirical

models including the unit cross-section method, divided channel method (DCM), and coherence method using laboratory and
field data. They stated that the divided channel method works well by considering the virtual vertical line as the dividing line
between the sub-sections (main channel and floodplains) and can be used for practical problems. Changes in the geometry of

the flow section along the river’s path cause the cross-section to be non-prismatic and change the flow from uniform to non-
uniform.

In other words, the hydraulic complexity of the compound open channel flow increases when the width of the cross-section

changes and the compound channel section changes from prismatic to non-prismatic. Bousmar et al. (2006) investigated the
hydraulic flow in a compound channel with convergent floodplains. Their findings demonstrated that at high relative depths,
the lateral mass transfer in the final half of the convergent region is higher than the initial half region.

Rezaei & Knight (2009) investigated the accuracy of the Shiono & Knight’s model (SKM) (1988, 1991) in compound chan-
nels with non-prismatic sections. They stated that the SKM model does not have an appropriate accuracy for hydraulic
modeling of flow in such sections. For this purpose, they modified the SKM model and the modified Shiono Knight
model (M-SKM) to estimate the flow parameters including average depth velocity, boundary shear stress, and determining

the stage-discharge relation. Naik et al. (2014) conducted a laboratory study of hydraulic flow in a compound channel
with non-prismatic floodplains. The results of their research demonstrated that the depth average velocity and boundary
shear stress increase during the convergence region. Today, flow characteristics in prismatic compound open channels are

estimated using soft computing models and mathematical modeling.
For example, discharge in prismatic compound channels using artificial neural network models, support vector machine

models, fuzzy adaptive neural network (Najafzadeh & Zahiri 2015; Parsaie et al. 2017), and multivariate adaptive spline
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regression method (Parsaie & Haghiabi 2017) and gene expression programming (Azamathulla & Zahiri 2012) have been

modeled with great accuracy. Also prediction of depth-averaged velocity distribution of compound channels with converging
flood plains using Fluent software and artificial neural network has been performed (Naik et al. 2017). In another study,
Singh et al.(2019) used gene expression and a back propagation neural network to investigate the apparent shear stress in

an asymmetric compound channel. The results of their research showed that the formulas produced by these two models pro-
vide very satisfactory results compared to previous models. Singh & Tang (2020), using the neuro-fuzzy inference system,
predicted the apparent shear stress values in an asymmetric compound channel with five geometrical and hydraulic par-
ameters with appropriate accuracy. The discharge in meandering compound channels has also been estimated by

Mohanta et al. (2020) and Pradhan & Khatua (2019a) using empirical models. Using soft computing models the research
to date has tended to focus on estimating discharge in compound channels with prismatic floodplains rather than non-pris-
matic floodplains. In other words, little research has been done on non-uniform sections (Pradhan & Khatua 2019b; Mohanta

& Patra 2021) or compound open channels with non-prismatic floodplains (CCNPF; Das et al. 2020). Hence, due to the
importance of discharge estimation especially in flood conditions, in this study, in addition to estimating the total flow
rate, discharge prediction is considered in the floodplain and the main channel.

The present study fills a gap in the literature by using soft computation models. These models include the group method of
data handling and multivariate adaptive spline regression method, modeling and estimating discharge in compound CCNPF.
Also with using these models, the percentage of participation of discharge in the floodplains and the main channel has been

estimated.
METHODOLOGIES

This section introduces the important parameters involved in predicting the discharge in non-prismatic compound open

channels and then defines the statistical properties of the collected data and related sources. Finally, the soft computing
models used in this research, which include multivariate adaptive regression splines (MARS), GMDH, and multilayer percep-
tron neural networks (MLPNN) will be introduced.
NON-PRISMATIC COMPOUND OPEN CHANNELS

A view of non-prismatic compound open channels including convergent or divergent floodplains is shown in Figure 1. By
examining the hydraulics of the flow in non-prismatic compound open channels, the researchers found that the flow in

the compound channel depends on the coefficient of friction, area ratio, width ratio, ratio of the hydraulic radius, relative
Figure 1 | View of a non-prismatic compound channel (a) divergent floodplain (b) convergent floodplain.
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longitudinal distance, relative depth, flow aspect ratio, and bed slope. Hence, in this present study, for developing the

MLPNN, GMDH, and MARS models, nine dimensionless input parameters presented in Equation (1) were considered.

Q ¼ c(fr, Ar, Rr, Dr, S0, d�, a, u, xr) (1)

where, fr¼ fmc/ffp¼ relative roughness with fmc, ffp¼ the main channel and floodplain Darcy-Wiesbach friction factor,respect-

ively; Ar¼Amc/Afp¼ relative area with Amc, Afp¼ the main channel and floodplain cross section, respectively; Rr¼Rmc/
Rfp¼ relative hydraulic radius with Rmc, Rfp¼ hydraulic radius of the main channel and floodplain, respectively; δ*¼ b/
H¼ flow aspect ratio(main channel width to the total flow depth); α¼B/b¼ relative width(width of the floodplain to the

width of the main channel);Dr¼ (H� h)/H¼ relative flow depth(h is bankfull depth); xr¼ l/L¼ relative longitudinal distance
with l, L¼ distance of any point from beginning of the divergent or convergent and total length of divergent or convergent
region, respectively; θ¼ convergence or divergence angle and S0¼ bed slope.

To develop the mentioned artificial intelligence models, laboratory data of Othman (2000), Bousmar (2002), Rezaei &
Knight (2009), Yonesi et al. (2013), and Naik & Khatua (2016) have been used. Table 1 shows the statistical characteristics
of the collected data.
Review of MLPNN

A neural network is an advanced non-linear mathematical model that can simulate the relationship between the inputs
and outputs of a complex non-linear system. In many simulations that lead to the solution of complex equations to find

the relation between the factors affecting the system, a neural network can be used as a suitable alternative. The MLPNN
is one of the most widely used types of ANN models. Figure 2 shows a view of this model. As shown in this figure, the
inputs of the neural network model are multiplied by coefficients (w: weight) and then those are added by a constant

value (b: bias). The transfer function is then added to the result. The design of an MLPNN model consists of several
steps, which are: defining the number of model layers including the input layer, hidden layer(s), an output layer,
number of neurons in each layer, defining the active transfer function, and finally choosing the training method.

Neural network training means determining the values of weights and constants that are multiplied and added to
each input. Various methods for neural network training have been proposed, such as reduction gradient methods,
Levenberg–Marquardt algorithm, or metaheuristic methods such as genetic algorithm and particle swarm optimization.
In the metaheuristic methods, neural network training is assumed as an optimization problem (Sihag et al. 2021).
Table 1 | Statistical characteristics of the collected data

fr Ar Rr Dr S0 δ* α xr θ Q

Minimum 0.31 0.93 1.70 0.11 0.0009 1.41 1.33 0.00 �13.38 0.01

Maximum 0.84 22.59 35.09 0.54 0.0020 6.54 3.02 1.00 11.31 0.06

Range 0.53 21.66 33.39 0.43 0.0011 5.13 1.69 1.00 24.69 0.05

Mean 0.70 4.37 3.51 0.34 0.0012 4.40 2.10 0.42 �2.17 0.02

Median 0.71 3.01 2.80 0.33 0.0010 4.19 2.00 0.33 �1.91 0.02

First quartile 0.65 1.86 2.30 0.25 0.0010 3.77 1.67 0.17 �9.00 0.02

Third quartile 0.76 5.58 3.73 0.44 0.0011 5.38 2.51 0.67 3.81 0.04

Variance 0.01 13.86 9.89 0.01 0.0000 1.62 0.30 0.10 48.85 0.00

Average deviation 0.07 2.70 1.43 0.10 0.0003 1.04 0.47 0.28 6.01 0.01

Standard deviation 0.09 3.72 3.14 0.12 0.0004 1.27 0.55 0.32 6.99 0.01

Coefficient of variation 0.13 0.85 0.90 0.35 0.3440 0.29 0.26 0.77 �3.22 0.56

Skew �1.06 2.09 6.57 0.19 1.2530 �0.61 0.32 0.32 �0.06 1.15

Kurtosis 2.03 5.58 55.13 �0.99 �0.3250 �0.02 �1.11 �1.13 �1.17 0.52

://iwa.silverchair.com/ws/article-pdf/22/4/4400/1042069/ws022044400.pdf



Figure 2 | The structure of the MLPNN developed to estimate the discharge in the compound open channel with non-prismatic floodplains
(a) 6 inuts (b) 9 inputs.
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Review of GMDH

The GMDH model is one of the a posteriori approaches based on perceptron theory. This approach has been developed to
identify, model, and predict complex systems (Najafzadeh & Azamathulla 2015). GMDH is a combination of adlines, and
modified versions of this method have been used for various modeling applications. This method has higher accuracy com-
pared with the perceptron-type structure because in this model, the division of information into two categories of useful and

non-useful is used. GMDH also requires less observational data (Ivakhnenko 1971). Figure 3 shows the structure of the
GMDH network developed with a quadratic polynomial as the activation function (Equation (2)) in this study to model
and prediction of flow discharge in the non-prismatic compound open channels (Bhoria et al. 2021).

The network structure is determined by the proposed algorithm as follows: selection of input variables to the model, col-
lecting of a set of observational data related to the subject, dividing of the data into two groups: calibration and validation
data, building N-adline for all two pairs of input variables, the transfer function for each neuron, estimate the weighting coef-

ficients for all N-adlines by least squares error method (LSE), calculation of filtration criteria, comparison of calculated
criteria for all N-adlines with a set threshold value. If the threshold value is greater than the filtration criteria, the
M-adline is removed. Then other adlines remain for the next layer. A fixed threshold value can be considered for all layers

or a threshold value for each layer.
Figure 3 | The structure of the developed GMDH model with 6 inputs to estimate the discharge in a non-prismatic compound channel.
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Each neuron in the GMDH structure performs a non-linear function of the inputs. This non-linear function is as follows:

Y ¼ w0 þw1x1 þw2x2 þw3x21 þw4x22 þw5x1x2 (2)

where w0 to w5 is the weight of the parameters and x1, x2 are the input variables. Using the LSE method, six coefficients are
calculated for each neuron. The steps of which are as follows: a set of 6 coefficients must be found for each neuron so that the
mean squared error between the neurons’ outputs is yn and the actual value of wn is minimum.

f1 ¼ w0 þw1x1i þw2x1j þw3x21i þw4x21j þw5x1ix1j

f2 ¼ w0 þw1x2i þw2x2j þw3x22i þw4x22j þw5x2ix2j

:

fN ¼ w0 þw1xNi þw2xNj þw3x2Ni þw4x2Nj þw5xNixNj

(3)

That this equation is written as the following general matrix:

f ¼ XW (4)

Matrixes f, X and W have dimensions N� 1, N� 6, and 6� 1, respectively. Normal equations are obtained by multiplying

both sides of Equation (4) in the matrix X transposition:

XTf ¼ (XTX) W ) W ¼ (XTX)�1XTf (5)

XTX is a 6� 6 matrix and the coefficients can be obtained using the inverse method. The W matrix consists of a set of 6
coefficients. This matrix can approximate correct outputs with a minimum mean square error. The above steps are repeated
for all the first layer neurons as well as for all subsequent layer neurons. The neuron’s performance function is determined
after obtaining six coefficients. This performance function is controlled by correlating or calculating the mean square error

between the actual data outputs. Finally, to continue the solution, neurons with a performance function higher than the
threshold value are selected (Najafzadeh et al. 2013; Najafzadeh & Azamathulla 2015; Najafzadeh & Sattar 2015).
Review of MARS method

The MARS method first was proposed by Friedman (1991) to predict continuous numerical outputs. This model is one of the
local non-parametric models. The application of the non-parametric term in this model is that the structure of the model is not
known before modeling. Also, the MARS model not only does not use all data together but also divides data into subcate-

gories and then performs the modeling operation for each of these subcategories. The mathematical models of such
subcategories are local. In the MARS model, it is possible to find a hidden non-linear pattern in a data set including a
large number of variables. In this method, it is possible to define the estimation function and there is no need to combine

several statistical methods. This model is based on basis functions, which are defined as follows for each variable.

max {0, x� t} and max {0, t� x} (6)

where t¼ a node and in practice is an explanatory variable. These functions are called spline functions, which are reflected in
the node t-pair. The general form of the MARS model is as follows :

Y
^ ¼ C0 þ

XM
k¼1

bk Bk (X) (7)

where Ŷ¼ estimate the value of the response variable, X¼ vector of the explanatory variables, Bk¼ the basis function, and
βk¼ coefficients that are determined by minimizing the sum of the squares of the residuals.
://iwa.silverchair.com/ws/article-pdf/22/4/4400/1042069/ws022044400.pdf
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Each basis function may be a spline linear function or the multiplication of two or more of them that express interactions.

MARS divides the space of explanatory variables into specific regions with specific nodes. The MARS model fitting is per-
formed in two stages, forward and backward, respectively. In the forward stage, a large number of basis functions with
different nodes are continuously added to the model. In the backward stage, the basis functions that are less important

and effective in estimating are removed.
Finally, the best model is selected based on a minimum criterion called ‘generalized cross-validation (GCV)’. GCVk is the

kth model in deleting phase. This quantity is defined by the following expression:

GCVk ¼ 1
n

Xn
i¼1

yi � f
^
k (xi)

� �2

=(1� C (k) =n)

2

(8)

where fk
^
¼ estimated model in kth step of backward elimination stage, and C(k)¼ λ. M¼ the number of sentences in kth

model, M¼ the number of spline function nodes in the model(2,M, 4), and λ¼ cost function criterion.
Modeling strategies

As shown in Equation (1), nine parameters can be used as input variables to model and prediction of flow discharge in a

compound channel with non-prismatic floodplains using soft computing models (Figure 4). Therefore, in designing the pat-
tern of input variables, a combination of one to nine parameters can be considered. In other words, it is possible to define the
input variable by combining k (1, k, 9) and n¼ 9 C(n, k) ¼ n!=(n� k)k!ð Þ. Different approaches can be used in soft com-
puting models to reduce modeling time and identify the best input combination. The first step is to use the variables that have

the highest correlation with the output variable (discharge). For this purpose, the correlation of independent variables and
discharge are calculated and are presented in Table 2 and Figure 5.

As can be seen from this figure and table, in the data range used, there is the highest positive correlation between Q and

Ar and Rr. Also, there is a slight positive correlation with the divergence (convergence) angle. As shown in this table, the
discharge is inversely related to other parameters such as the fr and β. For finding the most effective parameters, other
methods, such as the gamma test can be used (Das et al. 2020). This method also works based on the correlation coeffi-

cient. Such methods are used to design the input variables of the soft computing model, such as MLPNN, adaptive neuro-
fuzzy inference system (ANFIS), and SVM. However, in the GMDH and MARS models, the most important influential
parameters in determining the output parameter (discharge) are automatically identified in the model development process,

and in the final model, the highest weight coefficient is assigned to them. In this study, for the development of the men-
tioned soft computing models including GMDH, MARS, MLPNN models, the collected dataset (196 datasets) was divided
into two categories of training and testing.
Figure 4 | Input variables for discharge estimation in CCNPF.
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Table 2 | Correlation of variables involved in estimating discharge

fr Ar Rr Dr So δ* α xr θ Q

fr 1.00

Ar �0.71 1.00

Rr �0.79 0.57 1.00

Dr 0.84 �0.58 �0.49 1.00

So 0.16 �0.21 �0.16 0.03 1.00

δ* 0.12 �0.03 �0.30 �0.16 0.35 1.00

α 0.41 �0.70 �0.26 0.20 0.27 0.05 1.00

xr 0.15 �0.14 �0.13 0.11 0.10 0.12 0.10 1.00

θ �0.09 �0.10 0.16 0.06 �0.25 �0.16 0.05 0.36 1.00

Q �0.34 0.22 0.31 �0.21 �0.13 �0.81 �0.14 �0.14 0.10 1.00

Figure 5 | Involved parameters versus discharge in CCNPF.
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RESULTS AND DISCUSSION

The histogram of the data used is shown in Figure 6. Eighty percent of the data were randomly selected to model training, and
the remaining 20% was devoted to testing of the model.
://iwa.silverchair.com/ws/article-pdf/22/4/4400/1042069/ws022044400.pdf



Figure 6 | Histogram of data used to estimate discharge in compound channels with non-prismatic floodplains.
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The statistical characteristics of the data assigned to each of the training and testing categories are presented in Tables 3 and
4, respectively. The most important point in assigning data to each of the training and testing groups is that the range of data

assigned to both categories is close to each other.
The error indices including coefficient of determination (R2) and root mean square error (RMSE) was used to evaluate the

developed models. In addition, the developed discrepancy ratio (DDR) is used for evaluating the characteristics of the devel-

oped models. Taylor diagram was used to compare the performance of the developed models. The DDR index shows the ratio
of the predicted values to the observed values minus one. If the value of this index is positive, it indicates the property of over-
prediction, and if it is negative, it has the property of underprediction. Based on this index, in addition to its numerical values
for training and test data, it is necessary to draw a histogram and its range.

R2 ¼

Pn
i¼1

(Oi �O)(Pi � P)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

(Oi �O)
2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

(Pi � P)
2

s
0
BBBB@

1
CCCCA

2

(9)

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

(Oi � Pi)
2

n

vuuut
(10)
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Table 3 | Statistical characteristics of the data assigned to the training

fr Ar Rr Dr S0 δ* α xr θ Q

Minimum 0.38 0.93 1.70 0.11 0.00 1.41 1.33 0.00 �13.38 0.01

Maximum 0.84 22.59 17.69 0.54 0.00 6.54 3.02 1.00 11.31 0.06

Range 0.45 21.66 15.99 0.43 0.00 5.13 1.69 1.00 24.69 0.05

Mean 0.70 4.45 3.30 0.34 0.00 4.35 2.08 0.44 �2.32 0.02

Median 0.71 3.06 2.79 0.33 0.00 4.10 2.00 0.50 �1.91 0.02

First quartile 0.65 1.86 2.31 0.26 0.00 3.77 1.67 0.17 �9.00 0.02

Third quartile 0.76 5.79 3.70 0.49 0.00 5.36 2.51 0.67 3.81 0.04

Variance 0.01 13.94 3.74 0.01 0.00 1.57 0.29 0.10 48.68 0.00

Average deviation 0.07 2.75 1.15 0.10 0.00 1.01 0.46 0.28 6.07 0.01

Standard deviation 0.09 3.75 1.94 0.12 0.00 1.26 0.54 0.32 7.00 0.01

Coefficient of variation 0.01 13.94 3.74 0.01 0.00 1.57 0.29 0.10 48.68 0.00

Skew �0.73 1.99 4.03 0.19 1.50 �0.61 0.36 0.24 �0.09 1.10

Kurtosis 0.77 5.19 23.03 �0.97 0.40 0.07 �1.05 �1.17 �1.24 0.41

Table 4 | Statistical characteristics of the data assigned to the testing

fr Ar Rr Dr S0 δ* α xr θ Q

Minimum 0.31 0.94 1.72 0.15 0.00 1.44 1.33 0.00 �13.38 0.01

Maximum 0.84 20.60 35.09 0.53 0.00 6.43 3.02 1.00 11.31 0.06

Range 0.53 19.66 33.37 0.39 0.00 4.99 1.69 1.00 24.69 0.05

Mean 0.69 4.05 4.36 0.33 0.00 4.62 2.20 0.34 �1.55 0.02

Median 0.71 2.85 2.85 0.34 0.00 4.85 2.01 0.25 �1.91 0.02

First quartile 0.64 1.92 2.26 0.23 0.00 3.84 1.72 0.06 �5.00 0.01

Third quartile 0.76 4.93 3.84 0.40 0.00 5.59 2.71 0.50 3.81 0.02

Variance 0.01 13.43 33.74 0.01 0.00 1.73 0.31 0.10 49.03 0.00

Average deviation 0.08 2.50 2.72 0.10 0.00 1.09 0.50 0.27 5.86 0.01

Standard deviation 0.11 3.71 5.88 0.12 0.00 1.33 0.57 0.32 7.09 0.01

Coefficient of variation 0.01 13.43 33.74 0.01 0.00 1.73 0.31 0.10 49.03 0.00

Skew �1.63 2.73 4.43 0.24 0.58 �0.71 0.18 0.71 0.07 1.47

Kurtosis 3.56 9.78 21.06 �1.04 �1.71 0.01 �1.30 �0.65 �0.94 1.59
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DDR ¼ Predicted Value
Observed Value

� �
� 1 (11)

In Equations (9) and (10), O, P¼ observational and predicted or output values, respectively. �O, �P¼Average observational
and predicted data, respectively, and n¼ the number of samples.

Results of the MARS model

The preparation and development of the MARS model as stated in the material and methods section consists of two stages,

the first stage includes the growth and development of the model and the second stage includes pruning the model. In the first
stage, to explore the model space and fit the regression equations, they are divided into several subspaces, and in the second
stage, some of them are pruned to prevent overfitting. To develop the MARS model to estimate the discharge in non-prismatic
://iwa.silverchair.com/ws/article-pdf/22/4/4400/1042069/ws022044400.pdf
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compound channel, in the first stage, about 30 basis functions were prepared, and in the second stage (pruning stage) 10 of

them were removed. The mathematical model obtained from the MARS model is presented in Equation (12). The functions
and coefficients of this model are presented in Table 5. Evaluation of the MARS structure shows that: δ*, So, β, Ar, and fr had
the greatest effects in the final mathematical model to estimate the discharge in CCNPF. The error statistics of the MARS

model developed in the training and testing steps are shown in Figure 7. As shown in this figure, the statistical indices of
this model in the training step are R2¼ 0.986 and RMSE¼ 0.002, and in the testing step are R2¼ 0.962 and RMSE¼
0.003. In this model, the DDR index was also calculated and the corresponding diagram was prepared, which is shown in
Figures 8 and 9. It can be seen from these figures, the range of DDR index changes in the training and testing step is between

[�0.4, 0.3].
To determine whether this model has over-fitting or under-fitting properties, the DDR index histogram is plotted (Figures 8

and 9).

Assessment of these figures at the training and testing steps show that: the DDR histogram is not particularly skewed, and
the MARS model has no significant overestimation or underestimation.

The survey of statistical indicators shows that the MARS model has a good performance for estimating the discharge in

CCNPF. The results of the correlational analysis can be seen in Equation (12).

Q ¼ 0:042þ
X20
M¼1

bmFi(x) (12)

GMDH model results

To develop the GMDH model for estimating the discharge in CCNPF, the same data used in the training and testing steps of
the MARS model were used. In the GMDHmodel, only two parameters are assigned to each neuron. There are 36 neurons in
Table 5 | The basic function of the developed mathematical model by MARS algorithm

BF functions Coefficients

BF1¼max(0, δ*� 1.87) �0.035

BF2¼max(0, 1.87 �δ*) 0.046

BF3¼BF1 * max(0, 0.0011 �So) 33.067

BF4¼max(0, So �0.00099) 16.524

BF5¼max(0, 0.00099 �So) �533.352

BF6¼BF1 * max(0, β� 0.364) �0.062

BF7¼BF1 * max(0, 0.364 �Dr) 0.034

BF8¼max(0, θ þ1.91) �0.013

BF9¼max(0, �1.91 �θ) 0.006

BF10¼BF1 * max(0, �3.81 �θ) �0.003

BF11¼max(0, θ �5.71) 0.002

BF12¼BF4 * max(0, 0.708 �fr) 44.688

BF13¼max(0, θ þ9) * max(0, δ*� 4.17) �0.002

BF14¼BF9 * max(0, δ*� 3.96) 0.004

BF15¼BF9 * max(0, 3.96 �δ*) �0.004

BF16¼max(0, θ þ3.81) 0.011

BF17¼max(0, 5.71 -θ) * max(0, 0.269 �Dr) �0.003

BF18¼max(0, θ þ9) * max(0, δ*� 3.91) 0.003

BF19¼BF16 * max(0, 1.28 -Ar) 0.007

BF20¼BF16 * max(0, fr �0.82) �0.236
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Figure 7 | The results of soft computing models in estimation of discharge in compound channel with non-prismatic flood plains.
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the first layer of the GMDHmodel (Figure 3). Only neurons that have higher accuracy in estimating the discharge are selected
and used in the construction of the next layer.

The coefficients of the activated function of the developed GMDHmodel are presented in Table 6. Evaluating the structure
of the developed GMDH model shows that similar to the MARS model, this model has identified the parameters δ*, So, Dr,
and fr as the most important parameters in estimating the discharge in CCNPF.

But instead of the Ar, the model has chosen the Rr, although there is a direct relationship between the Ar and Rr. The per-
formance of the developed GMDH model in the training and testing steps is shown in Figure 7. As shown in this figure, the
statistical indicators of GMDH model in the training step are R2¼ 0.935 and RMSE¼ 0.003 and in the testing step are R2¼
0.930 and RMSE¼ 0.004, respectively. Comparison of the statistical indicators of the GMDH model with the MARS model

shows that the GMDH model is partially less accurate. Also, the DDR index was calculated for this model. Its distribution
diagram is plotted on the data used as well as its histogram (Figures 8 and 9). The range of DDR index changes for the
GMDH model results in both training and testing steps varies between [�0.4, 0.5].

The scatter range of this model is larger than the MARS model. Examination of the DDR histogram of this model in the
training step shows that this model has significantly overestimation. But in the testing step, the MARS model reduces this
feature by dividing the space between input variables and regression modeling and provides more acceptable results.
://iwa.silverchair.com/ws/article-pdf/22/4/4400/1042069/ws022044400.pdf



Figure 8 | DDR index for models in the training step.
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Development of the MLPNN model

For the preparation of the MLPNN model, two strategies were used: considering all input parameters as the first model and
then considering the most important parameters specified from the previous models as the input of the second model of input
variables. The second strategy involves preparing two hidden layers for the network, each with five neurons. This strategy

aimed to evaluate and compare the accuracy of the MLPNN model with the GMDH model. To use this model, a script
has been written in Matlab software. To select the activation function, the types of functions embedded in this software
om http://iwa.silverchair.com/ws/article-pdf/22/4/4400/1042069/ws022044400.pdf
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Figure 9 | DDR index of the models in the testing stage.
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were examined and the result showed that the sigmoid tangent function has the best performance. The structure of the devel-
oped MLPNN model based on both scenarios is shown in Figure 10. Notably, the same data used for developing the MARS

and GMDH models were used to develop the MLPNN model.
The performance of the MLPNN model developed at different stages of training and testing is shown in Figure 7. Exam-

ination of this figure shows that the statistical indices of error of the MLPNN model based on considering all the involved

variables (9 variables) as input in the training stage are R2¼ 0.969 and RMSE¼ 0.002, and in the testing stage are R2¼
0.933 and RMSE¼ 0.004. Also, the performance of the MLPNN model is calculated based on the most important parameters
://iwa.silverchair.com/ws/article-pdf/22/4/4400/1042069/ws022044400.pdf



Table 6 | The developed GMDH network coefficients to estimate discharge in non-prismatic compound channels

b0 b1 b2 b3 b4 b5 b6

layer-1 �0.203 509.015 �0.047 �157,389.086 0.005 �6.383 0.004
0.002 0.288 0.009 �0.267 �0.001 �0.039 0.005
�0.027 0.299 �0.002 �0.209 0.000 �0.018 0.007
0.093 �0.004 �0.022 0.000 0.001 0.002 0.007

layer-2 0.099 �0.027 �0.001 0.002 0.000 0.000 0.007
0.004 0.528 0.155 �17.867 �30.246 53.195 0.004
0.004 0.461 0.233 �15.991 �30.793 51.799 0.004
�0.001 0.391 0.598 42.442 44.894 �86.729 0.004
0.004 0.380 0.305 �5.786 �20.122 31.047 0.004
�0.002 0.973 0.248 �40.516 �43.986 81.660 0.005

Figure 10 | Taylor diagram for comparison of performance in models used in the training stage.
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as input (6 variables) and is shown in Figure 7. Examination of this figure shows that the error indices of the MLPNN model
based on the most important influential variables in the training and testing step are R2¼ 0.983 and RMSE¼ 0.002 and R2¼
0.969 and RMSE¼ 0.002. Examining the performance of the MLPNN model based on both scenarios shows that any
additional information as model input not only does not increase the accuracy of the neural network model but also slightly
decreases its accuracy. The Taylor diagram was used to comprehensively examine the developed models including MARS,
GMDH, and MLPNN (based on both scenarios). The Taylor diagram for the training and testing stages is shown in Figures 10

and 11. As it shows, in the training stage, the performance of all models is almost equal to each other, but in the testing stage
based on the taylor diagram that used the R2 and RMSE indices, the performance of the GMDH model is significantly
weaker.

Estimating discharge in main channel and floodplains

As mentioned, in flood engineering studies, it is important to estimate the discharge in the main channel and the floodplains.
In this section, the contribution of each of the different parts of the compound channel including the main channel and non-

prismatic floodplains of the total flow discharge is presented using the mentioned soft calculation models. Relative roughness
parameters ( fr), convergence or divergence angle, relative depth, and relative distance were used as inputs of the mentioned
models. The structure of the MARS model developed to estimate the share of the main channel of the flow discharge (Qm) is
om http://iwa.silverchair.com/ws/article-pdf/22/4/4400/1042069/ws022044400.pdf
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Figure 11 | Taylor diagram for comparison of performance in models used in the testing stage.
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presented in Equation (13) and the extended form of the basis functions and their coefficients are presented in Table 7.

Qm ¼ 89:927þ
X18
M¼1

bmFi(x) (13)
Table 7 | Basis functions and model coefficients developed for estimating Qm

Basic functions Coefficients

BF1¼max(0, xr �0.25) * max(0, Dr �0.35) �356.244

BF2¼max(0, xr �0.25) * max(0, 0.35 �Dr) 1,695.451

BF3¼max(0, θ �3.81) �1.257

BF4¼max(0, 3.81 �θ) �1.803

BF5¼max(0, 0.35 �Dr) 36.839

BF6¼max(0, xr �0.25) * max(0, θ þ3.81) �3.968

BF7¼max(0, xr �0.25) * max(0, �3.81 �θ) �0.902

BF8¼max(0, �3.81 �θ) 3.520

BF9¼max(0, θ þ3.81) * max(0, 0.5 �xr) 2.544

BF10¼max(0, xr �0.25) * max(0, 0.4 �Dr) �741.817

BF11¼max(0, xr �0.25) * max(0, 2 �fr) �5.626

BF12¼BF5 * max(0, 0.5 �xr) �67.410

BF13¼max(0, xr �0.25) * max(0, 0.3 �Dr) �861.265

BF14¼max(0, xr �0.25) * max(0, Dr �0.25) 429.220

BF15¼BF4 * max(0, Dr �0.3) �9.656

BF16¼BF4 * max(0, 0.3 �Dr) 11.211

BF17¼BF5 * max(0, �3.81 �θ) �15.543

BF18¼BF3 * max(0, xr þ0) 4.091
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The performance of the MARS model developed at different phases, including training and testing, is shown in Figure 12,

respectively. The statistical indices of the developed model in the training stage are R2¼ 0.986 and RMSE¼ 1.320 and in the
testing stage are R2¼ 0.979 and RMSE¼ 1.723.

In the following, the performance of GMDH and MLPNN models is presented and evaluated to estimate the contribution

of the main channel cross-section in the convey of total flood discharge. The structures of the developed GMDH and MLPNN
models are shown in Figures 13 and 14. The table of coefficients of the neurons involved in the GMDH network is also pre-
sented in Table 8. As can be seen from these figures, the statistical indices of GMDH and MLPNN models in the training
stage are: GMDHTraining: R

2¼ 0.830, RMSE¼ 4.592 and MLPNNTraining: R
2¼ 0.982, RMSE¼ 1.595, respectively. In the test-

ing stage are: GMDHTest: R
2¼ 0.69, RMSE¼ 5.412 and MLPNNTest: R

2¼ 0.933, RMSE¼ 2.183, respectively. A summary of
the statistical indices of the models used is presented in Table 9. Evaluation of this table shows that the accuracy of the MARS
model is higher than other models.

The performance of MARS, GMDH, and MLPNNmodels in the estimation of the contribution of floodplains from the total
discharge passing (Qf) is investigated. The basis functions and related coefficients are presented in Table 10. The performance
Figure 12 | Performance of models developed to estimate discharge in the main channel.
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Figure 13 | The structure developed the GMDH model to estimate flow rate in the main section.

Figure 14 | The GMDH model structure developed to estimate discharge in main channel and floodplains.

Table 8 | The coefficients of developed GMDH network to estimate discharge in the main channel of the CCNPF

b0 b1 b2 b3 b4 b5 b6

layer-1 90.751 1.253 �14.305 �0.014 14.378 �2.292 90.751
116.271 �91.802 �39.201 33.262 15.473 63.203 116.271
101.198 0.168 �44.835 0.009 4.407 �0.881 101.198
108.542 �7.859 �66.635 2.689 55.058 �2.445 108.542

layer-2 �1,186.203 10.568 15.696 0.005 �0.023 �0.117 �1,186.203
�985.800 6.668 15.201 0.014 �0.032 �0.092 �985.800
�981.862 6.499 15.478 �0.005 �0.054 �0.053 �981.862

layer-3 �90.627 7.223 �4.243 0.180 0.240 �0.431 �90.627

Table 9 | Statistical indices of the models developed to estimate the discharge in the main channel

Methods

Training Stage Testing Stage

R2 RMSE R2 RMSE

MARS 0.986 1.320 0.979 1.723

GMDH 0.830 4.592 0.769 5.412

MLP 0.982 1.595 0.933 2.183
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of the models in the training and testing stages is also shown in Figure 15.

Q ¼ 18:823þ
X22
M¼1

bmFi(x) (14)
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Table 10 | Basis functions and coefficients of the MARS model developed for estimation of Qf

Basis functions Coefficients

BF1¼max(0, 0.4 �Dr) �130.933

BF2¼max(0, xr �0.25) * max(0, θ �5.7) 6.336

BF3¼max(0, 5.7 �θ) �2.725

BF4¼max(0, Dr �0.35) 142.337

BF5¼BF1 * max(0, 0.25 �xr) �317.615

BF6¼max(0, 2 �fr) 2.555

BF7¼max(0, 0.25 �xr) * max(0, θ þ3.81) �5.756

BF8¼max(0, 0.25 �xr) * max(0, θ �3.81) 6.965

BF9¼max(0, 0.25 �xr) * max(0, 3.81 �θ) �6.096

BF10¼max(0, xr �0.25) * max(0, θ �3.81) �6.254

BF11¼max(0, xr �0.25) * max(0, �3.81 �θ) 5.274

BF12¼max(0, xr �0.25) * max(0, Dr �0.2) 1,218.284

BF13¼max(0, xr �0.25) * max(0, 0.2 �Dr) �2,068.526

BF14¼max(0, xr �0.25) * max(0, Dr �0.25) �1,470.058

BF15¼max(0, xr �0.25) * max(0, 0.25 �Dr) 1,880.897

BF16¼BF3 * max(0, 0.3 �Dr) �17.987

BF17¼max(0, 0.35 �Dr) * max(0, xr �0.5) �318.956

BF18¼max(0, 0.35 �Dr) * max(0, 0.5 �xr) 427.501

BF19¼max(0, 0.35 �Dr) * max(0, 5.7 �θ) 12.529

BF20¼BF3 * max(0, xr �0.75) �7.267

BF21¼BF3 * max(0, 0.75 -xr) 5.216

BF22¼max(0, xr �0.25) * max(0, fr �2) �5.471
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The structure of the GMDHmodel developed to estimate the discharge passing in the floodplain is shown in Figure 16, and
its associated coefficients are shown in Table 11. The structure of the neural network model is also shown in Figure 14. The
error statistical indices of the developed models are generally presented in Table 12. This table shows that the MARS algor-

ithm has the best accuracy.

Comparison with previous findings

The performance of computational models developed in this study was compared with the ANFIS developed by Dos et al.
[22]. Also, comparison and investigation of these findings showed that the structure of MARS and GMDH models is consist-
ent with the results of the gamma test. In other words, both the structure of the GMDH and MARS models and the gamma
test confirm that the most important parameters involved in estimating the discharge in CCNPF are δ*, So, Dr, Ar, fr, and Rr.
Examination of the error indices of the model developed with these two models shows that the ANFIS models in the test stage
are: R2¼ 0.850, RMSE¼ 0.005. The comparison of the indices of the models developed in this research with ANFIS shows
that the MARS and MLPNN models developed in this research can model and predict the discharge in CCNPF much more

efficiently and accurately.
CONCLUSION

In the present study, the flow discharge (Q) in a CCNPF (convergent and divergent floodplains) was modeled and estimated
using soft computational models including MARS, GMDH, and MLPNN models. For this purpose, the geometric and

hydraulic characteristics of the flow include relative roughness ( fr), relative area (Ar), relative hydraulic radius (Rr), flow
aspect ratio (δ*), relative width (α), relative depth of the flow (Dr), relative longitudinal distance (xr), the angle of convergence
or divergence (θ) of the floodplain relative to the main channel (positive for divergence angle and negative angle for
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Figure 15 | Performance of models developed to estimate discharge passing in floodplains.

Figure 16 | GMDH model structure developed to estimate discharge passing in floodplains.
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Table 11 | The coefficients of the developed GMDH model to estimate discharge passing in flood plains

b0 b1 b2 b3 b4 b5 b6

layer-1 �25.836 132.501 40.987 �44.750 �11.453 �80.880 �25.836
13.044 �1.595 12.901 �0.005 �15.060 2.482 13.044
�2.322 1.445 53.251 �0.145 13.106 �5.925 �2.322

layer-2 �3.912 0.178 0.770 0.013 �0.009 0.021 �3.912
�0.231 �0.763 1.666 0.036 �0.139 0.108 �0.231

layer-3 �2.085 1.026 0.223 0.002 0.003 �0.010 �2.085

Table 12 | Statistical indices of models developed to estimate discharge passing in floodplains

Methods

Training Stage Testing Stage

R2 RMSE R2 RMSE

MARS 0.991 1.094 0.956 2.274

GMDH 0.862 4.394 0.864 3.373

MLP 0.985 1.389 0.972 2.168
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convergence) and S0 as the bed slope were considered as inputs. Then, the performance of the developed models was com-

pared with ANFIS (presented by previous researchers). The results of this study for global discharge in CCNPF showed that
the statistical indices of MARS model error in the test stage are R2¼ 0.962, RMSE¼ 0.003 and the statistical indices of the
GMDH model in this stage are R2¼ 0.930, RMSE¼ 0.004, and in the neural network model with a combination of the most
important variables is R2¼ 0.969, RMSE¼ 0.002. It should be noted that the error indices of the ANFIS model in the test

phase are R2¼ 0.850, RMSE¼ 0.005. Comparison of the performance of the mentioned models showed that the MARS
model provides more accurate results than other models. Examination of the structure of GMDH and MARS models
shows that the most important parameters influencing the discharge estimation are δ*, So, Dr, Ar, fr, and Rr. This result has

been approved by previous researchers with the gamma test. In the following, the performance of utilized soft computing
models used in modeling and estimating the share of each part of compound open channel including the floodplains and
the main channel in the flood discharge was investigated. For this purpose, the parameters of Dr, xr, convergence or diver-

gence angle (θ), and relative roughness ( fr) were used as inputs. The results indicated that the MARS model with R2¼
0.979, RMSE¼ 1.723 for predictive modeling of discharge in the main channel in the testing stage, and R2¼ 0.956, RMSE¼
2.274 for discharge in floodplains has the best accuracy in comparison to other applied models.
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