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ABSTRACT

The scope of the paper is to analyse the different similarities of air entrainment among the hydraulic jumps, plunging jets, and plunging break-

ing waves and to discuss current practices. The measured data are reexamined and scrutinised to investigate the gas exchange phenomena

through an air-water interface. In particular, oxygen transfer efficiency and penetration depth by air bubbles are discussed. The calculated

results highlight that the oxygen transfer efficiency is decreased with the increase of energy dissipation rate both in plunging jets and break-

ing waves. In contrast, it is shifted almost parallel in the case of hydraulic jumps. In addition, the aeration lengths in the hydraulic jumps and

penetration depths both in plunging jets and plunging breaking waves were dependent on the jet impact velocity.
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HIGHLIGHTS

• Air bubble entrainments through hydraulic jumps, plunging jets, and plunging breaking waves are studied.

• Aeration lengths in the hydraulic jump and penetration depths in the plunging jets and plunging breaking waves were determined.

• Dissolved oxygen, as well as oxygen transfer efficiency, were measured and compared among the phenomena.

• Scale effects were observed among the phenomena in terms of the oxygenation.
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redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/).
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GRAPHICAL ABSTRACT
1. INTRODUCTION

Gas fluxes such as oxygen and carbon dioxide (CO2) through the air-water interface provide significant developments of the
climate system (Tans et al. 1990). Gas exchange occurs through air bubbles in hydraulic jumps, plunging jets, and plunging
breaking waves shown in Figure 1. In nature, the CO2 and the supersaturation of dissolved oxygen (DO; a measure of how

much oxygen is dissolved in the water) in the ocean releases fresh oxygen and keep the balance among these gases in the
atmosphere (Sarmiento et al. 1992). Arora & Keshari (2021) used machine learning techniques to predict water quality par-
ameters, and they found that the ANFIS model worked well to predict the DO. Yang et al. (2021) made a novel measurement

of the gas transfer efficiency based on partial equilibration of CO2 using a segmented flow coil equilibrator system. The water
is naturally pure if DO demand and supply are balanced. Anyway, if the amount of consumption of the DO exceeds the
amount of collection, the water starts to degrade. Therefore, for keeping the water at the best quality, it is essential to

assess the re-aeration effectiveness of water accurately.
With plunging wave breakers, the wave face forms a water jet that projects in front of the wave, and air-entraining occurs

(Figure 1(c)). Plunging breaking waves generate many air bubbles, producing water turbulence. Air bubbles by breaking waves
increase drastically in the surf zone for gas exchange, and they might play an important role by purifying water in the coastal

area. Hosoi & Murakami (1986) found that the DO is insignificant for the non-breaking waves zone, but it was significant in
the entire water body along the surf zone. Wallace & Wirick (1992) observed that the aeration rate of breaking waves could
increase the entrained air bubbles up to 200 times. The numerical results obtained by Saleem et al. (2018) showed that the

five-equation model could simulate the dynamics of the two-phase flows. Hosoi et al. (1984) measured the oxygen absorption
in laboratory experiments during the spilling of breaking waves, and they studied the aeration efficiency related to the deep-
water waves properties. Alekseyev & Kokorin (1984) measured a supersaturated DO average of 3% along with the water
://iwa.silverchair.com/ws/article-pdf/22/4/4320/1041122/ws022044320.pdf



Figure 1 | Sketches and photos of air entrainment in (a) hydraulic jumps, (b) plunging jets and (c) plunging breaking waves.
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depth, and this level can rise to 8% during a storm surge. But up to date, very little attention has been paid to examining the
effects of gas exchange in the surf zone.

Several researchers (Van de Sande & Smith 1976; Biń 1993; Chanson 1995; Ohl et al. 2000; Anandraj 2012; Bostan et al.
2013; Harby et al. 2014; Jadhav et al. 2017; Bertola et al. 2018; Estrella et al. 2021) studied the gas exchange phenomena in

plunging jets and hydraulic jumps and observed some physical characteristics of air-water flow systems made by the water jet
flow. Ohl et al. (2000) investigated the air entrainment at the free surface of a liquid pool and showed that the crests of surface
disturbances on a falling jet are a powerful agent for air entrainment. Experimental investigations for oxygen exchange by

vertical plunging jets were conducted by Van de Sande & Smith (1976), and they found an empirical correlation between
penetration depth and oxygen transfer rate. An experimental study by Kumar et al. (2018) showed a significant effect of
hollow jet angle on volumetric oxygen transfer coefficient (KLa) at higher jet velocities. Chanson (1995) and Chanson &

Cummings (1994) developed a gas transfer model to predict the dissolved gas contents at the hydraulic jump and plunging
breaking waves. Estrella et al. (2021) presented an extensive study of similarity and scale effects in a hydraulic jump for con-
stant Froude number. Bertola et al. (2018) proposed a physical study of vertical supported planar water plunging jets in a
relatively large-size facility, and results were compared favourably with the literature. Unsteady air-water flow measurements

were conducted in a breaking bore propagating in a large-size channel by Leng & Chanson (2019), and they observed that air
entrainment took place in the form of air entrapment at the roller toe.

On the other hand, many researchers attempted to establish relationships between aeration and energy dissipation

(Chanson & Cummings 1994; Kucukali & Cokgor 2009; Bostan et al. 2013). Bostan et al. (2013) measured the dissolved
oxygen in hydraulic jumps using a handy oxygen meter for five different jet flow rates. They obtained the oxygen transfer effi-
ciency, which was increased with relative energy loss. Chanson & Cummings (1994) showed an analogy of air bubble

entrainment between vertical circular plunging jets and hydraulic jumps. Wüthrich et al. (2020) investigated the air entrain-
ment mechanisms for wave-breaking surge against Froude numbers. Kucukali & Cokgor (2009) measured the oxygen transfer
efficiency for a hydraulic jump of unit width channel, linearly related to the energy dissipation rate. Close similarities in aera-

tion and energy dissipation performances were found between the classical hydraulic and Type B jumps, while Type D jumps
showed lower energy dissipation efficiency and aeration (Montano & Felder 2020). Cihat et al. (2014) indicated that
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high-head gated circular conduits flow system might significantly increase the dissolution of oxygen in the water. Data-driven

models were employed for estimating hydraulic jump oxygen aeration efficiency (E20) under a sluice gate using experimental
data and sensitivity analysis and showed that the Reynolds number was a significant parameter in the estimation of E20

(Tiwari 2021). Witt & Gulliver (2012) estimated the oxygen transfer coefficient from scaled formulations of the liquid film

coefficient, mean bubble diameter, air entrainment rate, and turbulent energy dissipation rate. Kamal et al. (2020) showed
that the gas transfer efficiency was high when pre-aeration (air entrainment on the spillway face) occurred. Retsinis & Papa-
nicolaou (2020) simulated a classical hydraulic jump in a horizontal open channel, and a comparison of the numerical results
with experiments showed the validity of the computations. However, up to date, none of the studies compared the oxygen

transfer efficiency among the hydraulic jumps, plunging jets, and plunging wave breakers.
The penetration depth of the entrained bubbles is a significant scale in the plunging jet arrangements, which affects the size

of the immersed two-phase area. The performance of the aeration system is greatly affected by the residence time of the

entrained air bubbles in the case of plunging jets. Iguchi et al. (1998) investigated higher flow rates with the arrangement
of jet-interface variability. They observed that the higher air bubbles are buoyant just below the impact point, escaping rapidly
and leading to a shorter penetration. McKeogh & Ervine (1981) proposed an empirical formula of penetration depth for

different setup conditions. Similar tests were conducted by Suciu & Smigelschi (1976), and they established a relationship
based on measured penetration depth. Miller (1987) pointed out that the penetration depth is greater for plunging breakers
than spilling breakers. Chanson (1995) measured the aeration length for the hydraulic jump, which is renamed as penetration

depth for plunging jet and plunging breaker. Guyot et al. (2020) derived a simple mathematical expression to predict the
bubble cloud penetration depth.

Thus, there is a clear need for some fundamental studies on the characterisation of air entrainment, aeration system, and
oxygen transfer efficiency in hydraulic jumps, plunging jets, and plunging wave breakers. In this context, the present study

presents a new series of detailed physical experiments of air entrainment in vertical plunging jets. It investigates the data
of the above cases taken from several references.

More specifically, this research:

• evaluates the existing research in the proposed areas by studying basic ideas and current development towards the under-
standing of important controlling variables of penetration depth and aeration length;

• provides a detailed and comprehensive analysis of oxygen transfer efficiency.

2. REVIEW OF A GAS EXCHANGE MODEL

The presence of air bubbles inside the water increases the transfer of gases between the atmosphere and oceans (e.g. oxygen,

carbon dioxide, nitrogen). For these gases and using Henry’s and Fick’s law, it is stated that an oxygen balance equation can
be written as the rate of change in DO concentration (dC/dt) is proportional to the mass transfer of oxygen from the air to
liquid. Mathematically, it is found as

dC
dt

¼ KL
A
V
[Cs � C] (1)

where C denotes DO concentration (mg/L), Cs is the saturation concentration of DO (mg/L), A represents the area of the air-
water interface (m2), KL is the oxygen transfer coefficient (m/s), and V is the aerated volume (m3). Equation (1) is found by
integrating within the limits C¼C0 and C¼Ct; at t¼ 0 and t¼ t as follows

ðCt

C0

dC
Cs � C

¼ KLa
ðt

0

dt (2)

which, after integration, Equation (2) becomes

Cs � C0

Cs � Ct
¼ exp (KLat) (3)
://iwa.silverchair.com/ws/article-pdf/22/4/4320/1041122/ws022044320.pdf
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or

KLa ¼ 1
t
ln

Cs � C0

Cs � Ct

� �
(4)

whereA/V¼ a represents the surface area per unit volume, C0 and Ct denote the oxygen concentrations at initial and at time t,
respectively. Equation (4) displays that the values of KLa can be determined by the measured values of Cs, C0, Ct, and t. An
identical base of comparison of KLa is generally known as the volumetric oxygen transfer factor (Deswal & Verma 2007),
which is normalised at a 20 °C standard temperature.

3. APPLICATION OF MODEL

3.1. Hydraulic jumps

Although there are many water flows, a hydraulic jump is a phenomenon in the science of hydraulics that is frequently

observed in open channel flow. In a hydraulic jump, the flow is characterised by air entrainment and is the leading
oxygen transfer provider. Further, it confirms the air entrainment into the water and dissipates the upstream energy. Air pack-
ets are entrapped through the impinge point, broken up into fragile air bubbles. At the hydraulic jump, air bubbles are

advected downstream into the free shear layer categorised by concentrated turbulence before reaching the free surface
and finally releasing to the air (Figure 1(a)).

3.1.1. Data collection

Detailed information on the experimental setup and method is published by Bostan et al. (2013) for hydraulic jumps. We want
to briefly mention experimental conditions to determine the oxygen transfer efficiency (OTE). The tests were done in a chan-
nel with the dimensions of 0.4 m� 12 m� 0.65 m, where the side walls were made of glass. DO and water temperatures were

taken manually before and after the hydraulic jump by DO200 meter for a half-minute interval. The DO meter was calibrated
for each test. The experiment ranges of DO meter and temperature were 0–20 mg/L with a correctness of +2%, and �6 to
46 °C with an accuracy of +0.3 °C, respectively.

3.1.2. Aeration length (La)

Air entrainment in the hydraulic jump generates turbulence and associated energy dissipation along with the surface roller

(Figure 1(a)). The roller is characterised by recirculation, containing the steaming region and the foam layer. The distance
of the large-scale turbulence region is usually known as the roller length (Lr), which was derived by Hager et al. (1990).
They re-analysed the primary data of Rajaratnam (1967) and defined the length of aeration (La) between impingement
point and flow depth as

La

d2
¼ 3:5 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fr1 � 1:5

p
(5)

where d2 and Fr1 denote the downstream flow depth and upstream Froude number, respectively. The aeration length

advances monotonically with the increase of upstream velocity, as shown in Figure 2(a).

3.1.3. Oxygen transfer efficiency

The efficiency of oxygen transfer depends on air intake at the hydraulic jump. Gameson (1957) suggested a mathematical
formula for finding oxygen transfer efficiency (OTE; aeration efficiency) as,

OTE ¼ 1� exp (KLat) ¼ C0 � Ct

Cs � Ct
(6)

OTE equal to one means that the hydraulic jump has conveyed oxygen into water, where C0 is equal to Cs. A value of

OTE. 1 means that the downstream water is supersaturated which is known, namely C0.Cs, and OTE¼ 0 means that
no oxygen transfer occurs there. Temperature plays a significant role in the mass transfer mechanism, so oxygen transfer effi-
ciency should be transformed based on the average temperature.
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Figure 2 | (a) Aeration length (La) in hydraulic jump as a function of jet impact velocity (V1) and (b) oxygen transfer efficiency (OTE) as a
function of energy dissipation rate (Ehj).
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Gulliver et al. (1990) developed the mass transfer equation to calculate OTE for the hydraulic jump in terms of dissolved
oxygen at 20 °C and denoted it as OTE20. This can be written as

OTE20 ¼ 1� (1�OTE)1={1þ0:02103(T�20)þ8:261 � 10�5(T�20)2} (7a)

where OTE20 is the OTE at 20 °C and T represents the temperature of the water. Holler (1971) estimated a relationship of
OTE for the hydraulic jump as

OTE20 ¼ 1� 1
1þ 0:0463DU2 (7b)

where ΔU represents the velocity difference before and after the hydraulic jump.
://iwa.silverchair.com/ws/article-pdf/22/4/4320/1041122/ws022044320.pdf
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Avery & Novak (1978) indicated that one constraint would not be sufficient to express the oxygen transfer efficiency in the

hydraulic jump. They said the formulation of OTE20 based on the Froude number Fr1 before the hydraulic jump and Reynolds
number Re, which is given as

OTE20 ¼ (1� 1
k0Fr2:11 R0:75

e
)1:115 (7c)

where k’ is a constant and connected with water salinity concentration. Equation (7a) has been applied to calculate the OTE
in the present study.

3.1.4. Energy dissipation rate (Ehj)

Consider a stationary hydraulic jump as presented in Figure 1(a). The mathematical formulation of the energy dissipation rate
for the hydraulic jump is written as

Ehj ¼ rwgqDH ¼ rwg(V1d1)
(d2 � d1)

3

4d2d1
(8)

where DH ¼ (d2 � d1)
3=4d2d1 represents the head loss, and it is positive simply if downstream flow depth d2 is greater than

upstream flow depth d1, which is a necessary condition of the second law of thermodynamics. Furthermore, q¼V1d1, V1, and

ρw denote the water discharge per unit width, the upstream flow velocity, and the water density, respectively. Using Equations
(4), (6), and (8) and data of Bostan et al. (2013) and Anandraj (2012), we have calculated the OTE and energy dissipation rate,
which is plotted in Figure 2(b). The OTE is converted to the standard temperature using Equation (7a). The aeration efficiency
is shifted almost parallel to the increased energy loss in Figure 2(b).

3.2. Plunging jets

Once a vertical water jet impacts a receiving pool of water at steady phenomena, entrainment of air bubbles occurs and car-
ries away beneath the free surface of the water’s pool. This phenomenon is known as plunging jet air entrainment. A

definition sketch and photo of a vertical circular plunging jet are presented in Figure 1(b). According to the literature, the
characteristic of air entrainment into water is related to the jet impact velocity. Moreover, observations on vertical plunging
jet show that air starts to be entrained when the jet impact velocity exceeds a critical value; see for examples (Biń 1993; Chan-

son & Cummings 1994; Bertola et al. 2018). That is, when the impact velocity is larger than the onset velocity (V1.Ve), air
bubbles are entrained at the impingement point between the supported free-falling jet and the pool of still water. The mech-
anisms of air bubble entrainment differ depending on the jet impact velocities.

3.2.1. Descriptions of measurement

The measurements of dissolved oxygen were performed by oxygen meter (DO) below the free surface within a cubic type of
water pool (50 cm�50 cm�45 cm), and it was constructed with transparent side walls (Figure 3(a)). The plunging water jet

was impacted on the free surface of the water in the water pool vertically. The diameter of the circular nozzle was d0¼
1.3 cm. A high-definition camera was used to take photos of the air entrainment process. The video movies were analysed
manually to guarantee the maximum reliability of the data. The camera was positioned beside the plunge pool. Figure 3(a)

shows a sketch of the relative positions of the experimental facility and high-speed camera system. The oxygen meter was
calibrated before each experiment. The main oxygen electrode was located at the end of the cable. The experiment ranges
of DO meter were 0–20 mg/L with the correctness of +0.4 mg/L. A digital thermometer with an accuracy of +0.1 °C was
used for temperature measurements. Before testing the DO the meter was calibrated with signals that simulated the ideal sol-

ution (based on a 25 °C ambient environment). DO is best measured directly in the water using a calibrated dissolved oxygen
meter. This meter can measure the amount of DO directly in the water as mg/L. Three free falling lengths x1¼ 30 cm, x1¼
20 cm and x1¼ 10 cm was investigated for a constant nozzle flow velocity VN¼ 1.51 m/s.

A visualisation technique was used to determine the penetration depth between the camera and computer. During the
experiments, the penetration depths of the entrained air bubbles were constantly more minor than the depth of water in
the tank. The water jet impinges onto the water surface vertically, and the jet velocity at an impinging point on the water
om http://iwa.silverchair.com/ws/article-pdf/22/4/4320/1041122/ws022044320.pdf
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Figure 3 | (a) Schematic diagram of the experimental set-up for vertical plunging water jets and (b) photo of three plumes of bubbles formed
by a vertical plunging jet with nozzle velocity VN¼ 1.51 m/s and several jet lengths.
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surface, which the Bernoulli equation can determine as

V2
1

2g
¼ V2

N

2g
þ x1 (9)

where V1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
N þ 2gx1

q
is the jet velocity at the impinging point, VN represents the nozzle velocity of water, and x1 denotes

the free-falling water length.

3.2.2. Penetration depth (Pd)

The penetration depth is defined as the depth between the free surface and the point where the rising velocity of the bubble
equals the vertical water speed. Several researchers measured the penetration depth in the vertical circular plunging jets

system (Kumagai & Endoh 1983; Ohkawa et al. 1987; Harby et al. 2014). In the present study, Figure 3(b) shows the
three representative bubble swarm images for jets with three different free-falling lengths x1¼ 30 cm, x1¼ 20 cm, and
x1¼ 10 cm with the same nozzle flow velocity of VN¼ 1.51 m/s, respectively. The penetration depths were determined
://iwa.silverchair.com/ws/article-pdf/22/4/4320/1041122/ws022044320.pdf
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vertically from impinging point to a stable point by a video camera. The lower part of the bubble cloud constantly oscillates

with time (the lower part was not fully stable), so the time-averaged penetration depth was determined. It is seen in Figure 3(b)
that the jet with the higher free-falling length causes more bubble entrainments and lower penetration depth (Pd). Further-
more, we can see that the penetration depth is decreased with the increase of jet impact velocity in Figure 4(a), which

follows the results of Qu et al. (2011) and Hoque (2002). Penetration depth, Pd, is dependent on x1, VN/dN and the nozzle
aspect ratio lN/dN (see Kumagai & Endoh 1983; Ohkawa et al. 1987).

3.2.3. Oxygen transfer efficiency

The oxygen transfer performance of vertical plunging jets is usually uttered based on standard oxygen transfer rate (ORV),
which can be obtained as

OTE20 ¼ ORV
Epj

(10)

where OR represents the rate of oxygen transfer (mg/L/h) at 20 °C and 1 atm pressure, V represents the aerated volume of

water (m3), and Epj is an upstream energy transport rate (J/(m.s)). The mathematical definition of OR is given as below
Figure 4 | (a) Relationship between penetration depth (Pd) and jet impact velocity (V1) and (b) variation of oxygen transfer efficiency (OTE)
with the energy dissipation rate (Epj).
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(Deswal & Verma 2007):

OR ¼ KLa� 3600� C�
s (11)

where C�
S is the saturation dissolved oxygen concentration in water at standard conditions (mg/L).

In the case of a plunging jet, laboratory experiments were conducted to determine the oxygen transfer efficiency (OTE).
From a typical sample of the deoxygenated water, C0 was measured initially. After aeration, a certain period (t¼ 5 minutes),
samples of oxygenated water were taken to calculate oxygen concentration (Ct) after time t. Finally, the values of KLa,OR, and
OTE20 were computed using Equations (4), (11) and (10), respectively.

3.2.4. Upstream energy transport rate (Epj)

Mathematically, the upstream energy transfer rate for a vertical circular plunging jet is defined as

Epj ¼ 1
2
rwQwV2

1 ¼ p

2
rwV

3
1 r

2
1 (12)

where r1 is the radius of the water jet (m) at the impinging point, and Qw denotes the water discharge or water jet flow rate
(m3/s). The results regarding aeration efficiency in vertical circular plunging jets are presented in section 4.

3.3. Plunging breaking waves

An air entrainment phenomenon occurs at plunging breaking waves which contribute to the oxygen transfer through an air-
water interface. At the impact point, Chanson & Lee (1997) showed similarities between plunging jet and plunging breakers
(deeper waters). The jet impact velocity may be scaled by 2gHb, where the water jet thickness is approximately 0.05*Hb. The

aeration characteristics and penetration depth of plunging breaking waves in the sea have similarity with the plunging jets
which occurs in the waterfall (Koga 1982; Chanson & Cummings 1992). The relationship of air entrainment between plun-
ging waves and jets is reinvestigated through such evidence.

3.3.1. Data collection

DO is a vital water parameter that was measured by a Senso Direct DO meter (Figure 5(a)). The measurement ranges of the
oxygen meter were 0–20 mg/L for DO with an accuracy of +0.4 mg/L and 0–50 °C for temperature with an accuracy of
+0.8 °C. Before testing the DO, the meter was calibrated with signals that simulated the ‘ideal’ solution (based on a 25 °C

ambient environment). The sampling region of this study is the coastal area of the southeastern part of Bangladesh near
the Cox’s Bazar, which lies between 21° 110 6″ N latitude and 92° 20 52.8″ E longitude. In Figure 5(a), points A to E
show the sampling points for the air-water mixture. The sampling implies A, B, C, D and E were fixed with a distance of

1.5 m at the inner surf zone. The data were collected from the mentioning points, analysed by the Gas Analyzer meter.
For each sample, measurements of DO were taken by immersing the electrode probe and are plotted in Figure 5(c).

Tsoukala & Moutzouris (1996) presented experimental data of oxygen transfer for breaking waves. In their experiment, the
beach slope of l:2.3 was positioned at the end of the wave flume, and water depth and wave period were considered 72 cm

and 1.55 s, respectively. Wave frequencies with ranges of 0.65–0.90 Hz and wave heights in the ranges of 8.5–20.5 cm were
generated. Characteristically, the generated waves were plunging breaker types. The dissolved oxygen in the air-water mixture
was measured over time by a handy DO meter brand OXI-96 at 21 examining locations through the flume. The transfer coef-

ficients KL were determined from the wave breaking area at 20 °C.

3.3.2. Penetration depth (Pd)

In the surf zone, the penetration depth (Pd) of air bubbles for plunging breaking waves is found as the depth between the free
surface of the water and the deepest air entrainment point, where the air bubbles are reached during the wave breaking pro-

cess (Figure 1(c)). Significant fluid turbulence occurs where breaking waves completely disintegrate after their crest impinges
against water. At this impinge point, the downward velocity of air bubbles turns to zero, where the buoyancy force works
against these. The driven air bubbles are broken into tiny bubbles by buoyancy force, and these air bubbles rise to the free

surface. During their experiments, the penetration depths were recorded and determined vertically from the impinging
point to a stable point by Chanson & Lee (1997). Their results recommended that the bubbles were entrained downward
up to 1.2–2 times the wave amplitude beneath the free surface.
://iwa.silverchair.com/ws/article-pdf/22/4/4320/1041122/ws022044320.pdf



Figure 5 | (a) Photo of gas exchange instruments, (b) penetration depth (Pd) in a plunging breaker as a function of jet impact velocity (V1), (c)
variation of dissolved oxygen concentration (DO) against the onshore distance, and (d) comparison of oxygen transfer efficiency (OTE) versus
energy dissipation rate (Epb).
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3.3.3. Oxygen transfer efficiency

Applying a similar calculation method as the hydraulic jump, OTE is calculated using Equation (6), knowing the gas transfer
coefficient from Tsoukala & Moutzouris (1996). They measured the transfer coefficients KL from the breaking area, and after
that, it transformed to 20 °C using Equation (13), which was derived by Daniil & Gulliver (1988):

OTE20 ¼ 1� exp (KLat) (13)

3.3.4. Energy transport rate (Epb)

The wave energy transmitted by the water wave motion from the deepwater toward the shore is written by

Epb ¼ (1=8)rwgH
2
0cg ¼ rwg

2H2
0T=(32p) (14)

where cg, H0, and T represent the group velocity, deepwater wave height, and wave period, respectively. If we assume that the
total energy is dissipated by the progressive wave in the surf zone, we can write

Epb ¼ g2H2
0T=(32pVb) (15)

where Vb denotes the water volume per unit width.
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Introducing Vb ¼ h2
b

2i
, the above equation can be rewritten as

Epb ¼ ig2H2
0T=(16ph

2
b) (16)

where i is the beach slope.
4. RESULTS AND DISCUSSION

The similarity of aeration efficiency, DO, and penetration depth among the hydraulic jumps, plunging jets, and plunging
breaking waves are investigated and plotted against the energy loss and jet impact velocity. In Figure 2(a), the aeration
length increases with jet impact velocity. The resulting trend in Figure 2(a) is similar to Anandraj (2012) data. Bostan

et al. (2013) and Hager et al. (1990) measured the aeration length for a hydraulic jump, and they found that it was increased
with the jet impact velocity.

On the other hand, Figure 2(b) shows the OTE for a hydraulic jump, which is presented against the energy dissipation rate.

It is seen in Figure 2(b) that with the increase of energy dissipation rate in a hydraulic jump, OTE is almost parallel shifted,
which is consistent with the result of Anandraj (2012). As Kucukali & Cokgor (2009) mentioned, OTE increased with the
increase of energy dissipation along with the jump. This may be because the saturation values of DO and initial DO

values of water influence the aeration process. Liu et al. (2004) demonstrated the direct relationship between head loss
and turbulence kinetic energy. Ozkan et al. (2014) measured the aeration efficiency related to the air-demand ratio and
Froude number.

The penetration depth of air bubbles created by plunging water jet, Pd, and the OTE results (OTE) is plotted in Figure 4,
which are varied with the jet impact velocity V1 and energy dissipation rate Epj, respectively. Figure 4(a) shows the changes
in penetration depths, Pd formed by the water jets. It is observed from Figure 4(a) that Pd decreases with the increasing V1 for
a particular value of VN. Hoque (2002), Qu et al. (2011) and Harby et al. (2014) also measured the penetration depth against

the jet impact velocity, and they found similar results to those that are plotted in Figure 4(a). Cumming (1975) showed
theoretically that the penetration depth was linked to the jet velocity. In addition, the oxygen transfer performance of the
vertical circular plunging jets was calculated using Equation (10). As shown in Figure 4(b), the measured results of oxygen

transfer efficiency are found reasonably consistent with the data of Baylar et al. (2006), although present obtained data
are very scarce.

We have also investigated the gas exchange phenomena by plunging breaking waves in the coastal area. As displayed in

Figure 5(b), the penetration depth decreases with the increase of plunging breaking jet velocity, which has similarities
with the plunging jet. Moreover, it is found that DO is reduced with the increase of a shoreward distance in Figure 5(c).
After the breaking point, many bubbles are entrained into the water, producing greater oxygen absorption. Similar results

were measured by Hosoi & Murakami (1986). In Figure 5(d), we have also observed that OTE almost keeps constant with
the increase of energy dissipation rate for the present study; those are calculated using Equations (13) and (14).

Free surface flows are typically scaled with the Froude similitude keeping identical Fr1 both in the model and prototype.
Usually, the selection of the Froude similitude is derived based upon some primary theoretical considerations and air trans-

port in models are affected by the scale effect. In this study, the comparative analysis of OTE, which is calculated based on the
oxygenation for hydraulic jumps, has revealed almost identical for Fr1¼ 2.5–4.0 (Figure 2(b)). New air-water flows properties
were measured in vertical circular plunging jets. The data set together with the earlier data of Baylar et al. (2006) yielded scale

effects in terms of oxygenation (Figure 4(b)) with identical inflow Froude numbers (Fr1¼ 8.0–13.0). The scale effects also
affected the oxygenation process by air bubbles in the surf zone and laboratory wave flume (Figure 5(d)). The entrained
air bubbles or DO are not similar to the large-scale physical models compared to laboratory wave flumes.
5. CONCLUSIONS

The analogies of gas exchange among hydraulic jumps, plunging jets, and plunging waves may be appropriate to work out
quantities under modelling efforts. The obtained results from the data analysis can be summarised as below:

(1) The length of aeration in hydraulic jumps and penetration depths both in plunging jets and plunging breakers were found
to be pretty similar, and those were dependent on the jet impact velocity.
://iwa.silverchair.com/ws/article-pdf/22/4/4320/1041122/ws022044320.pdf
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(2) OTE was shifted almost parallel with the increased energy loss in the case of hydraulic jumps. On the other hand, it was

found that the OTE is attenuated as the increased energy dissipation rate in plunging jets and it kept constant in plunging
breaking waves. Further research work is necessary in this regard.

(3) A scale effect was observed in terms of the oxygenation for identical inflow conditions of a vertical circular plunging jet,

whereas it was similar for the hydraulic jump. Furthermore, the scale effect was found distinct between the small-scale
laboratory results and field conditions.

(4) These investigations and observations might provide valuable evidence for evaluating the oxygen transfer rate and ocean
aeration due to spilling and plunging breakers.
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