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ABSTRACT

The simulation of precipitation changes can provide references for the prediction and prevention of flood disasters, and has guiding signifi-
cance for the comprehensive utilization of regional water resources. Precipitation forecasting is difficult due to the randomness and
uncertainty of precipitation events. CEEMD can effectively overcome modal aliasing and white noise interference. The WTD process has
obvious denoising effects on the original signal. GRU can effectively solve long-term memory and reflection. Based on the advantages of pro-
blems such as gradients in propagation, a CEEMD-WTD-GRU precipitation prediction coupling model is constructed. The second
decomposition of CEEMD-WTD-GRU can more effectively extract complex time series information. The time series forecasting provided a
new method, which effectively improved the accuracy of the forecast and applied it to the forecast of monthly precipitation in Shanghai.
The research results show that the average absolute error of the CEEMD-WTD-GRU model is 3.86, the average relative error is 3.30%, and
the Nash efficiency coefficient is 0.99. The prediction accuracy is better than the CEEMD-WTD-GRU model without noise reduction, the
CEEMD-LSTM model and GRU model, which shows that it has strong nonlinear and complex process learning ability in hydrological factor
simulation, and can be used for regional precipitation prediction.
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HIGHLIGHTS

® Complementary ensemble empirical modal decomposition (CEEMD) is a relatively novel data preprocessing method that can effectively
reduce the non-smoothness of time series.

® Wavelet threshold noise (WTD) reduction is an excellent noise reduction technology that can effectively reduce the noise in the signal.

® Gated Recurrent Unit (GRU) as a prediction model is more adept at handling long time series.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and
redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/).
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1. INTRODUCTION

Precipitation is an important replenishment method for regional water resources, and accurate precipitation prediction can
effectively reduce the impact of severe weather. Precipitation is the main climatic factor and an important link in the water
cycle. It is of great significance to analyze its change characteristics. Therefore, accurate prediction of precipitation can pro-
vide technical support for the sustainable use of regional water resources, flood prevention and disaster reduction, and
ecological environment protection (Chen ef al. 2017). The precipitation time series is a non-stationary and non-linear
signal, which can be decomposed and time-frequency analyzed. At the end of the last century, Huang et al. (1998) proposed
a new method of processing non-stationary signals, EMD (Empirical Mode Decomposition), which has been widely used in
various fields of signal processing. Although EMD overcomes the problem of relying on subjective experience when setting
basis functions in wavelet analysis, due to its algorithm itself, modal aliasing will occur when IMF decomposition is per-
formed on the original sequence of historical loads. In order to solve this problem, Wu & Huang (2004) proposed a
research conclusion on EMD processing white noise, that is, EEMD (Ensemble Empirical Mode Decomposition), but in sub-
sequent studies, it was found that the white noise introduced by EEMD may be mixed into the original signal sequence,
causing reconstruction error, therefore, on the basis of EEMD, a new enhanced noise-assisted data analysis method-
CEEMD (Complementary Ensemble Empirical Mode Decomposition) (Zhang ef al. 2021) is proposed. The IMF components
decomposed by CEEMD can be further used to denoise WTD (wavelet threshold denoising) (Yue ef al. 2021) to obtain a more
stable component for subsequent prediction work. GRU (Gate Recurrent Unit) is a kind of recurrent neural network (RNN),
suitable for processing time series data, through the neural network to learn the changes of each sub-component and further
prediction (Chen et al. 2021). Like LSTM (Long-Short Term Memory), it is also proposed to solve problems such as long-term
memory and gradients in back propagation. Compared with the cumbersome calculation and lower training efficiency of
LSTM, GRU can obtain better calculation results with fewer parameters and shorter time (Wang et al. 2021a).

At present, there are many researches on precipitation forecasting. The common precipitation forecasting models can be
roughly divided into four categories: time series models, artificial intelligence models, combined forecasting models and
hybrid forecasting models. Wang et al. (2021b) used the SSVDF model to predict the precipitation in the main flood
season of the Yangtze River Basin, and better predicted the spatial distribution of river water anomalies during the main
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flood season in the Yangtze River Basin, and Ge ef al. (2021) used the time series to improve the two-stage attention mech-
anism. The precipitation forecast model successfully predicted the two-hour precipitation in Europe. Sun & Lin (2003) used
the fuzzy weighted Markov model to take the precipitation data of the Hequ Hydrological Station in Shanxi Province for the
past 50 years as an example. The method was specifically applied and received more satisfactory results. Georgakakos &
Hudlow (1984) proposed a quantitative precipitation forecasting technique for hydrological forecasting in 1984. In 1998,
Kuligowski & Ba Rros (1998) successfully used the artificial neural network numerical weather prediction model to test
and forecast four locations in the mid-Atlantic area of the United States. Subsequently, machine learning was widely used
in the research and study of precipitation prediction. The relative error of the currently widely used precipitation time
series prediction models is generally between 5 and 15%, and there are greater difficulties in predicting the precipitation
in a longer period. The use of machine learning to predict precipitation is still in its infancy, and there are few studies on
preprocessing the data before prediction. Therefore, the paper combines the advantages of CEEMD and GRU, combined
with wavelet threshold denoising technology, establishes a CEEMD-WTD-GRU coupling prediction model, and applies it
to the Shanghai monthly precipitation forecast to perform a longer sequence of detailed precipitation changes. Feature analy-
sis and prediction are of great significance.

2. RESEARCH METHODS

2.1. CEEMD (complementary ensemble empirical mode decomposition)

Based on the EMD method and the EEMD method, CEEMD can perfectly solve the modal aliasing phenomenon and has
strong adaptability (Zhang ef al. 2021). CEEMD, like EMMD, also assists the analysis by adding white noise. The specific
steps are as follows:

(1) Record the time series as the original signal p(f), the added white noise is marked as w"(f), and the noise coefficient is
represented by B, then the time series original signal becomes p(f) + By"(f). The original signal is repeatedly decom-
posed N times by the EMD decomposition method, and the total average value is calculated according to the EEMD
method and defined as the IMF component of the target signal p(f), as shown in Equation (1):

N
IMF; (0 = > Er{p(0) + 8o () (1)
n=1

(2) The remaining component is regarded as the first-order residual r;(f), as shown in Equation (2):
r1(t) = p(t) — IMF,(t) 2)

(3) Continue to decompose the signal 1 (f) + B; E1(w"(f)) repeatedly N times, and define the result after the second decompo-
sition as IMF,(f), as shown in Equation (3):

N
IME3() = 3" Eafri @) + B 1 (o (0) ()
n=1

(4) Calculate the kth order residual r,(f), Among them, k =2, ---, K, as shown in Equation (4):
1.(t) = 1r-1(t) — IMFy(t) 4)

(5) Decompose the signal r,(t) + B,Er(«"(t)) after a certain decomposition again, calculate the overall average to get the
target signal IMFy_(f), as shown in Equation (5):

N
IME¢ ) = 0> Exlrndd) + Bl () ©)
n=1
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(6) Repeat the steps (4) and (5) above until a certain residual can no longer be decomposed, stop the decomposition process,
and get K IMF components, and the final residual M is shown in Equation (6):

K
R(®) =p(®) — Y IMF,(f) ©6)
k=1

Therefore, the original time series signal can be expressed by Equation (7):

K
p(®) =Y IMF() + R(?) (7)
k=1

From the above process, the basic process of CEEMD decomposition is to perform multiple repeated modal decomposition
of the original time series signal. The decomposition process is complete and the original time series signal is accurately
reconstructed. The CEEMD method has the same binary filtering characteristics as the EMD method. The IMF components
obtained after decomposition are arranged in order from high frequency to low frequency. Usually the first few high frequency
components often contain random noise. Therefore, the effect of noise reduction on the obtained IMF component is better.

2.2. WTD (wavelet threshold denoising)

The idea of thresholding wavelet coefficients comes from the theory proposed by Donoho & Johnstone (2012). Donoho first
proposed a general threshold denoising formula based on orthogonal wavelet transform, which is a very concise and effective
wavelet denoising method. The main idea is to perform wavelet transformation on the signal through the Mallat algorithm
and select the generated wavelet coefficients. Since the wavelet coefficients of the noise after wavelet decomposition of
the time series signal are smaller than the wavelet coefficients of the original signal, the noise reduction can be achieved
by selecting an appropriate threshold and filtering the noise signal (Yu & Zhen 2021). Wavelet threshold denoising has
the advantages of being able to obtain the approximate optimal estimation of the original signal, fast calculation speed
and wide adaptability. It is the most widely used wavelet denoising method.

2.3. GRU (gate recurrent unit)

Gated Recurrent Unit (GRU) is a variant of Recurrent Neural Network (RNN), which is very similar to the internal unit of
long short-term memory network (LSTM), and was proposed Cho et al. (2014). It is also proposed to solve the problems of
long-term memory and gradients in back propagation. The calculation structure is shown in Figure 1.

Figure 1 | GRU internal structure.
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® in the figure represents the multiplication of the corresponding elements in the matrix, so the two multiplication matrices
are required to be of the same type. ® Represents matrix addition. vy is the gate control signal to control reset, z is the gating
signal that controls the update. The specific formula is as follows (Zhao et al. 2019):

o) =10 ®
tanh (x) = j - 2: )
y= oW, #1) (10)
z = o(WAH" 1, &) (11)

[ Time series data ]

N Sy SR s iy N
|

¥

WTD

processing processing

Normalization and
prediction using GRU
model

vy vy
MFPl- MFle e I@m

v

l, n
L Z IMFf, + Trend§
Z IMFE, + Trend? i=1
i=1
Determine the appropriate
GRU model
Training Test

Figure 2 | CEEMD-WTD-GRU coupling model technical route.
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K = tanh (W" 1V, &%) (12)
H=01-z0ht+zoh" (13)

Among them: W? and W are the weight matrix of the reset gate and the update gate respectively; W" is the weight matrix
when calculating #’; [] represents the connection of the two vectors.

2.4. CEEMD-WTD-GRU coupling model
In order to improve the accuracy of prediction, the CEEMD-WTD-GRU prediction model is proposed. Decompose complex
time series data into multiple easy-to-predict IMF components. Each sub-component after decomposition has different feature
scales. The components IMF1-IMF3 are optimized for noise reduction. Using the decomposed components for calculation
can effectively reduce non-stationarity. GRU neural network, as a cyclic neural network with memory capabilities, builds
sub-models for each IMF component and performs machine learning, which can effectively use long time sequence infor-
mation to make more accurate predictions. The model structure is shown in Figure 2.

In order to measure the prediction accuracy of the CEEMD-WTD-GRU coupling model, the average relative error (MAPE)
and Nash efficiency coefficient (NSE) between the original data and the predicted value are used as the evaluation criteria.
The specific formula is as follows:

1 i =9
MAPE = 3 == x 100% (14)
i=1 !
N
> e =3,
NSE=1-"F—— (15)
2
t; (yt - Mt)

Among them: y; is the measured value at time i; )?l is the predicted value at time #; N is the total length of the time series.
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Figure 3 | Monthly precipitation data of Shanghai from 2009 to 2019.
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3. EXAMPLE APPLICATION

In order to verify the rationality of the CEEMD-WTD-GRU coupling prediction model, an example application of precipi-
tation data in Shanghai was carried out. The monthly precipitation data of Shanghai from 2009 to 2019 collected through
the Shanghai Water Resources Bulletin contains a total of 132 data. As Shanghai is located in the coastal area, the precipi-
tation data is extremely irregular. CEEMD has great advantages in processing non-stationary and non-linear time series data,
while the GRU model has a good effect on the learning of longer time series data. Therefore, we apply the CEEMD-WTD-
GRU coupling model to Shanghai precipitation simulation work. The monthly precipitation data of Shanghai from 2009
to 2019 is shown in Figure 3.

3.1. CEEMD

Using the CEEMD algorithm to decompose the Shanghai precipitation data, it is found that when the noise amplitude is 0.2
and the noise logarithm is 50, the decomposition effect is ideal. After CEEMD decomposes the time series, six IMF com-
ponents and one trend component are obtained as shown in Figure 4.
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Figure 4 | CEEMD decomposition results of monthly precipitation data in Shanghai.
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It can be seen from Figure 4 that the trend item of Shanghai precipitation data shows that this time series is increasing
month by month. Due to the nonlinearity and non-stationarity of the time series and the characteristics of binary filtering
in CEEMD, the waveforms of the components IMF1-IMF3 fluctuate more drastically, which are high-frequency components,
and generally random noise will be included.

3.2. WTD

Conventional CEEMD denoising generally directly discards the noise-containing IMF components, but this will cause the
problem of high-frequency effective signal loss or incomplete removal of random noise. Therefore, the wavelet threshold
noise reduction (WTD) technology is used to further reduce the noise of the three high-frequency components of IMF1-
IMF3 to improve the accuracy of the model. The noise reduction results for IMF1-IMF3 are shown in Figure 5.

The red in the figure represents the original data, and the blue represents the noise-reduced component. It can be clearly
seen that after the noise reduction process, the fluctuation of the three components of IMF1-IMF3 relative to the original data
is significantly reduced, and the stability is significantly improved. Comparing and analyzing the original and denoising coef-
ficients in wavelet decomposition, it can be seen that the number of denoising layers is seven and the soft threshold denoising
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Figure 5 | Wavelet threshold denoising results of IMF1-IMF3 components.
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effect is good. It can be seen that the third-order component adopts the soft threshold to reduce the noise, and shows the
characteristics of the original signal more completely, and the fluctuation of some details is also more accurate.

3.3. Precipitation forecast

Select Shanghai January 2009-December 2012 precipitation data as the training set, and January 2017-December 2019 data
as the prediction sample. After many times of calibration, the selected optimal GRU model parameters are: learning rate, the
maximum number of iterations is 421, the gradient threshold is 1, the hidden node is 616, and the initial input and output are
both 0. The prediction of the six IMF components and trend items by the GRU model is shown in Figure 6.

It can be seen from Figure 7 that the stability of the Shanghai precipitation time series after CEEMD decomposition and
wavelet threshold denoising has been significantly improved, and the volatility has been significantly reduced. The prediction
effect of a single component is good. The prediction results of IMF1-IMF6 and trend items are reconstructed and compared
with the original precipitation data of Shanghai. The results are shown in Figure 8.

It can be seen from the above results that the CEEMD-WTD-GRU model has good follow-up and volatility in the prediction
of precipitation, and the prediction trend is basically consistent with the original data. The maximum relative error is 8.02%,
the minimum relative error is 0.30%, and the average relative error is 3.30%. The Nash efficiency coefficient is 0.99, indicating
that the model has a small prediction relative error, which further verifies the high accuracy and good stability of the CEEMD-
WTD-GRU model. The prediction of the peak and trough positions of the original data shows the excellent learning ability of
the CEEMD-WTD-GRU model. The prediction trend is basically the same as the original data, and there is no prediction lag.

4. DISCUSSION

The CEEMD-WTD-GRU model has shown good results in the precipitation prediction test in Shanghai. In order to reflect the
accuracy improvement effect of the research model in this paper, the CEEMD-GRU model, CEEMD-LSTM model (Zhang
et al. 2020) and GRU (Zhang et al. 2017) model without noise reduction are used to compare with the prediction results
of this paper. Calculate the errors of the predicted and actual values of different models and their Nash efficiency coefficient
(NSE), and the results are shown in Figures 9 and 10.

It can be seen from Figure 9 that the prediction accuracy of the GRU model is poor, and the prediction results of the other
several prediction models are roughly the same as the original data. Among them, the CEEMD-WTD-GRU model has the best
effect. It can be seen more clearly from Figure 10 that the relative error between the prediction result of the CEEMD-WTD-
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Figure 6 | Wavelet threshold denoising decomposition coefficient graph.
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Figure 7 | Forecast results of each component and trend item.

GRU model and the original data is the smallest. It shows that after the CEEMD decomposition is converted into multiple
IMF components, the noise reduction is performed first, and then the CEEMD-WTD-GRU coupling model is established for
prediction, which can effectively improve the prediction accuracy on the original basis. The average relative error and Nash
efficiency coefficient (NSE) of various algorithms are shown in Table 1.

The study found that the CEEMD-WTD-GRU algorithm is more accurate in predicting the peaks and troughs, there is no
hysteresis, and it can effectively reduce the adverse effects caused by extreme weather. Analyze model calculation results and
error comparison. The main error of this algorithm is that the short time series is the main reason for the error of this algor-
ithm. Because the GRU model used in this paper has good learning ability for nonlinear and non-stationary long-term series
data, it uses longer time series data that can effectively reduce the average relative error in the forecast and improve the Nash
efficiency coefficient (NSE).

5. CONCLUSION

(1) The simulation prediction of Shanghai’s precipitation data from 2017 to 2019 shows that the model has good follow-up
and consistency. Compared with the currently more widely used CEEMD-LSTM model and GRU model, the noise-
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Figure 8 | Comparison of the prediction results of the CEEMD-WTD-GRU model with the original data.
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Figure 9 | Comparison of prediction results of multiple algorithms with original data.
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Table 1 | Comparison of prediction errors

Predictive model Average relative error

NSE
CEEMD-WTD-GRU 3.30% 0.99
CEEMD-GRU 6.96% 0.94
CEEMD-LSTM 11.72% 0.89
GRU 27.66% 0.78

reduced CEEMD-WTD-GRU model is 52.58% higher than the CEEMD-GRU model without noise reduction, reducing
the average relative error to 3.30% . The Nash efficiency coefficient reaches 0.99, and the performance of various indi-
cators shows that the model is effective and the results are accurate.

(2) The currently widely used CEEMD model generally lacks a noise reduction process, and the IMF components obtained
by long-term sequence decomposition usually have many peaks and valleys. The data without noise reduction will have a
greater impact on subsequent predictions. Compared with the CEEMD-GRU model without noise reduction, the accu-
racy of the proposed CEEMD-WTD-GRU model is significantly improved.

(3) It should be pointed out that this method is mainly used for the prediction of long-term series. Although the application
effect is good in scenarios with sufficient original data, it has certain limitations in the context of lack of data support. In
future predictions, algorithms with stronger learning capabilities can be used to achieve further results.
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