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ABSTRACT

The gated recurrent unit (GRU) has obtained attention as a potential model for streamflow forecasting in recent years. Common patterns and

specialties when employing it in different regions, as well as a comparison between different models still need investigation. Therefore, we

examined the performances of GRU for one, two, and three-day-ahead streamflow forecasting in seven basins in various geographic regions

in China from the aspect of robustness, overall accuracy, and accuracy of streamflow peaks’ forecasting. The robustness and accuracy of it

are closely related to correlations between the input and forecasting target series. Also, it outperforms the benchmark machine learning

models in more cases, especially for one-day-ahead forecasting (NSE of 0.88–0.96 except for the unsatisfactory result in the Luanhe River

basin). The deterioration of its accuracy along the increasing lead time depends on the dominant time lags between the rainfall and stream-

flow peaks. Recommendations were proposed for further applications.

Key words: artificial neural networks, assorted regions, gated recurrent unit, performances, recurrent neural networks, streamflow

forecasting

HIGHLIGHTS

• An evaluation of GRU versus benchmark models for streamflow forecasting in diverse regions.

• The problem that how do data and basins’ characteristics affect the model’s performance was discussed.

• The summarized patterns are valuable for a quick applicability evaluation and data selection process in further applications.
INTRODUCTION

Accurate streamflow simulation and forecasting have profound significance for water resources management, which includes
some aspects such as irrigation and domestic water allocation, ecological water utilization, flood alarming, and water trans-
portation. However, as a result of the high nonlinearity of the hydrological process (Parisouj et al. 2020), it is challenging to

obtain an accurate streamflow simulation result. In the past decades, considerable numbers of studies have focused on attain-
ing a better modelling accuracy utilizing different techniques, which can be mainly categorized into physics-based models and
data-driven models.

Well developed physics-based models such as SWAT (Busico et al. 2020), BTOPMC (Wang et al. 2007), MIKE SHE

(Paparrizos & Maris 2017), ATHYS (Laganier et al. 2014), and HEC-HMS (Khatri et al. 2018) have been shown to perform
well in runoff simulation and prediction. Nevertheless, these models usually acquire not only the observed rainfall and runoff
data as the input, but also need additional data that contain the watershed’s physical information. The quality of those

additional data, for example, the resolution of the digital elevation model and land use will affect the simulation result (Sadeghi
et al. 2021). Conversely, data-driven models, which only consider the statistical relationships between the input and output, do
not necessarily need additional data when applied in streamflow simulation and forecasting (Parisouj et al. 2020). Although the

physical meaning of their parameters is not yet fully understood, their excellent performance has been supported by several
studies (Zuo et al. 2020; Zhao et al. 2021). Some studies also reported that the data-driven models outperformed physics-
based or conceptual hydrological models (Zhou et al. 2019; Fan et al. 2020; Ji et al. 2021) when simulating runoff in their
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study areas, although the physics-based models also have the advantage, which is the good applicability in ungauged basins with

limited observed flow data (Li et al. 2009).
Artificial neural networks (ANNs) are data-driven models that have received much attention in recent years since that their

ability to fit complicated nonlinear relationships. For ANNs, different architectures result in several sub-divisions with various

advancements and limitations to fulfill the need of the specific assignments (Kao et al. 2020). As a kind of specific sub-division,
the recurrent neural networks (RNNs) calculate step by step and have a structure called ‘state’ to store previous information.
Therefore, this kind of architecture is appropriate for time series in which the data depend on previous time steps. But the
basic RNN cell also has its limitations. When dealing with long-term dependencies, gradient vanishing and explosion often

occur, making the performance unsatisfactory. To solve this problem, researchers have proposed a variant of RNNs termed
the ‘long short-term memory (LSTM)’ neural network (Hochreiter & Schmidhuber 1997). Subsequently, the gated recurrent
unit (GRU) (Cho et al. 2014) was proposed as a variant of LSTM, which requires fewer calculations and can provide a

higher training efficiency, as well as an equivalent accuracy (Chen et al. 2020; Shahid et al. 2020). These architectures’ perform-
ances are superior to others when processing sequences as the result of considering long-term dependencies (Wang et al. 2020).

As the streamflow at the prediction target partially depends on the rainfall and upstreaming streamflow at previous time

steps, the LSTM and GRU are appropriate choices for its forecasting. According to recent studies, the LSTM and GRU
models can perform well when forecasting or simulating the flood or streamflow. For example, the LSTM model has been
implemented in the Da River Basin, Vietnam for one-day-ahead, two-day-ahead, and three-day-ahead flood forecasting, the

Nash–Sutcliffe efficiency (NSE) reaches at least 0.87 (Le et al. 2019); a study utilized the LSTM model in Anhe catchment
in Henan province, China, for 75 flood events’ forecasting, the qualification rate (QR) value of the flooding process is above
84%; the GRU and LSTM models were used for runoff prediction in the Shaxi River basin in China for 2–12 hours of pre-
diction lead time, both the models performed well (NSE values range from 0.65 to 0.99), and required fewer time-step

optimizations compared with other RNN models (Gao et al. 2020).
The abovementioned studies mainly focused on discussing the patterns or the applicabilities in a specific research area,

however, some patterns would vary when carrying out the streamflow forecasting in basins with different properties.

When applying the LSTM or GRU on streamflow forecasting, some studies found that the incorporation of rainfall data
would hinder the forecasting accuracy (Le et al. 2019). Another study in a basin with different rainfall–runoff mechanisms
found different patterns that suggested that the inclusion of the rainfall data can improve the robustness and accuracy for

long-lead-time runoff forecasting as the result of the lag effect in the rainfall-runoff mechanism (Wang et al. 2020). In addition,
the applicability and performance of a model in different kinds of regions would vary. These very recent studies have usually
employed the model and focused on the patterns in a specific research area, however, the common patterns in the implemen-
tations of the model in different regions can still be explored and summarized. Also, the applicability of the GRU compared

with traditional machine learning models in various types of regions still needs investigation.
To seek out the potential common patterns of the impact of assorted basins’ characteristics (for instance, the area, topo-

graphy, time lags between the rainfall and streamflow peaks, and rainfall-runoff correlations) on the performance of the

GRU streamflow forecasting model, as well as to evaluate the applicability of the GRU in different regions compared with
machine learning models, this study employed the random forest (RF), support vector regressor (SVR), and GRU for one-
day-ahead (Tþ1), two-day-ahead (Tþ2), and three-day-ahead (Tþ3) streamflow forecasting in seven basins in different geo-

graphical regions in China. For the GRU model, the performance was evaluated from the aspect of training convergence,
robustness, and optimized accuracy. Most importantly, the analysis was carried out quantitively combining with the hydro-
logical attributes of each basin and provided an insight into the performance of the model from the aspect of hydrological

processes. When making the comparison between different models, the optimized models were selected. The knowledge
about the specific impact of the basins’ characteristics, as well as the common patterns in this model’s applications in different
regions, will be valuable for the practical utilization of the data-driven models on streamflow forecasting and a better under-
standing of the mechanism of the GRU streamflow forecasting model.
METHODOLOGY

GRU and stacked-GRU

A basic GRU cell contains two gate structures, the update gate and the reset gate. The structure of a basic GRU cell is shown
in Figure 1. This structure carries out a recursive algorithm that continuously puts the hidden state into calculations. The
://iwa.silverchair.com/ws/article-pdf/22/4/4142/1040250/ws022044142.pdf



Figure 1 | The structure of a basic GRU cell.
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weighting matrix results in an effect that the unimportant information at previous timesteps will be forgotten through the cal-

culations, while the useful information will be retained. The calculation processes can be described by Equations (1)–(4):

rt ¼ s(Wr � [ht�1, xt]) (1)

zt ¼ s(Wz � [ht�1, xt]) (2)

~ht ¼ tanh(W~h � [rt � ht�1, xt]) (3)

ht ¼ (1� zt)� ht�1 þ zt � ~ht (4)

where rt and zt denote the output of the reset gate and the update gate, respectively. Wr, Wz, and Wh are the weighting matrix
in their corresponding operations. s represents the sigmoid activation function. � represents the Hadamard product
(element-wise product). [a, b] denotes the concatenate operation for two vectors. ht represents the current hidden state. In
these operations, the shapes of Wr, Wz, and Wh are equal to the summation of the input sequence (xt) (‘timesteps’) and

the length of ht, times another hyperparameter named ‘the number of neurons’. These weighting matrices act as coefficients
in the linear mapping operation and are modified continuously in the training process according to the error. The nonlinear
activation functions, which are tanh and s, enable the model to fit the complex nonlinear relationships. Typically, the more

‘neurons’ a GRU cell has, the better nonlinear fitting ability it will obtain, however, excessive neurons will let the overfitting
problem occurs. The hidden state ht of the cell is a row vector with the same number of columns as the input matrix. In our
streamflow forecasting cases, the output of the GRU cell, which was a single value representing the predicted streamflow at

the target station, was generated from the hidden state at the last time step through a mapping operation.
The whole calculation steps of a GRU cell can be presented as a ‘chain’ structure, and several chains can be stacked to form

a stacked structure (Figure 2) to improve the nonlinear fitting ability. In the structure, the output layer uses the state of the
previous layer as its input. The number of layers can also be optimized.
Benchmark models

Two classical machine learning models, which are RF (Tyralis et al. 2019) and SVR (Smola & Scholkopf 2004) with a radial

basis function kernel (Ji et al. 2021), were selected as benchmark models. RF is an ensemble learning model consisting of
numerous decision tree estimators. SVR is a kernel-based algorithm that is capable of fitting either the nonlinear relationships
or linear relationships.
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Figure 2 | The structure of stacked-GRU with two layers.
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Data preprocessing

In streamflow forecasting tasks using data-driven models, the input data set can include the observed streamflow data, rainfall
data, evaporation data, and other variables that are closely related to the future streamflow.

For the GRU model, the observed data should be in a time-series format. In this study, the raw data set was prepared as
column vectors; each column represents the data at a specific hydrological/meteorological station (or reservoir), while
each number in the column vector is a record at a particular time step. Then, the column vectors were concatenated as a

matrix. The sliding window method (Figure 3) was used to generate sample data X in a matrix and sample data Y (the
observed data) in a vector. In this method, the number of the records in a sample is a hyperparameter named ‘timesteps’
that were optimized during the training and validation processes. Missing values in the time series are accepted, but the
samples with missing values would better be discarded in case of interfering with the training of weighting matrices, although

interpolation methods can be considered in some cases (Zhao et al. 2021).
The input of two benchmark models was the streamflow and rainfall data in a single time step since the inclusion of data in

multiple time steps caused a high dimension input matrix, which resulted in bad forecasting performances.

Before the training process, the rainfall and streamflow data were normalized with Equation (5), which is called Min–Max
normalization. The normalized data has a value range of [0,1]:

x0 ¼ x�min (x)
max (x)�min (x)

(5)

where, x0 denotes the normalized data, min (x) and max (x) are the minimum and maximum values of each column in the
input data set.
Figure 3 | An example of the Tþ1 sliding window sampling method. Using the sample matrix as the input to predict the daily streamflow one
day after the last time step. For the Tþ2 or Tþ3 forecasting, the prediction targets are shifted to the data at the corresponding timestep.
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Model evaluation

Nash–Sutcliffe efficiency (NSE), root mean square error (RMSE), and mean absolute error (MAE) has been used in the over-
all accuracy evaluation in each simulation, as shown in Equations (6)–(8), respectively. The mean absolute percentage error

(MAPE) as shown in Equation (9) has been used for flood peak evaluations:

NSE ¼ 1�
Pn

i¼1 (Oi � Pi)
2

Pn
i¼1 (Oi � �O)

2 (6)

RMSE ¼
ffiffiffi
1
n

r Xn

i¼1
(Oi � Pi)

2 (7)

MAE ¼ 1
n
�
Xn

n¼1
jOi � Pij (8)

MAPE ¼ 100%
n

�
Xn

n¼1

Oi � Pi

Oi

����
���� (9)

where, Oi is the observed streamflow, Pi is the predicted streamflow, �O is the mean value of the observed streamflow, n is the
total number of observations. The NSE values range from �1 to 1. A higher NSE value indicates a better fitting result. Both
the RMSE and MAE range from 0 to þ1 (with a unit of m3/s in this study), the lower are the RMSE and MAE, the better the

model performs. The RMSE is more sensitive to abnormal values than the MAE. The MAPE has a value ranging from 0% to
100%.
CASE STUDIES

Study areas

Seven basins, including the Wei River basin (WRB) (104° E–110° E, 33° N–37° N), the Liao River basin (LRB) (117° E–125° E,

38° N–44° N), the Wujiang River basin (WJRB) (104° E–109° E, 26° N–30° N), the Luan River basin (LURB) (115° E–120° E,
39° N–43° N), the Xiangjiang River basin (XJRB) (110° E–115° E, 25° N–29° N), the Dongjiang River basin (DJRB) (114° E–
116° E, 22° N–26° N), and the Huai River basin (HRB) (112° E–121° E, 31° N–36° N) were selected from different geographic
regions with different climate types. The properties of the selected research areas, which include the basin area, geographic

region, climate type, mean annual temperature, the period of the rainy season, annual rainfall, annual evaporation, and the
length of the main river channel, are shown in Table 1. The topography, the locations of the collected hydrological/
Table 1 | Properties of the selected research areas

Basin Area (km2)
Geographic
region Climate type

Mean temperature
(°C)

Rainy
season

Annual rainfall
(mm)

Annual evaporation
(mm)

Length of main
channel (km)

WRB 1,36,013.7 NW Continental
monsoon

7.8–13.5 Jun–Oct 350–700 660–1,600 818

LRB 2,20,938.4 NE Continental
monsoon

7.0–13.0 Jun–Sep 352–954 850–1,200 1,345

WJRB 87,918.7 SW Subtropical
monsoon

13.0–17.5 May–Sep 900–1,400 500–800 1,018

LURB 44,750.0 N Continental
monsoon

7.6 Jul–Sep 500–600 950–1,150 877

XJRB 94,240.9 C Subtropical
monsoon

16.0–18.0 Apr–Jun 1,400–1,700 1,200–1,700 948

DJRB 27,402.9 S Subtropical
monsoon

21.0 Apr–Sep 1,500–2,400 1,400–1,600 562

HRB 1,59,275.1 E Climatic
transition

13.2–15.7 Jul–Sep 600–1,600 750–1,300 1,000

Note: NW, Northwest China; NE, Northeast China; SW, Southwest China; N, North China; C, Central China; S, South China; E, East China.
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meteorological stations, and the main reservoirs’ outlets in each basin are shown in Figure 4. The last hydrological station

near the outlet in each basin has been set as the prediction target for streamflow forecasting.
Except for the differences and similarities between the selected basins that can be found in Table 1 and Figure 4, other

elements are of note. From the aspect of topography, the Wujiang River basin is a karst mountainous basin (75.6% of

which consists of carbonate rock) with few plain areas, while the LRB and the HRB have large plain areas. Other basins
fall in between. For the reservoir regulations, the LURB differs from others as streamflow at its downstream region is domi-
nated by the Taolinkou (which controls approximately 11.3% of the watershed area) reservoir and the Daheiting reservoir
(which controls approximately 78.4% of the watershed area).

Data

In this study, the collected data include the daily streamflow data from 2007 to 2014 at the hydrological stations and some
main reservoirs (extracted from the ‘Hydrological Data Yearbook of the People’s Republic of China’), as well as the daily rain-
fall data at the meteorological stations (extracted from China Meteorological Data Service Center, http://data.cma.cn).

Snowfall is not considered in this study, while the impact of snow melting would be recorded in the data at the stations
located upstream of the prediction targets. Table 2 shows a summary of the rainfall and streamflow data set. Table 3 presents
a summary of the Pearson correlation coefficient (R) between the input series and the forecasting target series with different

lead times in each basin. Obvious regional differences of the data, as well as the temporal variation of the relationships
between the input and forecasting targets, can be found according to the given tables.

Data Set partitioning, scenarios, and model settings

After the sampling process, the whole data set (with 2,909 samples) was divided into a training set, a validation set, and a

testing set according to an approximate ratio of 6:2:2 (Song et al. 2020). The training set was used to modify the weighting
matrix to fit the relationships between input and output. The validation set was used to evaluate the model’s robustness to
various hyperparameters combinations and to select appropriate hyperparameter combinations with relatively accurate
Figure 4 | A summary of the study areas, including the topography, hydrological stations’ locations, meteorological stations’ locations,
reservoirs’ discharges, and the selected prediction target of each basin.
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Table 2 | Summary of the rainfall and streamflow data set in each basin

Basin Num. of hydrological stations (streamflow data) Num. of meteorological stations (rainfall data)

Rainfall (mm/d) Streamflow (m3/s)

Mean Max Mean Max

WRB 14 10 1.60 62.34 171.73 4,410

LRB 18 15 1.29 55.18 98.61 1,840

WJRB 11 13 2.91 63.35 1,374.89 15,400

LURB 12 8 1.47 73.95 33.23 3,410

XJRB 9 11 3.92 82.15 1,868.08 18,400

DJRB 11 7 4.65 103.51 698.15 7,360

HRB 17 25 2.34 70.51 692.13 7,740

Table 3 | A summary of the Pearson correlation coefficients between the input series at different hydrological/meteorological stations and
the forecasting target series in each basin

Basin Lead time

Rainfall Streamflow

Mean Max Mean Max

WRB Tþ1 0.22 0.26 0.63 0.96
Tþ2 0.41 0.48 0.60 0.87
Tþ3 0.42 0.50 0.52 0.73

LRB Tþ1 0.09 0.15 0.57 0.99
Tþ2 0.13 0.20 0.58 0.96
Tþ3 0.17 0.26 0.58 0.94

WJRB Tþ1 0.32 0.39 0.59 0.91
Tþ2 0.31 0.39 0.54 0.80
Tþ3 0.28 0.36 0.49 0.74

LURB Tþ1 0.15 0.31 0.39 0.89
Tþ2 0.18 0.30 0.34 0.73
Tþ3 0.18 0.28 0.30 0.57

XJRB Tþ1 0.32 0.38 0.80 0.95
Tþ2 0.39 0.45 0.75 0.84
Tþ3 0.37 0.44 0.67 0.74

DJRB Tþ1 0.46 0.53 0.75 0.92
Tþ2 0.45 0.52 0.66 0.79
Tþ3 0.37 0.43 0.57 0.70

HRB Tþ1 0.15 0.20 0.59 0.98
Tþ2 0.17 0.22 0.57 0.96
Tþ3 0.19 0.23 0.59 0.93
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results. The testing set was for evaluating the capability for extrapolating (Ripley 2014) of the model with selected hyperpara-
meter combinations, also for evaluating the overall performance combined with the modelling results in the validation set.
Two input scenarios S1 (with rainfall data) and S2 (without rainfall data) were set to compare the impact of the rainfall
data in different basins for different lead-time (Tþ1, Tþ2, and Tþ3) forecasting. For the GRU model, Adam optimizer was

selected in weighting matrices’ training, 72 hyperparameters’ combinations were set for grid search-based hyperparameter
tunning in the validation set. A summary of the GRU model settings can be found in Table 4. For the benchmark models,
the hyperparameters were optimized by the sparrow search algorithm (Xue & Shen 2020) with a population size of 10

and an iteration of 500 in the training stages. The searching spaces of the hyperparameters of these two models are given
in Table 5. To make a comparison between the GRU model and benchmark models, the input selection scenario which
had the best performance for each lead time was selected.
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Table 4 | A summary of the GRU model settings and hyperparameters searching spaces in the forecasting cases in each basin

Num. of layers Epoch Batch size Learning rate Timesteps

Num. of neurons

Layer 1 Layer 2 Layer 3

1 500 10 0.005 3–10 1 – –

2 16, 32, 64, 128 1 –

3 16, 32, 64, 128 16 1

Table 5 | Hyperparameters searching spaces of RF and SVR

Model Hyperparameters Lower bound Upper bound

RF Max. depth 1 100
Num. estimators 1 3,000
Min. samples split 2 10
Min. samples leaf 1 10
Max. features 1 Num. of stations

SVR Gamma 0 100
C 0 100
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RESULTS AND DISCUSSION

Input scenarios’ impacts on convergence and robustness of the GRU model

The convergence of the model with different input scenarios and lead times is assessed through the training loss. Figure 5
shows the bands of training losses of (the top 50%) models according to their performances in the training stage. In all
the basins, the converging process slowed down with the increased lead time. In addition, the models which included the

rainfall data tended to obtain more convergent training loss curves compared with the models without the rainfall data.
The advantages of the rainfall data’s inclusion are not evident and are even reversed in Tþ1 forecasting cases, except in
the WJRB. The results indicate that the inclusion of rainfall data will enhance the training convergence of the model for a
relatively long-lead-time forecasting task.

The robustness of the model is evaluated in the validation stage. A robust model tends to obtain a higher NSE value, lower
RMSE value, and a lower MAE value compared to other models in the validation stage; meanwhile, the value ranges of its
metrics tend to be less sensitive to the changing hyperparameters. A robust model will need less effort on optimization and

will have less uncertainty. Figure 6(a)–6(c) shows the distribution of NSE, RMSE, and MAE in the validation set 6. The out-
liers in the Figures are represented by cross markers and are the metrics with a value lower than the lower quartile minus 1.5
interquartile range (IQR) or higher than the upper quartile plus 1.5 IQR (Schwertman & de Silva 2007). In those figures, the

descending NSE value ranges, ascending RMSE value ranges, as well as ascending MAE value ranges are observed in all the
basins when the lead time of the forecasting increases. The mean and median values of these metrics also follow the same
pattern. This phenomenon has also been reported in relevant studies that employ the LSTM or GRU for streamflow forecast-

ing (Le et al. 2019; Kao et al. 2020; Wang Q et al. 2020). It is caused by the increasing amount of useful information contained
in the data at the previous timesteps being excluded with the increased lead time. A shorter lead time makes the forecasting
model more robust. The impact of the rainfall data on the robustness of the model varies in different basins and the forecast-
ing with different lead times. According to Figure 6, the rainfall data resulted in the higher median and mean NSE values,

lower median and mean RMSE values, as well as lower median and mean MAE values in the WRB, the WJRB, the XJRB,
and the DJRB. Similar to the pattern found in training losses, this phenomenon became more significant when the lead
time of the forecasting increased, although it was not evident in the Tþ1 forecasting in the WRB. This can be partially

explained by the time lag effect of the hydrologic responses (Ross et al. 2019; Iwasaki et al. 2020). The time lag of the rain-
fall-runoff events makes the rainfall data meaningful to the target streamflow data. In these basins, the models which include
the rainfall data are more robust than the ones without the rainfall data. By contrast, the inclusion of the rainfall data
://iwa.silverchair.com/ws/article-pdf/22/4/4142/1040250/ws022044142.pdf



Figure 5 | The band of training losses of the GRU model (top 50% according to the performances) under different input scenarios in each
basin.

Water Supply Vol 22 No 4, 4150

Downloaded from http://iwa.silverchair.com/ws/article-pdf/22/4/4142/1040250/ws022044142.pdf
by guest
on 09 April 2024



Figure 6 | The distribution of NSE, RMSE, and MAE in the validation set. The values of RMSE and MAE are presented as logarithms of 10 (lg).
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significantly interferes with the robustness of the forecasting model in the HRB, the distributions of errors (including RMSE
and MAE) had higher mean and median values, while the NSE had lower mean and median values when the rainfall data
were incorporated into the training process (S1). This pattern can be found in all the lead time cases in this region. Also, the

model with rainfall data yielded more outliers in its evaluation metrics. For the LRB, the impact of the rainfall data had no
significant pattern, although the distribution of the evaluation metrics is more aggregated when including the rainfall data in
forecasting, the median values of the metrics showed advantages when excluding the rainfall data in Tþ1 and Tþ2 forecast-
ing. The LURB is a special case, the distributions of the NSE showed that the fittings are not satisfactory in each forecasting

case. No significant impact of the inclusion of the rainfall data on the robustness has been observed.
The patterns of robustness can be related to the correlations between the input and forecasting target dataset. According to

Table 3, the Pearson correlation coefficients between the input and forecasting target streamflow series revealed a descending

trend as the lead time increases. This trend is positively related to the above mentioned trend of NSE ranges, and negatively
related to the trends of RMSE and MAE ranges simultaneously with the increased lead time. The various impacts of the rain-
fall data in different basins can also be explained from the aspect of correlations. According to Table 3, the correlation
://iwa.silverchair.com/ws/article-pdf/22/4/4142/1040250/ws022044142.pdf
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coefficients between the rainfall data and the forecasting target streamflow data are significantly higher (in Tþ2 and Tþ3 fore-

casting cases) in the WRB (a mean value of 0.41 and 0.42, respectively), the WJRB (a mean value of 0.32, 0.31, 0.28 for the
corresponding forecasting cases), the XJRB (a mean value of 0.32, 0.39, and 0.37 for the corresponding forecasting cases),
and the DJRB (a mean value of 0.46, 0.45, and 0.37 for the corresponding forecasting cases) than in other basins. Neverthe-

less, for the Tþ1 forecasting in the WRB, the correlation coefficient is lower (a mean value of 0.22). While in the HRB, the
LRB, and the LURB, in which the inclusion of the rainfall data hinders the robustness of the model or does not have a sig-
nificant pattern, the correlation coefficients of the rainfall data are relatively low, the mean value ranges from 0.09 to 0.19 in
all cases. These phenomena suggest that the impact of the rainfall data on the models’ robustness is closely related to the

correlation between the collected rainfall series and the forecasting target streamflow series. The potential reasons for the
relatively low correlation coefficients between the rainfall and outlet streamflow in these three regions are that both the
HRB and LRB are large plain basins, in which the local rainfall does not dominate the streamflow at the outlet, and the

LURB is dominated by reservoirs that result in the interfered rainfall-runoff relationship.
Therefore, in large plain basins and reservoir-dominated basins with low rainfall-runoff correlations, the rainfall data are

not suggested to be directly included in the model’s training stage, although it can improve the convergence in the training

stage. For the long-lead-time forecastings in other types of basins, the rainfall data are suggested to be considered to not only
improve the convergence but also improve the probability to obtain a robust model. Moreover, the correlation evaluation can
be executed in the vector selection stage to get a more robust model, which tends to obtain better fitting results and is less

sensitive to the interference of the various hyperparameter combinations.
Overall accuracy evaluation

Table 6 shows the overall evaluation metrics of the best RF, SVR, and GRU model (the hydrographs of the simulation results
for different lead times and scenarios in the training set, validation, and testing set in each basin can be found in Supplemen-
tary data Appendix A) that consider the accuracy in both the validation set and testing set to make sure that the model is

accurate and has good generalization ability. Except for the LURB, the GRU model performed well in all the other basins
Table 6 | Overall evaluation metrics in the validation set and testing set for different models.

Basin Lead time

NSE RMSE (m3/s) MAE (m3/s)

RF SVR GRU RF SVR GRU RF SVR GRU

WRB Tþ1 0.81 0.89 0.94 89.65 67.18 48.22 45.45 28.47 27.03
Tþ2 0.75 0.80 0.85 102.36 90.47 78.34 45.41 36.18 33.97
Tþ3 0.68 0.68 0.63 115.20 116.62 120.61 53.00 43.63 47.16

LRB Tþ1 0.94 0.98 0.96 35.03 20.92 19.91 17.38 11.47 12.43
Tþ2 0.93 0.94 0.91 39.48 34.15 35.50 20.81 16.98 16.84
Tþ3 0.89 0.89 0.84 48.49 48.19 41.67 23.91 22.40 23.30

WJRB Tþ1 0.81 0.65 0.88 576.01 776.20 437.92 306.55 324.43 246.46
Tþ2 0.70 0.56 0.71 715.97 870.65 701.12 376.74 387.09 361.73
Tþ3 0.60 0.48 0.64 821.93 940.69 784.48 432.95 423.70 381.74

LURB Tþ1 0.07 0.02 0.63 188.35 194.05 107.91 27.95 28.79 14.07
Tþ2 0.08 0.01 0.32 187.53 195.12 135.96 27.38 31.88 27.17
Tþ3 0.04 0.01 0.27 191.71 195.45 131.52 30.44 32.76 26.72

XJRB Tþ1 0.95 0.90 0.95 394.36 561.20 357.37 217.71 296.02 201.33
Tþ2 0.85 0.73 0.81 680.73 902.56 729.40 368.51 464.38 405.76
Tþ3 0.68 0.57 0.63 983.47 1,138.93 1,037.44 546.98 591.71 601.99

DJRB Tþ1 0.88 0.81 0.93 237.72 298.50 179.39 107.12 101.76 87.61
Tþ2 0.72 0.65 0.69 361.82 407.87 376.71 165.97 153.40 178.98
Tþ3 0.57 0.50 0.46 452.14 485.82 504.32 212.93 188.72 246.84

HRB Tþ1 0.83 0.93 0.94 198.53 127.70 105.08 103.57 69.74 50.16
Tþ2 0.73 0.81 0.83 247.51 207.76 181.78 131.80 105.99 88.13
Tþ3 0.64 0.69 0.73 289.21 268.67 234.04 158.07 135.44 123.24

The value is bold when GRU outperforms others.

om http://iwa.silverchair.com/ws/article-pdf/22/4/4142/1040250/ws022044142.pdf

4



Water Supply Vol 22 No 4, 4153

Downloaded from http
by guest
on 09 April 2024
and has the NSE values range from 0.88 to 0.96 for Tþ1 forecasting, 0.69 to 0.91 for Tþ2 forecasting, and 0.46 to 0.84 for Tþ3

forecasting. The best fitting result occurs in the LRB (Tþ1 forecasting has an NSE of 0.96, an RMSE of 19.91 m3/s, and an
MAE of 12.43 m3/s), while the worst fitting occurs in the LURB, in which the best forecasting result only has an NSE of 0.63
(Tþ1). The model can achieve a good result even for long-lead-time forecasting in the LRB (Tþ3 forecasting has an NSE of

0.84, an RMSE of 41.67 m3/s, and an MAE of 23.30 m3/s) and the HRB (Tþ3 forecasting has an NSE of 0.73, an RMSE of
234.04 m3/s, and an MAE of 123.24 m3/s). But in the basins other than these two, the accuracy of the forecasting results
decreased significantly faster when the lead time was increased, especially in the LURB (the best NSE value of Tþ2 and
Tþ3 forecasting were only 0.32 and 0.27, respectively) and the DJRB (the best NSE value of Tþ2 and Tþ3 forecasting

were 0.69 and 0.46, respectively). One of the reasons for the unsatisfactory forecasting results in the LURB is that the stream-
flow at the prediction target is mainly controlled by two adjacent upstream reservoirs (the locations have been marked in
Figure 4). The manually controlled runoff processes are significantly different from the natural process. In addition, the reser-

voir regulations in flood seasons are different from those in dry seasons, thus, those differences result in interferences and
uncertainties. Although other basins also have a considerable amount of reservoirs, their size and the upstreaming locations
of those reservoirs make the dominance of these reservoirs unlike the two in the LURB. Another reason is the extreme flood

events in the validation set and the testing set. According to gathered data, the peak value of the daily streamflow that
occurred on 3 August 2012 reached 3,410 m3/s, and another event that occurred on 10 July reached 617 m3/s. However,
the maximum peak value in the training set is only 266 m3/s which occurred on 1 August 2011. The rainfall-runoff processes

in those two flood events in the validation set and testing set are significantly different from the processes in the training set
(see the hydrographs in the appendix). This finding indicates that the applicability of the GRU forecasting model may be con-
fined in some basins, in which the streamflow is dominated by manual control, especially when the control point is close to
the prediction target. Additionally, the lack of similar flood events for training can also introduce uncertainty and may cause

serious underestimations. The relatively slow decreasing trend of the forecasting accuracy along the lead time in the LRB and
HRB, as well as the fast trend in the LURB and DJRB, is partly attributed to the length of the main channel. According to
Table 2, the length of the main channel of the Liao River and Huai river is over 1,000 km, while the length of the Dongjiang

River is only 562 km. Although the Luan River also has a total length of 877 km, the streamflow at the prediction target is
dominated by two reservoirs close to the downstream regions, thus, the actual length of the channel should be considered
from the control points to the prediction target. The streamflow tends to spend more time to the outlet in long river channels,

therefore, in the LRB and the HRB, the streamflow data at upstream stations several days ago can be meaningful for long-lead-
time forecasting. However, in the LURB and the DJRB, the upstream flows to the outlet in a relatively short period and leads
to difficulty in long-lead-time forecasting.

Compared with RF and SVR, the GRUmodel significantly outperformed others in all the forecasting cases in the WJRB, the

HRB, and the LURB. Interestingly, the RF and SVR were totally not capable of forecasting the streamflow in the LURB, while
the GRU model could capture the patterns in the historical information to some extent (with an NSE of 0.63, an RMSE of
107.91 m3/s, and an MAE of 14.07 m3/s). The GRU model will potentially perform better if the necessary reservoir operation

factors are considered, or more flood events are included in the training stage. In the WRB, the GRU model outperformed
others in Tþ1 and Tþ2 forecasting cases. In the DJRB and the XJRB, the GRU model performed the best in Tþ1 forecasting.
Overall, it can be concluded that, although the selected machine learning models can also perform well, the GRU model is

outstanding in more cases (13 in 21) as the result of its ability to learn the context information in a time series.
Compared with other studies, the GRU model obtained similar performances to LSTM and tended to have better accuracy

than other data-driven models. In addition, both of them are superior to physics-based models from the perspective of evalu-

ation metrics. For example, a study compared the SWAT and LSTM in the XJRB, the result showed that the performance of
LSTM is significantly better (Fan et al. 2020). This is mainly because that the physics-based models are generalizations of the
real world with a lot of approximations, in contrast, the data-driven models directly learn the relationships between the
observed data, although with errors. However, the physics-based models also have the advantage, which is that they do

not need plenty of observed streamflow for calibration. Therefore, they have been widely used in ungagged basins (Piman
& Babel 2013).

Accuracy of streamflow peaks’ forecasting

Streamflow peaks, especially the flood peaks are the portion with most of the concerns in streamflow forecasting. To evaluate
the accuracy of GRU when forecasting the flood peaks, the maximum streamflow of all the flood events in each year in the
://iwa.silverchair.com/ws/article-pdf/22/4/4142/1040250/ws022044142.pdf
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validation and testing stage (2012–2014) has been selected as representative flood peaks. In addition, all the rainfall and their

corresponding flow peaks in the validation and testing period were recognized, the time lags between them were calculated
according to the definition in the published literature (Lombard & Holtschlag 2018) to explore the performances of the GRU
model on different types of rainfall-runoff events. Table 7 shows the dates, the observed streamflow values, and the MAPE of

three selected flood events of RF, SVR, and GRU for all the forecasting cases in each basin. The pattern of the MAPE is simi-
lar to the patterns of RMSE and MAE that have been described in section ‘Overall Accuracy Evaluation’. Of note, the MAPE
in the Wujiang River basins for Tþ1 and Tþ2 forecasting are significantly higher than in other basins (except for the LURB
that obtains bad fitting results). Even the best case in Tþ1 forecasting in this basin has the MAPE over 30%. The result

suggests that during the flood events, the correlations between the streamflow data at the upstreaming stations and the
one at the prediction target station are not good. The probable reason is that the Wujiang River basin is located in a karst
mountainous region (Hou & Gao 2019), which is underlain by carbonate rocks (Yang et al. 2020). It is also an area with

heterogeneous geological structures including countless preferential underground flow paths, sinks, springs, and ponors
(Sezen et al. 2019). The temporal variability of recharge and hydraulic connectivity (Zhou et al. 2019) in this kind of
region results in it being difficult to streamflow forecast. In some rainfall-runoff events, the relationships between the input

and forecasting target can differ from the statistical relationships used by the model and can cause errors. Gao (2012)
employed the backward propagation neural network for streamflow forecasting in two karst mountainous sub-basins in
the upstream region of the Wujiang River basin; the determination coefficients (R2) of 0.538 and 0.420 were obtained,

and the model tended to underestimate flood events. Darras et al. (2015) have also reported inaccurate flash flood forecasting
results by neural networks in the Lez River basin, which is a karst basin in southern France. They suggest that the karst dis-
charge has a different dynamic than the surface discharge, and can have a different time lag effect due to the saturation of the
hydrosystem prior to the event. Hence, although the overall accuracy of the streamflow forecasting in the Wujiang River basin
Table 7 | The dates, observed values, and mean absolute percentage error of the selected flood peaks forecasted by different models in
each basin

Basin Date (month/day/year)
Observed streamflow
(m3/s)

MAPE (%)

Tþ1 Tþ2 Tþ3

RF SVR GRU RF SVR GRU RF SVR GRU

WRB 9/3/2012 2,020 19.95 34.97 8.30 24.41 55.28 51.40 61.66 72.37 74.20
7/24/2013 2,200
9/17/2014 1,520

LRB 8/7/2012 498 16.67 14.12 5.80 27.14 31.23 10.30 28.93 41.79 28.80
8/22/2013 1,340
6/22/2014 428

WJRB 6/4/2012 5,710 42.12 60.13 30.60 60.02 66.79 54.50 65.18 70.20 65.70
9/13/2013 4,310
7/17/2014 15,400

LURB 8/3/2012 3,410 66.23 64.84 43.00 62.49 68.01 53.60 71.63 74.38 64.20
7/10/2013 617
5/13/2014 57.4

XJRB 6/13/2012 11,600 19.68 35.43 6.20 30.45 52.16 30.50 54.62 61.33 50.80
8/25/2013 9,590
5/26/2014 11,900

DJRB 4/29/2012 2,530 25.54 39.49 17.50 39.61 57.69 39.50 63.31 72.18 64.90
8/18/2013 7,360
5/21/2014 4,570

HRB 9/12/2012 2,700 14.35 6.55 4.40 25.50 26.36 14.00 34.00 38.94 33.60
9/28/2013 1,960
9/30/2014 3,240

The bold values denote the lowest MAPE in their corresponding cases.
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is acceptable (according to Table 5), the modelling process should still be improved by considering the specific dynamics in

the karst basins.
Compared with the benchmark models, the GRU model outperformed in most of the forecasting cases, especially in Tþ1

forecastings. In long-lead-time forecastings in some basins (WRB, Tþ2 and Tþ3; WJRB, Tþ3; XJRB, Tþ2; DJRB, Tþ3), the

performances of the RF model were better than the GRU. That is caused by the mechanisms’ difference between these two
models. The RF model consists of decision trees with several judgments operations and a voting mechanism, the core prin-
ciple of it is ‘the similar input produces the similar output’. The GRU model is mainly based on the context information in the
time series. For an extreme flood event, the response of the runoff process occurs rapidly, thus, some important context would

be lacking in the input series. However, the principle of the RF would make it have a relatively poor generalization ability,
especially when the similar samples are not sufficient in the training stage. That is also an explanation of the significant out-
performance of the GRU in the LURB.

Figure 7 shows the recognized streamflow peaks versus the GRUmodels’ prediction results, and the time lags of the stream-
flow peaks to the corresponding rainfall events represented by markers with different colors. The GRU model obtained
accurate forecasting results for streamflow peaks in all the basins except for the LURB. When the lead time increased, the

underestimations on peak flows with short time lags (1–2 days) and large volumes became more evident. For the basins,
which have more streamflow peaks with short time lags (for example, the WRB and the DJRB), the performances on their
estimations deteriorated rapidly. In contrast, in the large plain basins, such as the LRB and HRB, that are dominated by

long-time-lag rainfall-runoff events, the model’s accuracy can remain satisfactory even in Tþ3 forecastings. This pattern
also well supports the discussed reason for the overall accuracies and deterioration in the WRB, the XJRB, and DJRB, as
well as the good performances in the HRB and the LRB for long-lead-time forecasting cases. There are two potential ways
to enhance the model’s performance for long-lead-time forecasting. The first one is collecting more flood events and establish-

ing the event-based models, also, an error rectification model based on ensemble learning would be effective.
CONCLUSIONS

In this study, the GRU model was employed to forecast the streamflow for different lead times in seven basins to investigate
the model’s data selection effects and performances affected by the basins’ characteristics, also the performances of the GRU
model were compared with two benchmark machine learning models including RF and SVR. The results have been evaluated
from three aspects, including the convergence and robustness of the model, the overall accuracy of the model, and the accu-

racy of streamflow peaks forecasting. In summary, the main findings include:

(1) The trend of correlation coefficients of the upstream streamflow series along the lead time controls the trend of evaluation

metrics’ value ranges. The correlations between the rainfall series and forecasting target series, which are affected by the
basin’s characteristics, are positively related to the rainfall data’s impact on the robustness of the model. Although the
rainfall data can improve the convergence of the training loss curve, it is not recommended to be included in the corre-

lation between it and the target streamflow series is not good.
(2) The GRU streamflow forecasting model performs well in most of the basins, but for those basins in which the prediction

target is close to and dominated by reservoirs, the performance will be significantly affected. Compared with RF and SVR,

the GRU model tends to outperform others, especially in Tþ1 forecasting cases.
(3) The deterioration of streamflow peaks’ prediction accuracy of the GRU model with the increased lead time mainly

depends on the regional patterns of the time lag of rainfall-runoff events, in large plain basins with more long-time lag
rainfall-runoff events, the model tends to perform better in long-lead-time forecastings. For flood peaks forecasting, the

GRU model outperforms other models in most of the forecasting cases, although the RF may perform better in some
long-lead-time forecasting cases.

These findings are meaningful for application and study in other regions. In the model selection stage, correlation analysis
can be carried out to preliminarily assess the model’s applicability for different lead-time forecasting; also, the rainfall data’s
impact can be judged in the vector selection process. For the streamflow peaks’ and flood peaks’ forecasting, the patterns

observed are a valid reference. There remain some topics for further investigation. For example, the vector selection process
based on the correlation coefficient can be detailed for the data at each station. Furthermore, the potential possibility of event-
based modelling, ensemble forecasting, and error rectification models to improve the accuracy can still be considered.
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