
Downloaded fr
by guest
on 10 April 202
Impact of pipe material on the wall reaction coefficients and its application in the

rehabilitation of water supply system of San Pedro Nexapa, State of Mexico

Rojacques Mompremier a,*, Óscar Arturo Fuentes Marilesb, Kebreab Ghebremichael c,
Jersain Gómez Nuñez a and Tonantzin Ramírez Pérez d

a Universidad Autónoma Metropolitana, Unidad Azcapotzalco, Departamento de Energía, Av. San Pablo Xalpa 180, Reynosa Tamaulipas, 02200 Ciudad de
México, CDMX
b Instituto de Ingeniería Universidad Nacional Autónoma de México Circuito Escolar, Ingeniería S/N, C.U., Coyoacán, 04510 Ciudad de México, CDMX
c Patel College of Global Sustainability, University of South Florida 4202 E Fowler Ave, Tampa, FL 33620, USA
d Unidad de Metrología Facultad de Química, Universidad Nacional Autónoma de México Circuito Escolar, Ingeniería S/N, C.U., Coyoacán, 04510 Ciudad de
México, CDMX
*Corresponding author. E-mail: rojacques@azc.uam.mx

RM, 0000-0003-3980-3321; KG, 0000-0001-9954-6131; JGN, 0000-0002-9299-6401; TRP, 0000-0003-2264-2584

© 2022 The Authors Water Supply Vol 22 No 4, 4296 doi: 10.2166/ws.2022.049
ABSTRACT

One of the major challenges faced by water companies around the world is the high level of chlorine losses in distribution networks. This

paper presents an experimental study to examine chlorine loss in different types of pipe materials and select the ones with low chlorine

demand for the rehabilitation of the water distribution network of San Pedro Nexapa, State of Mexico. The materials investigated include:

polyvinyl chloride (PVC), galvanized steel (GS), polypropylene (PP) and high-density polyethylene (HDPE). A 24-h chlorine consumption

study was performed in a simulated water distribution network to assess the impact of wall reaction coefficient on chlorine decay. Four

sets of independent pipe loops of 50 mm in diameter and 12 m in length were used. Two different scenarios were considered based on differ-

ent initial chlorine concentration (1.21 mg/L and 1.60 mg/L). Samples were collected at each loop at two-hour intervals and physicochemical

analyses were conducted. Results from the experimental distribution network showed that the wall coefficient values for GS, HDPE, PP and

PVC were 0.165 h�1, 0.059 h�1, 0.043 h�1 and 0.026 h�1, respectively. Experimental results showed that wall reaction coefficient values

depend on initial chlorine concentration and the characteristics of pipe material. The rate of free chlorine decay was found to be faster in

steel pipe and slower in the plastic pipes. Based on its having the lowest chlorine demand compared with the other pipes, PVC pipe

would be selected to rehabilitate Nexapa water distribution network, State of Mexico. The wall coefficients from the experimental study

were incorporated into EPANET through four simulation runs to predict chorine decay of San Pedro Nexapa water distribution network,

State of Mexico. In the PVC and PP pipes higher residual chlorine concentrations were observed that ranged from 0.30 to 0.90 mg/L and

0.50 to 0.95 mg/L, respectively. This study is important for utilities to operate their system effectively and protect public health.
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HIGHLIGHT

• Results of this study are useful to understand the effect of wall reaction coefficient (kw) values on chlorine decay and could help develop

better management systems to address issues associated with chlorine decay in water distribution systems.
INTRODUCTION

Chlorine is a strong oxidant commonly used in water during the disinfection process (Fisher et al. 2017). It is used to control
biofilm growth and to inhibit microbial activity in the network system. While flowing through pipes, however, the chlorine
concentration decreases owing to its strong oxidant properties and decay behaviour in the bulk solution and wall interaction.

Water distribution systems are designed to meet safe drinking water quality standards and should be capable of meeting the
demand at all times with satisfactory pressure. However, the management of water distribution infrastructure to ensure cus-
tomer satisfaction is becoming very complex. Population growth and expansion of urban development in large cities require
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expansion of existing water distribution systems to meet the increased demand while maintaining the desired water quality in

spite of aging infrastructure. In this case, it is always proposed to add new pipe segments.
To simulate water quality in a network, most software packages such as EPANET model the decay of chlorine using a bulk

decay rate and a wall decay coefficient (Rossman et al. 1994; Ramos et al. 2010; Fisher et al. 2017). Bulk decay accounts for

the loss of chlorine corresponding to the aging water within the distribution system; wall decay is the loss of chlorine due to
the interaction of the flowing water with the pipe wall. Typically, the bulk decay rate is calculated based on bottle tests for
each source of water. In the case of a single water source, the decay rate is uniformly assigned to the entire distribution
system. If there are multiple sources, the decay rate is assigned to the areas served by each source.

Bulk decay depends on the amount and type of natural organic matter and inorganics in water; hence, water samples
should be collected and laboratory decay tests carried out for assessing decay kinetics, by means of the bottle tests (Powell
et al. 2000).

Many studies were conducted to determine the bulk chlorine decay (Hallam et al. 2002; Neupauer 2010; Ammar et al.
2014). Wall decay, however, depends on the pipe material and its conditions (Nejjaria et al. 2014). The determination of
the wall coefficient is often obtained either by performing laboratory study, by using a pipe loop system constructed with

30-year-old pipes (or older), or through field study (Karadirek et al. 2016). Because of the complexity of the water distribution
systems, however, only a few studies have been performed. The objective of this study is to estimate wall reaction cofficients of
different pipe materials in an experimental setup and to use the values in EPANET simulation of a real water distribution

network in San Pedro Nexapa, State of Mexico.
Currently, for the expansion or rehabilitation of an existing network, water supply authorities in Mexico use high-density

polyethylene (HDPE), polypropylene (PP) and polyvinyl chloride (PVC) pipes because of their flexibility during earthquake
events, their strength and their durability. Their performance in terms of maintaining residual chlorine in the network needs

to be carefully examined. Based on laboratory experiments and EPANET model simulation, this study will be useful to select
the best pipe material based on low chlorine demand for the rehabilitation of the water distribution network of San Pedro
Nexapa, State of Mexico.
MATERIALS AND METHODS

Experimental setup and preparation

To estimate the wall reaction coefficient, a series of experiments were carried out using an experimental setup, which con-
sisted of three parts (see Figure 1):

(1) A water reservoir of 2.12 m3 of capacity, (2) a storage tank (450 L capacity) at elevated position for gravity flow and (3) a
pipe network consisting of four sets of independent loops of 50 mm diameter and 12 m length of PVC galvanized steel (GS),
PP and HDPE.
Figure 1 | Schematic diagram of the laboratory scale water distribution network: (a) side view (3D) and (b) top view (2D).
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The network included nine flow control valves to fill and drain the system and an online CL763 (B&C Electronics, Italy)

chlorine analyzer installed in each loop, which can detect chlorine concentration in the range from 0.1 to 20 mg/L. Four data
logger (El-USB-4, Lascar Electronics, USA) connected in each chlorine analyzer recorded data over time; a manual mixer
was installed at the storage tank to get a homogeneous mixture of tap water and chlorine. A 4HME200 centrifugal pump

was used to transfer water from the reservoir to the elevated storage tank.
Each loop was first flushed with clean water (free of chlorine) for approximately 10 minutes. Then the loop was filled with

water from the storage tank. At the extreme ends of each loop were located two 0.18 m� 0.09 m acrylic boxes. Each box was
equipped with a mini (4–203, Aquakril) submersible water pump, which takes samples to the chlorine analyzer (overflow cell)

through a 1/4’ connection tube. The cell’s manufacturing characteristics allow the sample to run through the (sensor) poten-
tiostatic electrode site with a constant velocity then exit through a 10� 14 mm tubing to the second acrylic box (located on
the other extreme end of the loop).

Experimental procedure

Experiments were performed in an attempt to estimate the wall reaction coefficient in four different new pipe materials as a
function of initial chlorine concentration. Non-chlorinated water was pumped from the 2.13 m3 reservoir to the elevated sto-

rage tank by using the 4HME200 centrifugal pump. Samples were chlorinated with 13% free chlorine (sodium hypochlorite)
solution. K-Tonic solution, which is a mix of six compounds of total nitrogen, urea nitrogen, K2O, extract of total humic
carbon, humic acid carbon and fulvic acid carbon, was used as contaminant agent (1.50 mg/L in each scenario). Two scen-

arios were run at an initial chlorine concentration of 1.21 (scenario 1) and 1.60 mg/L (scenario 2), since in the case of water
supply in certain places in the world, the water leaving the treatment plant typically has an initial chlorine concentration in
these concentration ranges.

To get a homogeneous mixture of tap water and chlorine, a manual mixer was used at the storage tank. Water was continu-

ously recirculated in the simulated distributions system. The chlorine decay was determined continuously as samples ran
through the sensor. Upon activation, data loggers were deployed to measure and record chlorine concentration at two-
hour intervals for the duration of the monitoring period, which lasted for 24 hours. Once the experiments were completed,

a software was used to download and analyze the collected data. To ensure that the results are reliable, each experiment was
conducted in triplicate.

Analytical method

Chlorine decay kinetics

Because chlorine can be transported from the bulk flow to the pipe wall, the overall rate coefficient can be defined as a com-

bination of the effects of bulk reaction, wall reaction and mass transfer (Rossman et al. 1994) and can be expressed as:

dC
dt

¼ � kb þ
kwkf

rh(kw þ kf)

� �
C (1)

where kb: bulk decay rate constant; kw: wall decay constant; kf: mass transfer coefficient; rh: hydraulic radius of the pipe and
C: chlorine concentration.

Standard literature expressions can be used for the mass-transfer coefficient kf (Edwards et al. 1976):

kf ¼ Sh
D
d

(2)

where d: diameter of the pipe and D: the molecular diffusivity and it is the Sherwood number, which could be expressed as:

Sh ¼ 0:023Re0:83Sc0:33; for Re . 2300 (3)

in which Re is the Reynolds number and Sc is the Schmidt number. For Re,2300, the Sherwood number can be expressed as

follows:

Sh ¼ 3:65þ 0:0668(d=L)ReSc

1þ 0:04[(d=L)ReSc)]2=3
(4)

in which L is the length of the pipe.
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With the first-order wall reaction, the rate expression (Equation (1)) can be simplified

dC
dt

¼ �KCn (5)

After separating variables and integrating, Equation (5) becomes

C ¼ C0exp� (kw)t (6)

in which C: final chlorine concentration (mg/L); C0: initial chlorine concentration (mg/L); kw: wall reaction coefficient (h�1)
and t: time (h).

Water quality analysis

Temperature and pH were measured using a 350 mercury thermometer (Lauka, USA) and a M530P (Pinnacle Series, USA)
unit. The average temperature of the water for all the tests varied within the range of 15–20 °C. Turbidity was measured using

a turbidimeter (2100A, HACH, Mexico).

RESULTS AND DISCUSSIONS

Scenario 1

Under this scenario, experiments were carried out in triplicate where water samples were dosed with initial chlorine concen-
tration of 1.21 mg/L. The mean chlorine concentration was calculated on the basis of the set of data of each material to
examine the wall reaction coefficient. Other parameters such as turbidity, pH and temperature were taken into consideration.

Mean values of triplicate samples were used in plotting chlorine concentration as a function of time. An exponential adjust-
ment was made to obatin the wall reaction coefficient for each sample. The experimental results for scenario 1 revealed the
effect of pipe material on the rate of decay. Complete chlorine decay was observed in 24 hours in the GS pipe loop. In the
other pipe loops only slight changes were observed from 8 to 24 hours. Figure 2 shows chlorine decay observed and curve
Figure 2 | Chlorine decay observed and curve fitting in samples collected in the pipe loop (24 h).
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fitting in samples collected in the pipe loop (24 h). It was observed that chlorine reacted differently in the four pipe materials.

The ranking of chlorine decay rate in the pipe loop system was as follows: GS pipe.HDPE pipe. PP pipe. PVC pipe, and
might be caused by the reaction of chlorine with the material itself and the temperature since parameters such as pH and
turbidity remained constant during the experiments. A similar trend was observed by Aravelo (2007) where results of his

study showed that the rate of chlorine decay was found to be highly affected by the pipe material and the decay was faster
in steel pipe and slower in the synthetic pipes. Saeed et al. (2015) carried out laboratory experiments to measure the changes
in concentrations of residual chlorine with time under a variety of conditions. The study indicated that the prominent factors
that affect chlorine decay included initial chlorine dosage, temperature, pH and the amount of natural organic matter (NOM).

As shown in Figure 2, the trend lines did not fit the data perfectly. Poor R-square values were observed in the PVC, HDPE
and PP pipes, respectively. This could be explained by the fact that chlorine decays more rapidly during the first eight hours
and very slowly for the remaining time. Since the initial chlorine decay is ‘fast’ at the beginning and ‘slow’ at the end, it was

suggested to divide the series of chlorine concentration data into two phases: the fast phase where the fast consumption was
observed and, the slow phase where a gradual consumption was observed (Saeed et al. 2015). In this study, for each exper-
iment, the data series were divided into two phases, then the wall reaction coefficient kf for the fast phase (0–8 h) and ks for

the slow phase (8–24 h) were estimated. Figure 3 shows the free chlorine decay profile of water in the fast phase only. The
profiles for the slow phase followed similar pattern as in the fast phase. The values of the wall decay constant as well as
R-squared obtained in each pipe loop are summarized in Table 1.

The ranking of the wall reaction coefficient (kw) in the pipe loop system for the whole phase (24 h) as well as the fast phase
(8 h) was as follows: GS.HDPE. PP. PVC. A similar trend was observed in the slow phase (8–24 h) as well. A combi-
nation of first- and second-order kinetic models was used to predict chlorine concentrations. The first-order kinetic model
was used to predict the fast phase as shown in Equation (7).

C ¼ C0 exp (� kft) (7)

in which kf is the wall reaction coefficient for the fast phase. For the slow phase, the second-order kinetic model was
used to predict the residual chlorine concentration. According to Powell et al. (2000), second-order equation can be
Figure 3 | Chlorine decay observed and curve fitting in sample collected in steel, PVC, PP and HDPE pipe (fast phase 0–8 h).
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Table 1 | The values of the wall decay constant as well as R-squared obtained in each pipe loop for two reaction times: (a) 0–24 hours; (b) 0–8
hours

Pipe material

A. Reaction time: 0–24 hours B. Reaction time [0–8 hrs]

Kw [h�1] R2 kf [h
�1] R2 kS [h�1] R2

GS pipe 0.043 0.82 0.165 0.98 0.007 1

HDPE 0.020 0.74 0.059 0.96 0.004 1

PP pipe 0.015 0.76 0.043 0.94 0.002 1

PVC pipe 0.006 0.42 0.026 0.82 0.001 1

Water Supply Vol 22 No 4, 4301

Downloaded from http
by guest
on 10 April 2024
expressed as:

C ¼ C0

1þ C0kst
(8)

Table 2 shows the results obtained using the combined first- and second-order chlorine decay model. Predicted chlorine

residual concentrations were then compared with measured chlorine residual concentrations.
Base on the two phase approach (fast and slow phases) a good fit was observed between predicted and measured data.

Absolute errors between 0 and 0.09 were observed with the combination of first- and second-order kinetic models as
shown in Table 2.

Scenarios 2

In this scenario an initial chlorine concentration of 1.60 mg/L was used. Like in scenario 1, an exponential adjustment was

made to obtain the reaction coefficient kw for each sample. Figure 4 shows chlorine decay observed and curve fitting in
samples collected in GS, HDPE, PP and PVC pipes for the fast phase (0–8 h).

In the equations presented in Figure 4, it is observed that the wall decay coefficient associated with the four pipe materials

(kw) ranged from 0.032 to 0.121 h�1 in the fast phase and from 0.001 to 0.007 h�1 in the slow phase. The results for the two
phases are presented in Table 3.

In both scenarios, the GS pipe had a higher wall reaction coefficient, which resulted in a greater level of chlorine decay in
the GS pipe, which resulted in a higher wall reaction coefficient. It is important to note that initial chlorine concentration has

an impact on kw values. Results of both scenarios are in agreement with the findings of Kiene et al. (1993), who demonstrated
Table 2 | Comparison between measured and estimated data using kf and kS

Slow phase (first order kinetic model) Cl2 measured [mg/L] Cl2 predicted [mg/L]

Absolute errorHDPE GS PP PVC Time HDPE Steel PP PVC HDPE GS PP PVC

0.059 0.165 0.043 0.026 0.00 1.21 1.21 1.21 1.21 1.21 1.21 1.21 1.21 0.00 0.00 0.00 0.00

0.059 0.165 0.043 0.026 2.00 0.99 0.90 1.08 1.06 1.08 0.87 1.11 1.14 0.09 0.03 0.03 0.08

0.059 0.165 0.043 0.026 4.00 0.89 0.67 0.97 0.99 0.96 0.63 1.01 1.09 0.07 0.05 0.04 0.09

0.059 0.165 0.043 0.026 6.00 0.79 0.51 0.87 0.97 0.85 0.45 0.93 1.03 0.06 0.06 0.06 0.06

0.059 0.165 0.043 0.026 8.00 0.74 0.31 0.87 0.97 0.75 0.32 0.85 0.98 0.01 0.02 0.01 0.01

Fast phase (second-order kinetic model) Cl2 measured [mg/L] Cl2 predicted [mg/L]

Absolute errorHDPE GS PP PVC Time HDPE Steel PP PVC HDPE GS PP PVC

0.004 0.007 0.002 0.001 10.00 0.73 0.27 0.86 0.97 0.71 0.26 0.86 0.97 0.02 0.01 0.00 0.00

0.004 0.007 0.002 0.001 16.00 0.7 0.16 0.82 0.97 0.67 0.16 0.82 0.97 0.03 0.00 0.00 0.00

0.004 0.007 0.002 0.001 24.00 0.66 0.01 0.78 0.97 0.62 0.01 0.78 0.97 0.04 0.00 0.00 0.00

HDPE, GS, PP and PVC pipe loop Cl2 initial¼ 1.21 mg/L.
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Table 3 | Wall reaction coefficient for the fast and slow phases in scenario 2

Pipe material kf (0–8 h) [h�1] R2 kS (8–24 h) [h�1] R2

GS pipe 0.121 0.96 0.007 1

HDPE Pipe 0.048 0.98 0.007 1

PP pipe 0.041 0.95 0.005 1

PVC Pipe 0.032 0.97 0.001 1

Figure 4 | Chlorine decay observed and curve fitting in simple collected in the pipe loop (fast phase 0–8 h).
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that the wall reaction rate constant for chlorine increases with decreasing initial chlorine concentration, (GS and HDPE in
this study). The usual explanation for this is that chlorine decay rate may be influenced by chlorine concentration and NOM.

A similar conclusion was also reached by Tonev & Dimova (2020), who investigated the chlorine wall decay in an old decom-
missioned metallic pipe using a pipe section reactor. A series of experiments were performed with different initial chlorine
concentrations in the range 0.30 to 1.80 mg/L. The values of the wall reaction coefficient varied between 0.008 and 0.030 h�1,

decreasing exponentially with increasing initial chlorine concentration.
The wall reaction coefficient value for GS pipe was equal to 0.043 h�1 during the 24-h chlorine consumption study. This

result agrees with that obtained by Monteiro et al. (2014), a kw value of 0.040 h�1. However, by taking into account the two-

phase approach (fast and slow phases), kw values increase during the 8 h chlorine consumption (0.121 and 0.165 h�1). Wall
reaction coefficient values for HDPE pipe obtained in this study varied between 0.041 and 0.059 h�1. These values are greater
than the calibrated wall decay coefficient estimated by Minaee et al. (2019) in a real-life drinking water distribution network,
which ranged from 0 to 0.021 h�1. Comparing the results of both studies, it would be understood that kw reduces as diameter

increases. On the other hand, the wall decay coefficients are considerably affected by the age, initial chlorine concentration,
material type, diameter, roughness (Al-Jasser 2007), water temperature and the chemical and physico-chemical parameters of
water (Digiano & Zhang 2005; Rossman 2006).

Finally, the kw values for PVC pipes varied between 0.028 and 0.032 h�1 and are greater than the values obtained by Garcia
Ávila et al. (2021), which ranged from 0.0001 to 0.0046 m h�1 and may be attributed to the length and diameter of the pipe
material. In their study, pipe material range from 32 to 315 mm in diameter and 416 to 3,050 m in length.
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APPLICATION IN A REAL WATER DISTRIBUTION NETWORK

To see the impact of wall coefficient associated with different pipe materials on chlorine decay, results obtained experimen-
tally were used to simulate chlorine decay of San Pedro Nexapa water distribution network, State of Mexico using EPANET
model.

San Pedro Nexapa is a small city located in the Municipality of Amecameca in the State of Mexico, with approximately
5,441 people in 2020. The water distribution network is supplied by an elevated reservoir, situated at 2,723 m above sea
level, which is connected to a water treatment plant and supplies water to consumers by gravity. Average chlorine concen-

tration at the outlet of the reservoir was 1.50 mg/L. The network also included a flow control valve along with 75 nodes and
122 pipes with a diameter ranging from 150 to 300 mm. Water demand was associated with each node of the model according
to the population, depending on land use. Numerical simulations were performed using four different wall reaction coeffi-

cients that were obtained from the experimental study described earlier. The EPANET model representing the layout of
the distribution network for the case study is shown in Figure 5.

To evaluate the variation of chlorine loss within the distribution system, four sampling sites (junctions) labeled N81, N21

N68 and N40, located respectively at the north, east, west and centre of the network were selected. Numerical simulations
were carried out, wall reaction coefficients associated with the pipe material in the experimental study and a global bulk coef-
ficient (0.033 h�1) were incorporated in EPANET to evaluate chorine decay. Numerical simulations were conducted over a
period of 24 hours. The variation of chlorine concentrations at each junction for the different simulations are presented in

Figure 6. Water age at the sampling points (N68, N40, N21 and N81) are 10, 11, 14.50 and 24 hours, respectively.
Figure 6 shows that first simulation run was associated with the higher wall decay constant (0.165 h1). In this case, chlorine

concentrations ranged from 0.15 to 0.75 mg/L and were shown to be lower at site N81 (0.15 mg/L), followed by N21

(0.61 mg/L), N40 (0.71 mg/L) and N68 (0.75 mg/L). The variation of chlorine concentration should in part be related to phys-
ical characteristics of the pipe material itself and the water age. The same trend was observed in the other simulation runs
whose wall decay constant values were ,0.165 h�1, In the second simulation run associated with a kw value of 0.059 h�1,
Figure 5 | EPANET model of the San Pedro Nexapa network.
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Figure 6 | Predicted chlorine concentration (in four junctions) in the San Pedro Nexapa water distribution network acording to kw values.
(a) kw¼ 0.165 h�1, (b) kw¼ 0.059 h�1 (c) kw¼ 0.043 h�1 and (d) kw¼ 0.026 h�1.

Water Supply Vol 22 No 4, 4304

Downloaded fr
by guest
on 10 April 202
results showed slightly lower range of chlorine decay rates than the first run. Chlorine concentrations ranged from 0.20 to
0.87 mg/L. An increase of 0.05, 0.14, 0.12 and 0.13 mg/L was registered in site N81, N21, N68 and N40, respectively. The
third and fourth simulation runs were conducted on lower wall decay constants obtained with PP and PVC pipe (0.043

and 0.026 h�1 respectively). Consequently higher chlorine concentrations were observed and ranged from 0.30 to 0.90 mg/
L and 0.50 to 0.95 mg/L for PP and PVC, respectively and these should be the best materials to rehabilitate the San Pedro
Nexapa water distribution network due to their low chlorine demand.

To better understand the impact of the wall friction coefficient on chlorine decay in the network, contour maps of chlorine
concentration in the network were created as shown in Figure 7.

In Figure 7(a)–7(c), it is clearly observed that chlorine concentrations of more than 0.25 mg/L was maintained throughout

the distribution system. However, chlorine concentration at N81 was below 0.25 mg/L (circled area at the top left corner of
the network in Figure 7(d)). The nodes that do not comply with the minimum concentration are located in parts of the
branched network furthest point from the reservoir and may be attributed to the water age and the higher wall reaction con-

stant value (0.165 h�1). This result may be because water flow rates are reduced during the hours of lower consumption,
increasing the chlorine decay constant and accelerating the decay of the disinfectant Garcíal Avila et al. (2021). Chlorine con-
centrations were under 0.50 mg/L in much larger areas in Figure 7(d) compared to Figure 7(a)–7(c). Junctions N21, N68 and
N40 were able to maintain free chlorine concentration above 0.75 mg/L in simulation runs 1, 2 and 3. Therefore, these data

confirm the conclusions of Kiéné et al. (1998) and Hallam et al. (2002), who reported that synthetic materials such as PVC,
medium- and high-density polyethylene and PP have a very low chlorine demand. Metallic pipes have high chlorine demand
as chlorine reacts with the elemental metal or the associated corrosion products on the pipe wall, especially in metallic pipes.

LIMITATIONS OF THE STUDY

The state of the art of modelling disinfection for chlorine residuals within water distribution systems is typically limited by the
uncertainty of reaction coefficients. As with the majority of studies, the design of the current study is subject to limitations

such as: the control and analysis of NOM, the low range of chlorine concentration and the use of different pipe diameters
in the laboratory than in the field, which may affected the values of the reaction coefficient.

In future studies, it is suggested to run experiments with a higher range of pipe diameters and higher chlorine doses to deter-

mine experimental constants. In doing so, it is further necessary to relate these experimental constants to reactant
characteristics such as the total organic carbon concentration. These parameters can help in setting the values of the exper-
imental constants during mathematical modelling. In order to fully assess the coefficient obtained in this study and to
om http://iwa.silverchair.com/ws/article-pdf/22/4/4296/1040118/ws022044296.pdf
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Figure 7 | Simulated chlorine concentrations in the distribution network. (a) When kw was 0.026 h�1, (b) When kw was 0.043 h�1, (c) When kw
was 0.059 h�1 and (d) When kw was 0.165 h�1.
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determine its limitations for applicability, the model should be further tested in other full-scale water supply systems under
different conditions (pipe diameters, chlorine concentration, water age). The model should be calibrated by comparing the
predicted and measured chlorine concentration. Finally, to ensure that the mathematical model adequately represents the
measured physical phenomena, the root mean square error (RMSE) should be calculated. The optimal value of this parameter

is zero, which ensures that the calculated data is identical to the measured value.

CONCLUSIONS

Extended water quality analyses were conducted in a lab set up that consisted four sets of pipes: PVC, GS, PP and HDPE loop
pipes of 50 mm in diameter and 12 m in length each. The experiments were performed for two scenarios using initial chlorine
doses of 1.21 and 1.60 mg/L. The results revealed the impact of pipe material and initial chlorine concentration on the wall

reaction coefficient values. The wall reaction coefficient values were recorded from the highest to the lowest in the following
order: GS, HDPE, PP and PVC. This may be explained by the material characteristics of the pipes.

Wall reaction coefficients associated with each pipe material were incorporated in EPANET to predict chorine decay in the

San Pedro Nexapa network. Results from this study showed that synthetic material such as especially PVC pipe should be the
best option to rehabilitate the San Pedro Nexapa water distribution network because of their lower wall reaction coefficient
(kw) values that implies low chlorine demand of the wall surfaces. In the PVC and PP pipes, higher residual chlorine concen-

trations were observed that ranged from 0.30 to 0.90 mg/L and 0.50 to 0.95 mg/L, respectively.
The results of this study are useful in understanding the effect of kw values on chlorine decay and could help develop better

management systems to address issues associated with chlorine decay in water distribution systems.
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