
Downloaded fr
by guest
on 10 April 202
Simulating and predicting soil water dynamics using three models for the Taihu Lake

region of China

Can Chen *, Qing Lv and Qian Tang
College of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
*Corresponding author. E-mail: chencan2010203@sohu.com

CC, 0000-0003-3517-5567; QL, 0000-0003-3751-1456; QT, 0000-0002-9445-6599

© 2022 The Authors Water Supply Vol 22 No 4, 4030 doi: 10.2166/ws.2022.032
ABSTRACT

Drought stress under a changing climate can significantly affect agricultural production. Simulation of soil water dynamics in field conditions

becomes necessary to understand changes of soil water conditions to develop irrigation guidelines. In this study, three models including

Auto-Regressive Integrated Moving Average (ARIMA), Back-Propagation Artificial Neural Network (BP-ANN), and Least Squares Support

Vector Machine (LS-SVM) were used to simulate the soil water content in the 0–14 cm and 14–33 cm soil layers across the Taihu Lake

region of China. Rainfall, evaporation, temperature, humidity and wind speed that affect soil water content changes were considered in

the BP-ANN and LS-SVM, but not in ARIMA. The results showed that the variability of soil water content in the 0–14 cm soil layer was greater

than that in 14–33 cm. Correlation coefficients (r) of soil water content between simulations and observations were highest (0.9827) using LS-

SVM in the 14–33 cm soil layer, while they were the lowest (0.7019) using ARIMA in the 0–14 cm soil layer; but no significant difference in r

values was observed between the two soil layers with the BP-ANN model. Compared with the other two models, the LS-SVMmodel seems to

be more accurate for forecasting the dynamics of soil moisture. The results suggested that agro-climatic data can be used to predict the

severity of soil drought stress and provide guidance for irrigation to increase crop production in the Taihu Lake region of China.
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HIGHLIGHTS

• To understand the dynamics of soil water in the Taihu Lake region of China.

• The simulation accuracy of LS-SVM was the highest.

• To predict the trend of soil water content in the study area.
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GRAPHICAL ABSTRACT
1. INTRODUCTION

Soil water content is one of the key factors that influence agricultural production. Soil water dynamics depend heavily on
local environmental conditions, especially meteorological factors. In recent years, scientists have focused attention on soil

water dynamics (Bialkowski & Buttle 2015; Vereecken et al. 2015; Bohara et al. 2019; Bai et al. 2020) and their research
methods can generally be grouped into two categories. One is the statistical forecasting method (or empirical modeling)
based on correlations between soil water content and weather parameters (Zucco et al. 2014). The other is the theoretical

modeling approach based on the soil water balance equation and soil water dynamics (Kashani et al. 2020). These methods
obtain satisfactory results in most cases when all necessary boundary conditions are properly processed. However, there are
problems in real application. Values of the various parameters used in these models must be determined through experimen-

tal measurement or statistical analysis. Generally, theoretical soil water prediction models are too complicated to apply
because of the difficulty of acquiring all parameter values.

The parameter values that are used for predictive models can dynamically change with natural conditions and need to be

numerically determined through experimental measurements or statistical inferences. Natural conditions’ variability over
temporal and spatial horizons makes parameterization extremely difficult, thus impeding the effective use of models. In
addition, comprehensive and complex models’ outcomes are extremely sensitive to parameter definition. If, on the other
hand, the models are composed of easily defined parameters, the simplified versions lack the flexibility to be comprehensive

and universally applicable.
Recently various stochastic models have been developed and applied in water resources and hydrology, including the soil

water simulations by Back-Propagation Artificial Neural Network (BP-ANN), Auto-Regressive Integrated Moving Average

(ARIMA), and Least Squares Support Vector Machine (LS-SVM) (Aitkenhead & Coull 2016; Mojid et al. 2019; Asquith
2020). The BP-ANN, ARIMA, and LS-SVM techniques are widely used in water quality prediction and estimation of
water demand growth for various purposes (Parmar & Bhardwaj 2015; Zounemat-Kermani et al. 2016; Tiyasha et al.
://iwa.silverchair.com/ws/article-pdf/22/4/4030/1041388/ws022044030.pdf
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2020). These studies indicated that BP-ANN, ARIMA, and LS-SVM could successfully model the complex relationship

between meteorological factors and soil water in agriculture.
The BP-ANN is a mathematics-based model, whose architecture has been inspired by biological neural networks

(Almomani 2020; Jin et al. 2021). The BP-ANN is very appropriate for modeling nonlinear processes, and is particularly suit-

able for soil water and salt dynamics (Morshed & Kaluarachchi 1998). The ARIMA model is popular because of its simplicity
and robust statistical properties (Hanh et al. 2010). The ARIMA is a linear prediction model which assumes that, the current
data has a direct relationship with the past data and its errors (Narayanan et al. 2013). In hydrological studies, the ARIMA
model has been used for forecasting monthly temperature, humidity and precipitation (Jahanbakhsh & Babapour 2003),

stream flow data and prediction of soil water dynamics (Panda & Kumar 2011; Patle et al. 2015). LS-SVM is a good tool
for system identification especially from I/O data or shortly learning from data. LS-SVM is an emerging modeling technique
which combines the advantages of neural networks (handling large amounts of highly nonlinear data) and nonlinear

regression (high generalization) (Suykens et al. 2001; Fan et al. 2008). Yu et al. (2017) showed that the LS-SVM is an appro-
priate and high-performance data-driven model for prediction of daily runoff, compared with neural network models.

The Taihu Lake region is one of China’s most intensive agricultural regions, with a long history of cultivation. Under a

changing climate, the frequency of extreme weather events has increased and drought has become the foremost natural dis-
aster for agricultural production (Nguyen et al. 2018). During drought times, understanding of soil water dynamics is critical
to developing irrigation schedules and guaranteeing agricultural production.

The objective of this study was to understand the dynamics of soil water, use ARIMA, BP-ANN and LS-SVM models to
predict the trend of soil water content, and to determine the most suitable simulation model in the Taihu Lake region of
China.

2. MATERIALS AND METHODS

2.1. Experimental site, soil and meteorological data collection

The experimental area is located at Changshu City, southeast of Jiangsu Province of China (31°300N, 120°330E). The climate is
classified as subtropical monsoon with an annual precipitation of 1,100–1,200 mm, annual average temperature of 16 °C,
annual sunshine greater than 2,000 hours, and frost-free period of more than 230 days. The dominant cropping rotation is

rice–wheat. The major soil type is loam (local name Wushan soil).
The experimental platform consisted of nine Free Air Carbon Dioxide Enrichment (FACE) circulation systems and one

control. The spatial interval between circulation systems was 20 m. The experiments were designed with two CO2 levels:

ambient CO2 (AC); elevated CO2: ambient þ 200 μmol L�1 (EC), and two temperature levels: ambient temperature (AT)
and elevated temperature: ambient þ2 °C (ET). There are four treatments in this experiment: ambient (AC and AT), C (EC
and AT), CT (EC and ET), and T (AC and ET), and each treatment had three replicates. Experimental plots were arranged

in a randomized complete block design.
Soil water content changes were monitored from October 23, 2018, to July 15, 2019, and soil samples were collected every

two days at depths of 0–14 cm and 14–33 cm. The water content of the soil samples was determined by drying (105–110 °C for

eight hours in an oven).
Soil bulk density and saturated conductivity were measured by the ring knife method. The pH was determined in a 1:5 soil:

water suspension using a Thermo Orion pH meter with a combination electrode. Soil organic matter was determined by
potassium dichromate external heating (Bao 2000). Soil clay, sand and silt content were measured by the pipette method.

Physical and chemical properties of the soil were determined (Table 1).
Table 1 | The physical and chemical properties of the tested soil

Soil layer
Depth
(cm)

Saturated hydraulic
conductivity (cm·s�1)

Soil organic
matter (%)

Bulk density
(g·cm�3) pH

Porosity
(%)

Mechanical composition (g·kg�1)

. 0.02 mm
0.02–
0.002 mm , 0.002 mm

Cultivation 0–14 7.04� 10�4 3.72 1.21 7.0 54.34 337.42 386.23 276.35

Plowpan 14–33 1.26� 10�4 2.91 1.47 7.2 44.53 278.62 392.44 328.94
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Meteorological data including daily rainfall, average daily temperature, daily maximum and minimum temperatures, daily

cumulative evaporation, daily average relative humidity, daily average wind speed, and daily average land surface temperature
were collected from Changshu weather station.

A total of 134 sets of meteorological parameters and soil water contents were divided into two groups. Group A contained

120 sets which were used for model training, while group B comprised 14 sets used for model simulation.
2.2. Model simulation

2.2.1. Auto-regressive integrated moving average model (ARIMA)

The ARIMA model, based on time series analysis, can solve a real problem using random data series. This approach assumes

that the data is independent, but time series analysis focuses on dealing with the dependency of data series. The process of
model analysis was as follows: (1) data arrangement, (2) time series model selection, (3) model performance, and (4) model
prediction. A time series model flow chart is shown in Figure 1.
2.2.2. Back-propagation ANN (BP-ANN)

An Artificial Neural Network (BP-ANN) is a mathematical model imitating the behavior of an animal’s neural network to
perform distributed information processing, with a strong nonlinear mapping ability (Deng et al. 2011). BP-ANN is appropri-
ate for modeling nonlinear processes, such as soil water and salt dynamics (Morshed & Kaluarachchi 1998). The BP-ANN is a

multi-layer feed-forward network with error back-propagation. The network output error propagates back to modify the net-
work weights and thresholds, so as to realize the nonlinear mapping of the network. BP-ANN is relatively mature and widely
used at present. The basic structure of a BP-ANN is shown in Figure 2.
Figure 1 | Schematic diagram depicting time series modeling (Xiao & Guo 2009).

Figure 2 | Elements of a BP-ANN.
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The specific algorithm formula for the nonlinear action function, f (), was described by Zhang (2006). For the ith node of the
neural network, the node output is:

yj ¼ f
X

wij � xi � uj

� �
(1)

where yj is theoutput of the i
th node, f() depicts thenonlinearaction function,xi is the inputof the i

th node,wij is the connectionweight
of the ith and jth nodes, and θj is the threshold of the ith neuron. The weights associated with node connections may be modified:

Dwij(nþ1) ¼ a� ei � yj þ h� Dwij(n) (2)

wherea is thedynamically adjusted learning factoraccording tooutput error, η is themomentum factor, ei is the calculationerror, and
yj is the output of the i

th node. The error term is:

ep ¼ 0:5�
X

(t pi � opi)
2 (3)

where ep is the estimation errorof the ith node, tpi is the expectedoutput valueof node i,whileopi is the calculatedoutput valueof node
i. The hidden layer is a hyperbolic tangent transfer function (TANSIG):

f(x) ¼ 2
1þ e�2x � 1 (4)

2.2.3. Least squares support vector machine (LS-SVM)

Least squares support vector machine (LS-SVM) based on statistical learning theory is a method developed by Cortes &

Vapnik (1995). Because of its powerful capabilities in classification and regression, LS-SVM has been widely applied in
the artificial intelligence field. The LS-SVM developed by Suykens & Vandewalle (1999) is an improved algorithm, using
equality-type constraints instead of inequalities.

Given a training set of N data points, {xi, yi}
N
i¼1, with input data xi [ Rn, output data yi [ R and total number of data pat-

terns N, the nonlinear function of the LS-SVM is defined as:

y(x) ¼ wTf(x)þ b (5)

wherewT is theweight vector,w(x) is themapping function thatmaps x into the high-dimensional feature vector, and b is the bias.
An LS-SVM optimization problem is formulated as follows:

min J(w, e) ¼ 1
2
wTwþ g

1
2

XN
i¼1

e2i (6)

Equation (6) is subject to the constraints:

y(xi) ¼ wTf(xi)þ bþ ei i ¼ 1, 2, 3, . . .N (7)

where g is the regularization constant parameter, ei is the error vector for xi, and b is the bias. One defines the Lagrangian:

L(w, b, e, a) ¼ J(w, b, e)�
Xn
i¼1

ai{wTf(xi)þ b� yi þ ei} (8)

where ai is the Lagrangian multipliers. The conditions for optimality lead to a set of linear equations. Equation (9) is the sol-

ution for Equations (6) and (7):

0 �YT

Y k x, xi þ 1
r
I

� �2
4

3
5 b

ai

� �
¼ 0

1

� �
(9)
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where Y ¼ (y1; y2; . . . ; yn) and k(x, xi) is the common kernel function that is satisfied with Mercer’s condition in the form of

polynomial, sigmoid, Gaussian, and radial basis (RBF) kernel functions. In this study, the RBF was used and defined as:

k(x, xi) ¼ exp � (x� xi)
2

2s2

 !
(10)

where s2 is the width of the RBF, i¼ 1, 2, 3…N.

The LS-SVM regression formulation is then defined:

f(x) ¼
XN
i¼1

aik(x, xi)þ b (11)

2.3. Preliminary treatment

2.3.1. Auto-regressive integrated moving average model (ARIMA)

A time series analysis must undergo the stationarity test (Figure 1). If the series is not stationarity, i.e. the auto-correlation of
the data set is significant and the data exhibits a time-dependent trend, the time series must be filtered by an appropriate math-
ematical model to remove the trend. Thus, the auto-correlation of the residual white noise series should not be significant (Wu

et al. 1997). The time series of soil water content of both 0–14 cm and 14–33 cm layers showed regular and periodic fluctu-
ations. The first-order difference was applied to obtain stationary time series.

The resulting residual series would then undergo further testing for randomness (i.e. the white noise test in Figure 1). With

increasing lag time, the coefficients of the corresponding auto-correlation function (ACF) exhibited a tailing phenomenon
(Wang et al. 2011) and gradually fell within the confidence intervals. As the average of ACF approached zero, the residual
time series were stationary and the ARIMA was chosen as the optimal model. The Akaike information criterion (AIC) in
the following format was used to test the ARIMA:

AIC(p) ¼ N lns2
@ þ 2p (12)

where p is model order, N is length of time series {xt} and s2
@ is the maximum of the likelihood equation,

s2
@ ¼ 1

N
S
N

t¼1
@2
t (13)

where @2
t is the residual series.

A better model results in smaller AIC values (Tian 2006). The least-squares method was employed to determine the optimal

model order defined by Equation (13) according to the partial auto-correlation function (PACF) of the residual series. Accord-
ingly, the minimum AIC was 294 corresponding to ARIMA (2, 1, 0). The ACF of the ARIMA (2, 1, 0) model showed that the
correlations among the residuals were not significant and the coefficients of ACF residuals passed the white noise test. Sub-

sequently, the soil water content in the 0–14 cm and 14–33 cm soil layers were forecast by combining the outcomes of the
first-order difference stationary series model and the ARIMA (2, 1, 0) residual series model.

2.3.2. Back-propagation artificial neural network (BP-ANN)

The BP-ANN model was built by designating daily measurements of mean, maximum, and minimum temperatures, cumulat-
ive rainfall, cumulative evaporation, mean wind speed, mean humidity and mean soil surface temperature as the eight layers

of neural inputs and the soil water content of the 0–14 cm and 14–33 cm soil layers as outputs.
The hidden layer contained the TANSIG and PURELIN that were the transfer functions to mathematically facilitate the

conversion of input neurons to the outputs. The transfer function between input and hidden layers was a sigmoid function

(TANSIG). The transfer function between hidden and output layers was a linear function (PURELIN). The network learning
process employed the training data set to calibrate the function parameters through a trial- and-error iteration process. The
error tolerance and max-iteration of the BP-ANN were 0.02 and 1,000, respectively. There were five hidden layer neurons,
://iwa.silverchair.com/ws/article-pdf/22/4/4030/1041388/ws022044030.pdf
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and the network structure was 8:5:1, for the input, hidden, and output layers, respectively. Transfer functions between the

layers were designed by the Elman network (Wen et al. 2009; Deng et al. 2021).
The general network output vector of the sub-values should be between �1 and 1. To ensure that the large input neuron

falls within the large gradient area of the neuron activation function, the components of input vectors should also fall between

�1 and 1. Before network training, the input and output variables were normalized such that:

X0
i ¼

Xi �Xmin

Xmax �Xmin
(14)

where X0
i and Xi are the ith observation of a neuron input layer before and after processing, and Xmin and Xmax are the maxi-

mum and minimum of each neuron input layer, respectively.

2.3.3. Least squares support vector machine (LS-SVM)

The LS-SVM is an improved version of the support vector machine, using equality-type constraints instead of inequality con-
straints, which increases the speed of problem solving. We chose the radial basis kernel function (RBF) as the common kernel

function of LS-SVM. The regularization constant parameter (r¼ 7,000) and nuclear parameter (σ¼ 0.4) were determined by
robust cross-validation.

In this paper, some MATLAB2010b modules, including the fuzzy logic toolbox, neural network toolbox and wavelet tool-

box, were used to develop the simulation system based on LS-SVM, with the meteorological factors and prediction system
based on chaotic time series analysis.
3. MODEL PERFORMANCES

Model performance in this study was evaluated on the basis of the root-mean square error (RMSE), the mean absolute relative
error (MARE), and correlation coefficient (r) (Chen et al. 1998). The performance functions were defined as follows:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

[ŷ(i)� y(i)]2

n� 1

vuuut
(15)

MARE ¼ 1
n

Xn
i¼1

jŷ(i)� y(i)j
y(i)

(16)

r ¼

Pn
i¼1

{[ŷ(i)� ŷm][y(i)� ym]}ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

[ŷ(i)� ŷm]
2Pn
i¼1

[y(i)� ym]
2

s (17)

where n is the total number of data points, ŷ(i) is the simulated value, y(i) is the original measured value, ym̂ is the mean of the
simulated value, and ym is the mean of the original measured value.
4. RESULTS

4.1. Dynamics of soil water content

The soil water content in the 0–14 cm soil layer was higher than in the 14–33 cm soil layer (except for 25 February 2019,
which was due to more than ten days without precipitation). The magnitude of soil water content fluctuations with time

was greater in the 0–14 cm soil layer than in the 14–33 cm soil layer (Figure 3). The coefficients of variation of soil water con-
tent in the 0–14 cm and 14–33 cm soil layers were 12.93% and 9.98%, respectively. The germination stage of wheat is from
November to December when wheat needs a lot of water to germinate. Usually, there is enough water stored in soil for wheat

germination in the study area. The heading–grouting stage of wheat is from the end of March to the middle of April. During
this stage, wheat growth needs more irrigation. The mature stage of wheat is between the end of May and the start of July and
needs less water than does the heading–grouting stage.
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Figure 3 | Measured daily soil water fluctuations of the soil.
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4.2. Time series modeling of soil water content

The ARIMA (2, 1, 0) developed from the testing data set provided reasonable estimates and the predicted magnitude and
trend were in close agreement with the corresponding measurements (Figure 4). Time series soil moisture contents in

both 0–14 cm and 14–33 cm soil layers tended to be of periodic fluctuations. Therefore, the first-order difference was applied
to get stationary time series in this study. The mean absolute relative errors between the predictions and measurements in the
0–14 cm and 14–33 cm soil layers were 0.20 and 0.11, respectively (Table 2). The ARIMA (2, 1, 0) time series model was suit-
able for simulation and prediction of soil water in this region.

4.3. BP-ANN modeling of soil water content

The BP-ANN model was built by daily rainfall, average daily temperature, daily maximum and minimum temperatures, daily

cumulative evaporation, daily average relative humidity, daily average wind speed, and daily average land surface temperature
as input variation, and soil water at 0–14 cm and 14–33 cm as output variation. Soil water contents in the 0–14 cm and
14–33 cm depth layers were predicted by the BP-ANN model (Figure 5).

The soil water estimates were comparable to the observed values in the 0–14 cm and 14–33 cm soil layers (Figure 5). The

maximum relative errors for the two soil depths were 0.14 and 0.16, respectively. Correlation coefficients (r) between
observed and simulated values were 0.8397 and 0.8721 for the 0–14 cm and 14–33 cm layers respectively (Table 2).

4.4. LS-SVM modeling of soil water content

The LS-SVM is an improved method of the support vector machine, using equality-type constraints instead of inequality-type
constraints, which will increase the speed of solving problems. The soil water content predicted by the LS-SVM model agreed
well with observed values. The correlation coefficient (r) of the estimates was 0.9664 and 0.9827 for the 0–14 cm soil layer and

14–33 cm soil layer, respectively. The simulated values have good correspondence with the observed values (Figure 6). The
mean absolute relative error in the 0–14 cm soil layer and 14–33 cm soil layer was 0.05 and 0.04, respectively (Table 2).
5. DISCUSSION

All three models (ARIMA, BP-ANN and LS-SVM) provided good predictions of soil water changes (Table 2). In comparison

with the ARIMA and BP-ANN, the LS-SVM training speed was quicker.
The MARE represents the cumulative error of the predictions versus measurements distributed over the entire data set; the

MARE of perfect agreement will be zero. The MARE of the model predictions varied from 0.04 to 0.20, indicating all three

models provided reasonably accurate predictions of daily water changes in both 0–14 cm and 14–33 cm soil layers. The
models that relied on inputs of daily meteorological information (i.e. BP-ANN and LS-SVM) performed slightly better
with MARE ranging from 0.04 to 0.16. The time-series-based model, ARIMA, relying strictly on the trends was slightly less
://iwa.silverchair.com/ws/article-pdf/22/4/4030/1041388/ws022044030.pdf



Figure 4 | Daily soil water changes prediction by the ARIMA model vs measurements.

Table 2 | The simulation performance statistics of the three models

Model Soil depth (cm) RMSE MARE r

ARIMA 0–14 2.21 0.20 0.7019
14–33 1.10 0.11 0.7868

BP-ANN 0–14 1.45 0.14 0.8397
14–33 1.33 0.16 0.8721

LS-SVM 0–14 0.51 0.05 0.9664
14–33 0.46 0.04 0.9827
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responsive, with MARE ranging from 0.11 to 0.20. The RMSE represents the cumulative error of the squared terms distributed

over the entire data set.
Comparing the simulated values with the observed values, the root-mean-square error (RMSE) of soil moisture content is

higher for the 0–14 cm soil layer than for the 14–33 cm soil layer, and the correlation coefficient (r) is lower for the 0–14 cm

soil layer than for the 14–33 cm soil layer, because the variability in soil moisture content was greater for the 0–14 cm soil
layer than for the 14–33 cm soil layer, and the soil moisture in the 0–14 cm soil layer was more influenced by meteorological
factors. In this regard, it is biased toward larger deviations between predictions and measurements. In relative terms, a higher
om http://iwa.silverchair.com/ws/article-pdf/22/4/4030/1041388/ws022044030.pdf
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Figure 5 | Daily soil moisture changes prediction by the BP-ANN model vs measurements.
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RMSE denotes more and greater deviations between the predictions and measurements. The RMSE of the predictions varied
from 0.46 to 2.21, an indication that the deviations from the measured data were tolerable. The models that relied on inputs of

daily meteorological information, i.e. BP-ANN and LS-SVM, exhibited lesser degrees of deviation with RMSE ranging from
0.46 to 1.45. The time-series-based model, ARIMA, which relied strictly on the trends, exhibited a greater extent of deviation
with RMSE ranging from 1.10 to 2.21.

The correlation coefficient indicates the trend exhibited by two parallel data sets. The correlations of ARIMA-, BP-ANN-
and LS-SVM-based predictions were all significant with average r equal to 0.7019, 0.8397, and 0.9664 respectively in the
0–14 cm soil layer. Judging from the indices of their predictive performances, the LS-SVM-based model exhibited more

consistent and accurate predictions over the ARIMA- and BP-ANN-based models. Deng et al. (2011) also found that
the LS-SVM model performed better in simulating the dynamic trend of soil water in the red soil region of China,
especially under a changing climate.

6. CONCLUSIONS

The ARIMA, BP-ANN and LS-SVM models were used to predict soil water dynamics in the 0–14 cm and 14–33 cm layers of
cultivated soils in the Taihu Lake region of China. They were all successful in predicting the trend and magnitudes of daily soil
water fluctuations in terms of precision and relative maximum errors. Rainfall, evaporation, temperature, humidity and wind
://iwa.silverchair.com/ws/article-pdf/22/4/4030/1041388/ws022044030.pdf



Figure 6 | Daily soil water changes prediction by the LS-SVM model vs measurements.
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speed that affect soil water content changes were considered in the BP-ANN and LS-SVM, but not in ARIMA. The results
were most satisfactory when meteorological factors were taken as input variables, and the simulation accuracy of LS-SVM
was the highest. Therefore, the LS-SVM model can be used to predict soil water dynamics in the study area.
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