
Downloaded from http
by guest
on 10 April 2024
Modeling bulk surface resistance and evaluation of evapotranspiration using remote

sensing and MATLAB

N. C. Sanjay Shekar a,* and B. C. Kumar Rajub

a Department of Civil Engineering, JSS Academy of Technical Education, Bangalore, Karnataka, India
b Department of Civil Engineering, Sapthagiri College of Engineering, Bangalore, Karnataka, India
*Corresponding author. E-mail: sanjayshekarnc@jssateb.ac.in

NCSS, 0000-0003-2817-8276

© 2022 The Authors Water Supply Vol 22 No 4, 4109 doi: 10.2166/ws.2022.036
ABSTRACT

In developing countries, computation of actual evapotranspiration (AET) is challenging due to the lack of ground-based flux measurement

data. The estimation of AET is crucial for water resources management involving the allocation of water for different land use/land cover

(LULC) classes. The study’s novelty was mapping pixel-by-pixel spatial variations of bulk surface resistance and evaluating the derived

actual evapotranspiration in a sub-humid tropical river basin where flux tower data was lacking for validation. This study aimed to map

bulk surface resistance and evaluate the estimated AET by global evapotranspiration data product (MOD16A2). Moderate Resolution Imaging

Spectroradiometer (MODIS) data products, including land surface reflectance (LSR), land surface temperature (LST) and leaf area index (LAI)

data, were used as input in MATLAB for mapping pixel-wise variations to analyze the seasonal variations in bulk surface resistance (rs) and

AET in pre-monsoon and post-monsoon seasons during the years 2019 and 2012. The years 2019 and 2012 were selected because 2019

experienced a relatively wet pre-monsoon and post-monsoon, whereas 2012 experienced the opposite conditions, which proved useful

when interpreting variations that are influenced by wetness conditions. Overall, the results indicated significant variability in the rs and

AET for different LULC classes. MOD16A2 AET was determined to be slightly higher than the LULC classes’ estimated AET. This study’s

MODIS satellite data products provided information on surface characteristics at a reasonable resolution. This permitted the identification

of differences in LULC classes and changes in surface characteristics by season and wetness conditions, which are helpful when

estimating AET.
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HIGHLIGHT

• The study’s novelty was mapping pixel-by-pixel spatial variations of bulk surface resistance and evaluating the derived actual evapotran-

spiration in a sub-humid tropical river basin where flux tower data was deficient for validation.
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A
 Available Energy Flux

cp
 Specific Heat of the Air

Da
 Vapor Pressure Deficit

D50
 Vapour Pressure Deficit at Which Stomatal Conductance Is Half

ea
 Actual Vapor Pressure

es
 Saturation Vapour Pressure

f
 Ratio of Evaporation from Soil to the Equilibrium Evaporation Rate

G
 Soil Heat Flux

gsx
 Maximum Stomatal Conductance

Ga
 Aerodynamic Conductance

Gc
 Bulk Canopy Conductance

Gs
 Surface Conductance

Gi
 Climatological Conductance
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Soil Heat Flux Integrated Over 24 hours

kA
 Extinction Coefficient for Available Energy

kQ
 Extinction Coefficient for Shortwave Radiation

Qh
 Flux Density of Visible Radiation at the Top of Canopy

Q50
 Visible Radiation Flux when Stomatal Conductance is Half

ra
 Aerodynamic Resistance

rs
 Surface Resistance

RH
 Relative Humidity

Rn
 Net Radiation

Rn daily
 Daily Average Net Radiation

Ta
 Air Temperature

uz
 Wind Speed at Height zm

γ
 Psychometric Constant

λET
 Latent Heat Flux

ρa
 Mean Air Density

△
 Slope of Saturation Vapour Pressure Curve

τ
 Fraction of Total Available Energy Absorbed by Soil Surface

λ
 Latent Heat of Water

ρw
 Density of Water

AET
 Actual Evapotranspiration

ArcGIS
 Aeronautical Reconnaissance Coverage Geographic Information System

DEM
 Digital Elevation Model

EF
 Evaporative Fraction

eqn
 Equation

GIS
 Geographic Information System

IMD
 Indian Meteorological Department

LAI
 Leaf Area Index Obtained from MODIS Remote Sensing

LISS
 Linear Imaging Self-scanning Sensor

LSR
 Land Surface Reflectance

LST
 Corrected Land Surface Temperature

LULC
 Land Use and Land Cover

MATLAB
 MATric LABoratory

MODIS
 Moderate Resolution Imaging Spectroradiometer

MOD11A2
 Product of Land Surface Temperature

MOD09A1
 Product of Land Surface Reflectance

MOD15A2
 Product of Leaf Area Index

MOD16A2
 Product for Global Terrestrial Evapotranspiration

MRT
 MODIS Reprojection Tool

PML
 Leuning et al. (2008) Bulk Surface Conductance Model

PM
 Penman-Monteith

TIFF
 Tag Image File Format
1. INTRODUCTION

Characterizing the spatial variabilities of actual evapotranspiration (AET) from heterogeneous landscapes is essential in

hydrology, climate variability, agriculture, irrigation, water resources engineering and management as environmental
impact assessments (Droogers et al. 2010; Minacapilli et al. 2016; Khaniya et al. 2020). AET combines two separate processes
where moisture is lost from the soil surface by direct evaporation and via vegetation by transpiration. Furthermore, AET is a

significant water balance component, sometimes accounting for over 60 percent of the annual water balance. Therefore,
enhanced methods are required for the accurate computation of AET in a field to improve the efficient use of water resources
and productivity (Hobbins et al. 2001; Howell 2001; Allen et al. 2007; Taylor et al. 2013).

Modeling AET is complex, and the direct measurement of AET in large basins can be challenging. The MODIS-based

remote sensing technology, which can also provide estimates in ungauged areas where ground-based flux observations are
unavailable, is one viable approach for computing regional AET. Numerous literature reviews have indicated that MODIS
data products provide land use/land cover (LULC) characteristics information to estimate AET conveniently and cost-effec-

tively. (e.g., Cleugh et al. 2007; Mu et al. 2007; Leuning et al. 2008; Zhang et al. 2009).
AET can be computed using the Penman-Monteith (PM) equation. Several researchers have proposed using remotely

sensed data to estimate the daily AET using the PM approach at regional and global scales (Nagler et al. 2005; Mu et al.
ir.com/ws/article-pdf/22/4/4109/1042120/ws022044109.pdf
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2007; Leuning et al. 2008; Zhang et al. 2008; Guerschman et al. 2009). However, bulk surface resistance is a complex par-

ameter influenced by numerous variables; estimating it when using the PM method is stimulating. Bulk surface resistance
modeling has been the subject of intense research to develop a PM model. The global evapotranspiration data product
was developed by Mu et al. (2007) based on the Cleugh et al. (2007) surface conductance model.

A study of the literature on evaluating the spatial pixel-wise AET estimates of global evapotranspiration data product
(MOD16A2) was conducted and the results are summarised below. Ruhoff et al. (2013) used data from flow towers to esti-
mate AET, then validated using the MGB-IPH hydrological model and MOD16A2 AET data. Cherif et al. (2015) compared
the results to MOD16A2 with a remotely sensed SEBAL model to improve the accuracy of AET estimates. Finally, Ke et al.
(2017) utilized a machine learning model to compute AET-based spatial estimates and compared to MOD16A2, the study
found that the Landsat data fusion provided high accuracy for estimated AET.

It is evident from the literature review that several studies exist and have modeled surface resistance and AET using differ-

ent data inputs, methodologies, algorithms, satellites, spatial scales and validation techniques in other climatic conditions (Li
et al. 2016; Dimitriadou & Nikolakopoulos 2021; Mobilia & Longobardi 2021). However, most of the algorithms use satellite
data combined with ground-based meteorological and flux data. Due to the lack of flux data for validation of the proposed

model, the AET estimation was undertaken using the surface conductance model of Penman-Monteith integrated with Leun-
ing et al. (2008) (PML), which requires satellite data with limited meteorological data inputs. Hence the objective of this study
was to use satellite imagery with meteorological data inputs and MATLAB to map bulk surface resistance and evaluate the

estimated AET by the MOD16A2.
2. STUDY AREA

On the Kaveri River’s northern bank (Figure 1), the Hemavathi River is among the most important tributaries. It rises in the

Western Ghats near Ballalara- Yanadurga in the Mudigere taluk of Chikmagalur district. The river basin is located between
the North latitudes of 13°22030″ to 12°35015″ and the East longitudes of 75°31030″ to 76°39045″. The river joins the Cauvery
River in the Krishnarajasagar Reservoir in Akkihebbal after a 245-kilometer. The Hemavathi River basin covers 5,427 square

kilometers. From March through May, the pre-monsoon season begins. From June until October, the rainy season lasts.
During the rainy season, extreme rainstorms are common. November through February are the post-monsoon months
where the weather is quite cold. The investigation’s catchment is hilly, with steep to moderate slopes. The slope is steeper

at higher elevations and eventually decreases. Figure 1 shows the overall elevation of the basin, which ranges from 748 to
1,853 metres above sea level. Plantations and agriculture are the backbone of the basin’s economy. The Western Ghat section
to the west is exposed to the full effect of southwest monsoon winds. Temperatures rise gradually from January through April
in most parts of the basin. As a result, winds rise over the Western Ghats, bringing rain to the region. The passing of

depressions is associated with heavy to highly severe rainfall. From June through September, the wind blows from the south-
west to the northeast, causing the southwest monsoon to storm. Except for the Palghat gap, through which the southwest
winds blow, the Western Ghats form a continuous barrier. As a result, the southwest monsoon shifts its direction from

north–east to south–west around the end of September. The maximum quantity of cloudiness persists during the receding
monsoon season. The cloudiest month is July, while the least cloudy month is March. The Western Ghats partially covers
the study area. As a result, there is a wide range of vegetative cover in this western region.
3. DATA USED

3.1. MODIS satellite data products

In this study, the MODIS satellite data products mounted on the Terra platform were used. The data can be freely down-
loaded from the website. The products used in this study included the MOD11A2 product of land surface temperature
(LST), the MOD09A1 product of land surface reflectance (LSR), the MOD15A2 product of leaf area index (LAI) and the

MOD16A2 product for global terrestrial evapotranspiration. MODIS data products were chosen based on post-monsoon sea-
sons (November) and the pre-monsoon (April) of years 2012 and 2019.

Rainfall data (Table 1) were collected from the Indian Meteorological Department. Between 2012 and 2019, yearly rainfall

ranged from a high of 2,165 mm to a low of 1,042 mm, with a 1,530 mm average. Compared to the year 2019, which had
2,165 mm of rainfall and a lower LST, the year 2012 had 1,042 mm of rainfall, which was less than the normal annual rainfall
and had a high LST. The climate in the catchment region is typical monsoon climate. According to rainfall records, 2012
://iwa.silverchair.com/ws/article-pdf/22/4/4109/1042120/ws022044109.pdf



Figure 1 | Digital elevation model (DEM) of the study area.

Table 1 | Precipitation data of the study area

Years Season Rainfall (mm) Annual Rainfall (mm)

2019 Pre-monsoon 562 2,165
Post-monsoon 1,603

2018 Pre-monsoon 575 1,824
Post-monsoon 1,249

2017 Pre-monsoon 496 1,469
Post-monsoon 973

2016 Pre-monsoon 556 1,541
Post-monsoon 984

2015 Pre-monsoon 403 1,392
Post-monsoon 990

2014 Pre-monsoon 514 1,580
Post-monsoon 1,066

2013 Pre-monsoon 438 1,228
Post-monsoon 790

2012 Pre-monsoon 341 1,042
Post-monsoon 701

Average Annual Rainfall 1,530
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received significantly less rainfall both in pre-monsoon (dry condition) and post-monsoon (wet condition) than the annual

average rainfall, while 2019 received significantly more rainfall both in pre-monsoon (dry condition) and post-monsoon
(wet condition) than the annual average. As a result, these two years were chosen with care to study seasonal changes in
LULC classes due to dry and wet moisture levels in pre-monsoon and post-monsoon seasons.

3.2. Land Use and land cover map

LULC data for the years 2012 and 2019 were taken from the Bhuvan website (https://bhuvan.nrsc.gov.in). The data utilized in

this study was derived from Linear Imaging Self Scanning Sensor (LISS) - III data collected by the Resourcesat-1 satellite at a
scale of 1:250,000. There are 19 classes (2nd level) in this data; however, only 14 land cover classes were found. The derived
LULC map of the study area is shown in Figure 2. The existence of plantations may be observed in the basin’s higher

elevations (towards the west). However, agricultural crops and plantations were the most significant classes in the sub-
humid tropical river basin.
4. METHODOLOGY

Figure 3 depicts the flow chart of steps involved in using the PM model proposed in this study to derive estimates of surface
resistance and AET using inputs from MODIS imagery and meteorological data. First, pre-processing and post-processing of
MODIS data products were undertaken using the MODIS Reprojection Tool (MRT), followed by the application of ArcGIS.
Finally, all the necessary MODIS images were post-processed into TIFF formats for final processing in MATLAB. The flow-

chart depicts the step-by-step procedure for estimating the variables, then describes the parameters in the following sections
involved in computing surface resistance and AET using the PM approach.
Figure 2 | Land cover classes in the Hemavathi River basin.

://iwa.silverchair.com/ws/article-pdf/22/4/4109/1042120/ws022044109.pdf
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Figure 3 | Steps illustrating the estimation of AET using MATLAB.
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4.1. Leuning et al. (2008) surface conductance (Gs) model

Thepixelwise surface conductance (Gs)wasestimatedby theLeuning et al. (2008) surface conductancemodel,where (Gs)¼ 1/rs by

proposing a six parameters biophysical model (from now on referred to as PML) as given in Equations (1) and (2).

Gs ¼ Gc
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where τ¼ exp (�kALAI) and kA¼ coefficient of extinction for energy available, LAI¼ leaf area index,Q50¼visible radiation flux at

which stomatal conductance is half its maximum value (MJ/m2/day), Qh¼ visible radiation flux density at the top of canopy (MJ/
m2/day), kQ¼ extinction coefficient for shortwave radiation, D50¼ vapour pressure deficit when stomatal conductance is half its
maximumvalue (kPa),Da¼ vapour pressure deficit of air (kPa), gsx¼maximumstomatal conductance (m/s),Gc¼ bulk canopy con-

ductance (m/s) and Gi¼ climatological conductance (m/s) i.e., Gi¼ γ (Rn–G) /(ρacpDa).
As per the recommendations of Leuning et al. (2008), kA¼ kQ¼ 0.6, Q50¼ 30 W/m2 and D50¼ 0.7 kPa values can be kept

constant values across different LULC classes and optimization is required for only gsx and f. According to Table 1 of Kelliher
et al. (1995) the values of gsx are fixed for the different LULC classes. The optimum value of f was determined by running the

model algorithm where the values of f was varied from 0 to 1 in increments of 0.1 until the minimum RMSE was obtained
between AET estimated.

4.2. The PM approach

The latent heat flux (lET) (W/m2) is the energy used to evaporate the water that is estimated using the PM Equation (3) com-
bined with a bulk surface resistance (rs) which is estimated from LAI as the inverse of Gs. The PM equation is:

lET ¼
[ D(Rn �G)]þ racp

es � ea
ra

� �

Dþ g 1þ rs
ra

� � (3)

where D ¼slope of saturation vapor pressure curve at air temperature (kPa/°C), which was calculated using Richards (1971),
es and ea¼ saturation and actual vapor pressure (kPa) of the air, which was computed using Allen et al. (2007), γ, ρa and cp¼
psychrometric constant (kPa/°C), mean air density (kg/m3) and specific heat of air (MJ/kg/°C), which was computed using,
per Allen et al. (2007), Rn¼ net radiation (W/m2), which was estimated using the procedures given by Allen et al. (2007),
Bastiaanssen (2000) and Tasumi et al. (2003), G¼ soil heat flux (W/m2), which was computed using Bastiaanssen (2000).

rs and ra¼ the (bulk) surface and aerodynamic resistances (s/m), which were computed by combining the procedures
given by Leuning et al. (2008). The terms D, es, ea, ρa, ra and γ were calculated using Cleugh et al. (2007).

4.3. Estimating AET

The instantaneous evaporative fraction (EF) Equation (4), (EF¼Rn�G) is a ratio of latent heat flow values to accessible

energy flux values. It’s used to show how energy is partitioned in order to derive daily energy balance information from sat-
ellite data. The daily AET may be computed using EF and daily average net radiation data, according to Morse et al. (2000).

EF ¼ lET
Rn �G

(4)

Due to the use of instantaneous satellite sensors to estimate all parameters, 24-hour AET is computed using Equation (5)
assuming that EF remains constant due to latent heat of flow (Sugita & Brutsaert 1991).

AETdaily ¼
8:64� 107 � EF(Rn daily �Gdaily)

lrw
(5)

where λ¼ latent heat of water (2.47� 106 kJ/kg) and, ρw¼ density of water (1,000 kg/m3).

5. RESULTS AND DISCUSSION

As discussed earlier, the years 2012 and 2019 were selected for analysis as representative dry and wet years. These results with
respect to antecedent rainfall conditions proved useful in the subsequent interpretation of differences in LULC characteristics
and the influence of wetness conditions. Furthermore, implementing equations using satellite imagery yielded pixelwise

values of rs and AET across the Hemavathi River basin on pre-monsoon and post-monsoon days.
Figure 4 maps the bulk surface resistance variations derived from MATLAB with low average values observed post-mon-

soon compared to pre-monsoon for all the LULC classes due to the high moisture availibility with a high LAI. It can be
://iwa.silverchair.com/ws/article-pdf/22/4/4109/1042120/ws022044109.pdf



Water Supply Vol 22 No 4, 4116

Downloaded fr
by guest
on 10 April 202
observed that high rs values are likely where the LAI is low and has less moisture availability, limiting the AET process. Low rs
values are observed under high wetness and high LAI conditions, enhancing the AET. It can also be observed that the mini-
mum values of rs were lower for all LULC classes during the post-monsoon and pre-monsoon of 2019 (wet year) in
comparison to the post-monsoon and pre-monsoon of 2012 (dry year). The rs values also varied across the LULC classes

with the lowest values calculated for the plantations and evergreen forest, which lies in the higher elevation towards the
left side.

Table 2 shows the performance of the pixelwise AET values (5,427 pixels¼ 5,427 km2) computed by the PML model com-
pared to MOD16A2. For the LULC classes, the AET estimated by MOD16A2 was slightly higher than that estimated using

the PML method. with an R2¼ 0.78 to 0.84 with a root mean square error (RMSE)¼ 0.39 to 0.48 mm/day and a bias (BIAS)
¼ 0.13 to 0.18 mm/day for the post-monsoon and pre-monsoon seasons of years 2012 and 2019.
Figure 4 | Spatial variation of bulk surface resistance estimated by PML approach using MATLAB (a) Pre-monsoon, 2012 (b) Pre-monsoon,
2019 (c) Post-monsoon, 2012 (d) Post-monsoon, 2019.

Table 2 | Comparison of pixel-wise PML and MOD16A2 AET (mm/day) estimated using MATLAB

Season R2 RMSE (mm/day) BIAS (mm/day)

2012 Pre-monsoon 0.83 0.45 0.13
Post-monsoon 0.81 0.47 0.15

2019 Pre-monsoon 0.78 0.39 0.16
Post-monsoon 0.84 0.48 0.18

om http://iwa.silverchair.com/ws/article-pdf/22/4/4109/1042120/ws022044109.pdf
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Figure 5 | Spatial variation of AET estimated by PML approach using MATLAB (a) Pre-monsoon, 2012 (b) Pre-monsoon, 2019 (c) Post-mon-
soon, 2012 (d) Post-monsoon, 2019.
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Others (Ruhoff et al. 2013; Cherif et al. 2015; Autovino et al. 2016; Ke et al. 2017) found that MOD16A2 overestimated the
AET (RMSE¼ 0.4–0.9 mm/day) when comparing spatial pixelwise AET estimations with MOD16A2 . Similarly, the AET esti-

mated using MOD16A2 was found to be slightly higher than that estimated by the PML method in this investigation.
Figure 5 maps the daily evapotranspiration estimated using the PML approach in MATLAB, generated using AET pixel-

wise values. The variations in the AET were high and appeared to be related to wetness conditions and also the LULC

class. As expected, the average AET values were low during the post-monsoon and high during the pre-monsoon. The ranking
of the estimated AET was highest in waterbodies, followed by plantations, evergreen forest and grassland. It was found to be
low in the gullied and other wastelands LULC classes. The topography, LULC, LST and moisture conditions influence the

spatial distribution of AET variations across the basin. In both pre-monsoon and post-monsoon in 2012 and 2019, the
AET at higher elevations of the basin was consistently higher than at lower elevations (see Figures 1 and 5). Due to high
LST at the higher elevation, the average AET values are higher in pre-monsoon than post-monsoon in 2012 and 2019. For

most classes, the AET in the post-monsoon of 2019 was slightly lower than in the post-monsoon of 2012 due to significantly
less moisture in 2012 associated with reduced rainfall during the monsoon season.
6. CONCLUSIONS

The MODIS global evapotranspiration dataset was assessed and evaluated in the Hemavathi River Basin using the surface
conductance model and MODIS satellite data products. The focus was on assessing the patterns of bulk surface resistance
and evaluating the derived AET across different LULC classes present in the river basin. It was found that agricultural

crops and plantations are the major classes in the basin. The analysis was undertaken in pre-monsoon and post-monsoon
in 2012 (dry year) and 2019 (a wet year). The surface resistance and AET were computed for each pixel in the basin using
MODIS-based satellite imagery products. Very high surface resistance values were observed under low wetness and low
://iwa.silverchair.com/ws/article-pdf/22/4/4109/1042120/ws022044109.pdf
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LAI conditions. The variations in AET appeared to be related to wetness conditions, LST and the LULC class. Waterbodies

had the highest AET losses estimated by the PML and MOD16A2 methods, followed by plantations, evergreen forest and
grassland. For all the LULC classes, the AET estimated by MOD16A2 was slightly greater than that estimated using the
PML method. It was concluded from the assessment that MODIS satellite data products provide information on the

Earth’s surface characteristics at a resolution that permits identification of not only differences in LULC classes but also
on changes in these characteristics as a function of season, LST and moisture conditions. This work’s developed methodology
provided reasonably accurate regional/catchment scale surface resistance, AET estimations using satellite images and limited
data inputs. Different satellite images with finer spatial resolution such as AVHRR and LANDSAT can be used to compare

the performance of MODIS imagery. This will be critical in water balance investigations and hydrological models calibration.
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