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ABSTRACT

Accurate forecasting of runoff is necessary for water resources management. However, the runoff time series consists of complex nonlinear
and non-stationary characteristics, which makes forecasting difficult. To contribute towards improved forecasting accuracy, a novel combi-
nation model based on complementary ensemble empirical mode decomposition (CEEMD) for runoff forecasting is proposed and applied in
this paper. Firstly, the original runoff series is decomposed into a limited number of intrinsic mode functions (IMFs) and one residual based on
CEEMD, which makes the runoff time series stationary. Then, approximate entropy is introduced to judge the complexity of each IMF and
residual. According to the calculation results of approximate entropy, the high complexity components are predicted by Gaussian process
regression (GPR), the medium complexity components are predicted by support vector machine (SVM), and the low complexity components
are predicted by autoregressive integrated moving average model (ARIMA). The advantages of each forecasting model are used to forecast
the appropriate components. In order to solve the problem that the forecasting performance of GPR and SVM is affected by their parameters,
an improved fireworks algorithm (IFWA) is proposed to optimize the parameters of two models. Finally, the final forecasting result is obtained
by adding the forecasted values of each component. The runoff data collected from the Manasi River, China is chosen as the research object.
Compared with some state-of-the-art forecasting models, the comparison result curve between the forecasted value and actual value of
runoff, the forecasting error, the histogram of the forecasting error distribution, the performance indicators and related statistical indicators
show that the developed forecasting model has higher prediction accuracy and is able to reflect the change laws of runoff correctly.

Key words: approximate entropy, combination model, complementary ensemble empirical mode decomposition, improved fireworks algorithm,
runoff forecasting

HIGHLIGHTS

® CEEMD is introduced to obtain the IMF components and residual component.

® Fach IMF component and residual component is analyzed by approximate entropy, and suitable forecasting models are determined.

® An IFWA is proposed to optimize the parameters of SVM and GPR models.

® The excellent performance of the proposed model is evaluated by comparing the predictive results to other state-of-the-art comparative
models.

1. INTRODUCTION
1.1. Background

Runoff forecasting is the basis of reasonable and effective management of water resources and improving the utilization rate
of water resources. It allows a careful analysis of the current hydrological situation, accurate prediction of the hydrological
situation in the medium and long term, and establishing the movement trend of runoff change, so as to make the most effec-
tive use of water resources and finally maximize the interests of the national economy. High precision runoff forecasting can
provide a scientific basis for water resources planning, sustainable utilization of water resources, and output optimization of
hydropower stations, irrigation and water environment management (Zeng et al. 2020). The runoff evolution process is highly
complex. Changes of rainfall, climate change, solar activity, human activities and other surface factors directly or indirectly
cause changes of runoff. With the increasing impact of human activities and climate change on runoff, the runoff time series
presents nonlinear, non-uniformity and uncertainty. Under this background, high-precision runoff forecasting is full of
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challenges, and the development of a high-precision forecasting model is the main difficulty of runoff forecasting research
(Ling et al. 2020). It is difficult to analyze the characteristics of runoff change by traditional forecasting methods. Therefore,
the study of high-precision runoff forecasting model is of great significance for the efficient utilization of water conservancy
projects and the sustainable development of water resources (Xie et al. 2019).

The key to runoff forecasting is to correctly reveal the development law of the studied hydrological system and establish fore-
casting models based on it. So far, there are many runoff forecasting models, which can be roughly divided into process-driven
and data-driven models. Because data-driven models generally do not need to consider the physical genetic mechanism of the
runoff formation process, they are the most commonly used prediction models. However, different runoff series have their own
characteristics, and the applicable forecasting models will be different. We need to analyze, try, test and use other processes, and
then get a suitable forecasting model. This paper focuses on the forecasting of runoff and proposes a forecasting model based on
the complementary ensemble empirical mode decomposition (CEEMD) and combination model.

1.2. Literature review

The key problem of runoff forecasting is to reveal the development law of the hydrological system and establish the forecast-
ing model based on it. At present, there are many runoff prediction models, most of which are data-driven models. The data-
driven model is the most commonly used forecasting model because it does not need to consider the physical mechanism of
the runoff formation process. However, different runoff time series have their own characteristics, and the applicable forecast-
ing models are also different. For the runoff forecasting problem, scholars usually find a suitable forecasting model after
analyzing, experimenting, and testing. Runoff forecasting models can be divided into the following categories.

A. Multiple regression analysis model. Regression analysis is a model that takes into account the changes of the predicted
objects affected by the impact factors, and is one of the most common models used in runoff forecasting. Because the fac-
tors affecting runoff forecasting are very complex and diverse, it is often not enough to consider only one prediction factor.
In general, it is necessary to consider the common influence of multiple forecasting factors on the forecasting object.
Therefore, a multiple regression model is often used in runoff time series prediction (Niu et al. 2016; Bitew et al.
2019). However, in practical engineering application, many variables or parameters affecting runoff are difficult to
obtain, which will limit the application of the regression analysis model.

B. Time series forecasting model. Time series analysis models generally need to establish a dynamic model that can describe
the development trend of the phenomenon. Using the extrapolation of the dynamic model in time, we can predict the
trend of this phenomenon in the future. Runoff forecasting based on a time series model forecasts the future runoff by
looking for the evolution law of runoff. The typical time series-based forecasting models include the autoregression
model (Jiang et al. 2018) and autoregressive moving average model (Chua & Wong 2011) for stationary time series,
and autoregressive integrated moving average (ARIMA) model (Nigam ef al. 2014; Dhote et al. 2018) for non-stationary
time series. Because runoff series often show nonlinear characteristics, the establishment of a nonlinear prediction model
can analyze the structure characteristics of data more objectively. The threshold autoregressive model (TAR) is the most
widely used and mature nonlinear time series forecasting model (Amiri 2015; Sabzevari 2017). The main disadvantage of
the time series model is that it is not suitable for forecasting time series with strong nonlinearity and random character-
istics. Runoff time series are affected by many external factors, so they have strong nonlinear and random characteristics,
and the model based on time series has inherent defects.

C. Grey model. The grey model is a kind of system in which some information is known and the other part is unknown or
unascertained. The reason why runoff forecast is regarded as a grey system is that it contains a lot of unknown information
and there is a limitation of system cognition (Huang & Shen 2013; Li et al. 2016). However, the grey model is only applied
to problems with exponential growth trend. The actual runoff time series does not conform to the exponential distribution
law, which makes the prediction of runoff based on a grey model difficult.

D. Fuzzy models. The fuzzy pattern recognition forecasting method and fuzzy logic forecasting method are common fuzzy-
based models in runoff forecasting. In their study, Barreto-Neto & de Souza Filho (2008) proposed a fuzzy rule-based
model to estimate runoff in a tropical watershed using the Soil Conservation Service Curve Number model. The evalu-
ation of runoff derived from fuzzy and Boolean methods demonstrated that the former provided calculated runoff
closer to the measured runoff in the watershed, confirming the suitability of the fuzzy theory in modeling natural phenom-
ena (Barreto-Neto & de Souza Filho 2008). In the literature (Mahabir et al. 2003), the applicability of fuzzy logic modeling
techniques for forecasting water supply was investigated. By applying fuzzy logic, a water supply forecast was created that
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classified potential runoff into three forecast zones. Based on the modeling results in these two basins, it is concluded that
fuzzy logic has a promising potential for providing reliable water supply forecasts. However, the application of the fuzzy
logic method in runoff forecasting is limited because it has obvious subjectivity when fuzzifying information.

. Neural networks. As a forecasting model with universal approximation ability, many runoff forecasting models based on

neural networks have been proposed in recent years. These forecasting models include the extreme learning machine (Niu
et al. 2018; Cheng et al. 2020), RBF neural network (Wu 2018), fuzzy neural network (Shi et al. 2016), and Elman neural
network (Li et al. 2019). Although the performance of the traditional neural network is excellent, it is difficult to determine
the structure of the network. At the same time, the training process of the network is complex and it is easy to reach the
local optimum. At the same time, the demand for sample data is very high. In recent years, with the maturity and improve-
ment of the deep learning algorithm, many scholars have proposed some runoff forecasting models based on a deep
learning model. The typical models include long-short term memory (LSTM) (X. Chen et al. 2020; de la Fuente ef al.
2021), deep belief network (Yue et al. 2020), convolution neural network (S. Chen ef al. 2020; Song 2020), and recurrent
neural network (Shoaib ef al. 2016). The deep learning model needs a large number of sample resources, and requires the
participation of a graphics processing unit (GPU) in the training process. The cost is high and the modeling process takes a
long time, which greatly limits the application of the deep learning model.

. Support vector machine (SVM) and its related models. SVM can realize the minimization of empirical risk and structural

risk. The main highlight of SVM is to solve the problems of small sample, high dimension and nonlinear pattern recog-
nition, and it can solve the problems of over learning and dimension disaster. The least squares support vector
machine (LSSVM) inherits the advantages of SVM, and transforms the quadratic programming problem in SVM into
the solution of linear equations. Therefore, some SVM (Sharifi et al. 2017; Liang et al. 2018), LSSVM (Zhao et al.
2017) and their improved models are applied to the forecasting of runoff. However, the biggest drawback of SVM and
LSSVM models is that their parameters are difficult to determine. General grid search methods are time-consuming
and unstable. At present, there is no unified method to determine the optimal model parameters.

. Combination forecasting model. With the rapid development of various forecasting models, scholars have fully recognized

the advantages of each model, and clearly recognized that each model has certain disadvantages. Because the runoff is a
complex large system, there are many factors affecting it, which means it is difficult to fully mine all aspects of useful infor-
mation of runoff data using a single forecasting model. Therefore, a variety of combination forecasting models have been
proposed. These combination forecasting models include BP neural network and particle swarm optimization-SVM (Song
et al. 2020), coupling gated recurrent unit combining improved complete ensemble empirical decomposition with additive
noise (Sibtain ef al. 2021), group method of data handling and wavelet-based analyzed data (Moosavi ef al. 2017), long
short-term memory neural network and ant lion optimizer model (Yuan et al. 2018), among others. On the other
hand, the combination of decomposition algorithm and some forecasting models is also the research direction of the
runoff combination forecasting model. The related decomposition algorithms have variational mode decomposition
(He et al. 2019; He et al. 2020), empirical mode decomposition (Zhao & Chen 2015), and ensemble empirical mode
decomposition (Niu et al. 2019; X. Q. Zhang et al. 2020). For the combination forecasting model, how to choose the
appropriate decomposition algorithm and how to determine which kind of forecasting model is applied to predict the
components generated after decomposition are very worthy of discussion. At present, there are some problems in
these combination forecasting models of runoff, such as improper selection of decomposition algorithm and forecasting
model. As a whole, the combination forecasting model is a topic worthy of further discussion and research.

1.3. The contributions

According to the characteristics of randomness and complexity of runoff time series, this paper proposes a novel forecasting
model based on the complementary empirical mode decomposition and combination model. (a) As an improvement of
empirical mode decomposition algorithm and ensemble empirical mode decomposition algorithm, by adding positive and
negative white noise to the original signal, CEEMD can not only solve the mode confusion problem of empirical mode
decomposition or ensemble empirical mode decomposition, but also cancel the white noise residue. CEEMD can decompose
the runoff data into relatively stable components with different frequencies. (b) The approximate entropy of components after
CEEMD processing is calculated, the complexity and nonlinearity of each component is determined. The component with
large approximate entropy indicates that it has high complexity, strong nonlinear and non-stationary characteristics, therefore
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Gaussian process regression (GPR) is determined as the forecasting model. The component with medium approximate
entropy shows that its complexity is general, and it has the characteristics of linear and nonlinear superposition, therefore
SVM is selected as the prediction model. The component with small approximate entropy indicates that it has low complex-
ity, approximate linearity and correlation, so the autoregressive integrated moving average model (ARIMA) is selected as the
forecasting model. (c) An improved fireworks algorithm (IFWA) is proposed to optimize the parameters of GPR and SVM
models. (d) After getting the forecasting results of each model, the final runoff forecasting value is obtained by superposition
of multiple models.

In conclusion, the proposed novel forecasting model combines the ensemble signal decomposition technology, linear and
nonlinear forecasting model, optimization algorithm, with multiple models fusion technology to make contributions as
follows:

1. CEEMD is introduced to obtain the intrinsic mode function (IMF) components and residual component of the original
runoff time series. The components after decomposing remove the long correlation and emphasize the different local
characteristics of the original runoff time series. The complexity of runoff system modeling is reduced.

2. Each IMF component and residual component is analyzed by approximate entropy, and ARIMA, SVM and GPR are
selected as forecasting models of different components.

3. An IFWA is proposed to solve the problem that the parameters of SVM and GPR models are difficult to determine. The
forecasting accuracy of each component is further improved.

4. The excellent performance of the proposed model is evaluated by comparing the predictive results to other state-of-the-art
comparative models. The effectiveness of the forecasting model is comprehensively judged by using the comparison curve,
performance indicators, and the statistical significance.

2. DECOMPOSITION AND ANALYSIS OF RUNOFF BASED ON CEEMID
2.1. Dataset

In order to verify the performance of the forecasting model, this paper collected 250 groups’ monthly runoff data of
Hongshanzui hydrological observation station of Manasi River in Xinjiang Uygur Autonomous Region of the People’s Repub-
lic of China from January 1975 to November 1995. The runoff data is shown in Figure 1.

From the results of Figure 1, it can be seen that the monthly runoff time series shows quasi periodic fluctuations. This kind
of fluctuation is not a strict periodic motion, but some kind of irregular motion. Each large-scale fluctuation has a small range
fluctuation, which is related to the overall dynamic characteristics of runoff. Large and violent fluctuations also have cyclical
components. A large number of runoff values rise and fall sharply. The runoff between two adjacent sampling times is very
different. Therefore, runoff presents periodic and random changes. CEEMD decomposes the original runoff data into several
IMFs with different time scales. Choosing a suitable forecasting model for each IMF can reduce the complexity of modeling
and improve the accuracy of prediction.

2.2. CEEMD algorithm

On the basis of empirical mode decomposition (EMD), CEEMD can not only solve the mode confusion problem of EMD, but
also cancel the white noise residue by adding positive and negative white noise to the original signal. The main steps are as
follows (Y. A. Zhang et al. 2020).

Step 1 By adding positive and negative white noise I; and —I; to the original signal X;, the synthesized signals P; and N; are
obtained.

Pi=X;+1;
{Ni:X,-—Ii @

Step 2 EMD (Tian & Chen 2021) is used to decompose the synthetic signal obtained from Equation (1).
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Figure 1 | Runoff time series.

where C;]T is the j-th IMF or residual of the synthesized signal after adding positive white noise signal in the i-th test, C;; is the j-
th IMF or residual of the synthesized signal after adding negative white noise signal in the i-th test, M is the sum of IMF
and residual.

Step 3 Repeat steps (1) and (2) M times to obtain M IMF and residual.

P,=X;+1;
{Ni:X,-—Ii ©)

Step 4 The total mean value of all IMF and residual is calculated, which is the IMF and residual after CEEMD decomposes
the runoff time series.

1
=M

M=

(G +G) )

Il
—_

Then the original runoff time series can be decomposed into the following formula.
M
X=>¢ (5)
=1

For the 250 groups’ runoff data, the former 200 groups’ data is chosen as training set, the latter 50 groups’ data is chosen as
test set. CEEMD is used to decompose the training set, and six IMFs and one residual component are obtained. The decompo-
sition results are as shown in Figure 2.

From the CEEMD decomposition results of Figure 2, it can be seen that each IMF component and residual has different
characteristics, some of which are complex and some are simple. Therefore, it is necessary to analyse each component to
select a suitable forecasting model.

2.3. Determination of forecasting model

In this paper, the approximate entropy algorithm is introduced to analyze the complexity of each component. Approximate
entropy is an algorithm used to calculate the complexity of time series (Sun ef al. 2020). Approximate entropy describes the
possibility of generating new patterns when the dimension increases from m to m + 1 after multidimensional space recon-
struction of one-dimensional time series. Approximate entropy uses a non-negative number to represent the complexity of
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Figure 2 | The runoff decomposition results based on CEEMD.

a time series. The greater the complexity of the sequence, the greater the approximate entropy. The calculation steps of the
algorithm are as follows.

1. For the time series x; with length 7, the phase space of m dimension is reconstructed, and the vector is
Y(l) = (xi7 Xitl, ~° ) xi,m—l), i= 1; 2, e, n—m+ 1 (6)

2. The distance dj between vectors Y (i) and Y(j) is defined as the maximum distance between components and can be
expressed as

di/‘ = maXHkafl —ka,lH, k= 1,2, ---,m (7)

The following formula is defined for the vector sequence Y (7).

S o dy)
m _ j=1
R ey ®

where function 6() is 1 when the variable is greater than 0 and 0 when it is not greater than 0; C" (r) represents the probability
that the distance between the remaining vectors Y (i) and Y (j) is less than r when the window length is 7z and the allowable
deviation is r with Y (i) as the center. Therefore, it represents the degree of correlation between Y (i)(j # i) and Y (j), that is, the
regularity degree of vector sequence Y ().

1. Calculate the following formula.

n—m+1

) =n-m+1)"" Y In[C)] )

i=1

Downloaded from http://iwa.silverchair.com/ws/article-pdf/22/4/3921/1041612/ws022043921.pdf
bv auest



Water Supply Vol 22 No 4, 3927

where k™ (r) is the average correlation degree of vector sequence Y (i). Then the approximate entropy is
Capen = H" (1) — "1 (r) (10)

The value of approximate entropy is related to the values of #, m and r. According to experience, when m is 2 r is 0.2
times the standard deviation value of the original time series. The obtained ApEn can be used to characterize the irregu-
larity and complexity of time series. The approximate entropy values of each IMF component and residual are shown in
Figure 3.

It can be seen from the results in Figure 3 that IMF1 and IMF2 have large approximate entropy values, so it is necessary to
adopt a model with good performance for complex and strongly nonlinear objects. In this paper, GPR is selected as the fore-
casting model. IMF3 and IMF4 have moderate approximate entropy, and the forecasting model needs to have good nonlinear
and linear fitting ability, so SVM is selected as the forecasting model. However, IMF5, IMF6 and residual have small approxi-
mate entropy, so we need to choose a model with good performance for linear non-stationary time series. ARIMA is selected
as the forecasting model.

3. METHODOLOGY
In this section, ARIMA, SVM and GPR models used in the developed forecasting model are briefly introduced.

3.1. ARIMA model

The ARIMA model can effectively analyze the correlation of periodic non-stationary data sequences. The ARIMA model has
good forecasting ability for linear sequences (Alzyout & Alsmirat 2020). Therefore, ARIMA is suitable for the forecasting of
the IMFs with larger Hurst exponents.

For non-stationary time series, the basic approach of the ARIMA model is to make it a stationary series by using multiple
difference operations; the number of differential is d. The ARIMA model with p, g as parameters is used to model the station-
ary sequence. After inverse transform to get the original sequence, the ARIMA prediction equation with p, d, q as parameters
is expressed as:

Vi="00+ @YVt-1+ @Yt-2+ -+ @Vip+ & — 0181 — boer2 — - — Ogerq (11)

where y; is the sample value of the time sequence, ¢; and 6; are the model parameters, ¢; is white noise with independent
normal distribution.
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Figure 3 | The approximate entropy values of each IMF component and residual.
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After smoothing the time series, the autocorrelation function (ACF) and the partial correlation function (PAC) of the orig-
inal time series is calculated. For the time sequence y;, there is auto covariance:

1 N-k
Ve = Nzyk)’H—k (12)

Autocorrelation function:

po (13)
Yo

Partial correlation function:

a1l = P
i1k = (Pre1 — D22 Pro1—jQj) X
k ) (14)
(1 - lejakj)
j=

Aky1j = Okj — Qg1 k1 X Qk—ji1

The model order can be determined through the cutoff property of p, and ;. Parameter identification of time series can be
obtained by least squares estimation, through the parameters estimation of ¢y, @, - - -, ¢,, 01, 62, - - -, 6, making the follow-
ing formula minimum:

N N
Z% > (6,1 (2)¢p (@) V1) (15)

t=1

3.2. SVM model

SVM has good sparsity and excellent generalization, and can deal with practical problems with nonlinear, small sample, local
minimum and high dimension. Some scholars point out that the performance of SVM is better than the traditional neural
network algorithm (Fang ef al. 2021). SVM is chosen as the prediction model for IMF components with median approximate
entropy. Assuming the nonlinear regression function can be expressed as:

f()=w'®()+b (16)

then the optimization problem can be expressed by the following formula:
. 1 2 n
min Q(, b, § £) =5 @[> +C Y (& + &) (17)
=1

Constraint conditions are:
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where, C is the penalty coefficient, £ and £ are the non-negative slack variables. £ and ¢ are as follows:

_J0 y—f&)—e<0
6= { y—f@—e others 19

.0 e—y—flx) <0
¢ 7{sfyff(x) others (20)

where ¢ is an insensitive loss function.
The Lagrange function is introduced to obtain the following minimum value (Tian et al. 2021).

1 n n

min Q(e;, o) = EZ (ai — ;) (0 — ) K(x; - %) + SZ (@i +af) = > (@i —af)yi (21)

ij=1 i=1 i=1

Constraint conditions are:

n
—a)=0, i=1, ---
i:Z:l (al a;) ’ 1 ’ ’ n (22)
0<a,a <C
K(x;, x;) is a kernel function satisfying the Mercer conditions. The typical kernel function is the radial basis function shown
in Equation (23).

K(x, %) = exp (12210 3)

3.3. GPR model

GPR is a machine learning regression method developed in recent years. It has a strict statistical learning theoretical basis and
is convenient to predict the development of things in the future. It has good adaptability to deal with complex problems such
as high dimension, small sample size and nonlinearity, and has strong generalization ability (Xiao ef al. 2021). Its basic prin-
ciple is to assume a given training dataset D = {(x;, y;)|i = 1, 2, - - -, n}, where x; is the i-th input vector in training data set D,
y; is the i-th target output in training data set D, and # is the number of samples in the training data set. Suppose that f is a
Gaussian process, that is f ~ GP(m, k), with m as mean function and k as covariance function. According to the definition of
a Gaussian process, f(x1), f(x2), - - -, f(x,) obeys multivariate Gaussian distribution, and the mean vector of the multivariate
Gaussian distribution is m(x;) and the covariance matrix is K.

f(x;) ~ Nlm(x;),K],i=1,2, ---,n (24)
D:yi=f(x),i=1,2, ---,n (25)

The actual target output y often contains some noise.

y=7x)+e (26)
where & ~ N(0, 02). The problem is transformed into the observed training data D :y; = f(x;) +&;,i=1,2, ---, n, which
needs to predict the corresponding output value f. in the test dataset D, = {(x;, y;)i=n+1,n+2, ---, n+ n.}. The multi-

variate Gaussian distribution of the output vector y of the training data set and the prediction value f. of the test dataset
are as follows:

HE ) @)
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where,
k(x1, x1) R(x1,x2) - R(x1, %)
R(xo, x1)  R(xo, x2) -+ k(x2, %)

K = . : . : ) K* = [k(x*7 x1)7 k(x*, x2)7 Tt k(‘x*v xn)]v K** = k(x*7 x*)'
R(xn, x1)  R(Xn, %2) - R(%4, %)

According to the conditional distribution form of multivariate Gaussian distribution, the key formula of the Gaussian pro-
cess prediction equation can be obtained as follows.

f.1X, y, X. ~ GP[m(x.), cov(f.)] (28)

where, matrix X is composed of column vectors of training data input «;; matrix X, is composed of column vectors of input «;,
of the test set.

mx,) = K.(K + o2I)" 'y (29)

cov(f.) = K.. — K.(K + o2I) 'K (30)

In GPR, the covariance function is a symmetric function satisfying the Mercer condition. It is positive definite on a finite
input set. Therefore, the covariance function is equivalent to the kernel function. Equation (29) is rewritten as follows.

m(x,) = i aK(x;, x,) (31)
P

where a = [K(X, X) + 821] y.
In this paper, we choose the square exponential function as the kernel function.

1
K(x,-, x,») = 8f2 exp ( — 2—l2 (x,- — x]‘)Z) + 33131']‘ (32)

where [ is the parameter of correlation measurement, 6f2 is the signal variance of kernel function, Bfl is noise variance, §; is the
Kronecker symbol. Generally, [, 8f2 and &2 are called super hyper parameters. At present, the conjugate gradient method is
generally used to determine the hyper parameters of GPR, but the conjugate gradient method easily reaches the local opti-
mum by gradient descent, and the effect and convergence of the algorithm depend on the initial value.

4. IFWA ALGORITHM

From the introduction in the previous section, we can see that the performance of SVM and GPR is greatly affected by the
model parameters. Inappropriate parameters will greatly affect their forecasting performance, and finally affect the forecast-
ing accuracy of the final combined runoff. In this section, an IFWA is proposed to solve the problem of determining the
parameters of the SVM and GPR.

FWA is a novel intelligent optimization algorithm proposed in 2010 (Tan & Zhu 2010). It has the characteristics of fewer
parameters and better performance. Scholars have carried out in-depth research on this basis and applied it to many fields.
FWA is mainly composed of explosion operator, mutation operator and selection strategy. The basic FWA has some problems
such as too fast convergence and poor search performance. This paper makes the following improvements.

1. The adaptive dynamic explosion radius adjustment strategy is adopted to fully consider the evaluation information
obtained in the search process, so as to avoid the situation that the explosion radius of the fireworks close to the optimal
is too small and the number of sparks is greatest, which leads to easily reaching the local optimal solution. The adaptive
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dynamic radius can be expressed as follows.

Xi — X,
d = [ dmafest|| (33)
Ai = Amin + (Amax - Amin)di (34)

where x; is the current position of the i-th fireworks, and x, is the current position with the best fitness. dpax is the maxi-
mum value of xp.5; and other fireworks positions. Anax is the maximum allowable value of fireworks explosion radius, and
Amin is the minimum value. The parameter setting method is as follows.

Amax = @(Xmax — Xmin) (35)
Amin = BXmax — Xmin) (36)

where ¥nmax and x,;, are the upper and lower boundaries of the fireworks definition domain, « and g are scale factors. Due
to the introduction of dynamic radius adjustment strategy, the explosion radius of individual fireworks will be adjusted
adaptively according to the distance from the optimal fireworks location, which makes the search more refined and
improves the search accuracy of the algorithm.

2. Due to the random Gaussian mutation spark, it is easy to stay near the original position or exceed the location boundary,
which results in the global search ability being limited. In order to improve the global search ability of standard FWA, a
differential vector is introduced according to the differential evolution algorithm to enhance the search ability of the opti-
mal solution. The expression of the differential mutation operation in dimension k is as follows:

Xik = 01%pestk + 02(Xj1p — Xj2.k) (37)

where %1, and xj,;B are randomly selected fireworks individuals, w; and w, are differential scaling factors. The fitness
function in the IFWA optimization process is as follows.

fi=\ 2 i =9 (38)

where N is the number of samples, y; is the actual value of the sample, y; is the forecasted value of the sample, j is the
number of iterations. The implementation steps of IFWA proposed in this paper are as follows.

Step 1 The initialization of IFWA parameters, including the initial number of fireworks, the size of fireworks population,
the maximum number of iterations, « and .

Step 2 Set the number and value range of parameters to be optimized. The parameters to be optimized are coded, and then
the first generation fireworks are generated randomly in the solution space.

Step 3 The information carried by each firework is updated into the prediction model, and the initial fitness value is cal-
culated according to Equation (38). According to Equation (33), the dynamic explosion radius of each fireworks is calculated.

Step 4 According to Equation (37), the variation sparks with differential variables are generated randomly. The Euclidean
distance between individuals of each generation is calculated, and the next generation population is updated according to a
certain probability.

Step 5 Repeat Steps 3 and 4, and determine whether the termination conditions are met. After that, the optimization pro-
cess is finished and the optimal parameters are output.

5. THE DEVELOPED FORECASTING MODEL

Combined with the above introduction, the diagram of the proposed forecasting model in this paper is shown in Figure 4.
From Figure 4, the runoff time series is processed by EEMD. K IMF components and one residual component are produced.
According to the approximate entropy of each IMF and residual, ARIMA, SVM, and GPR are introduced to predict these
IMFs and residual. At the same time, IFWA is adopted to optimize the parameters of SVM (C and ¢°) and GPR (I, 8? and
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Figure 4 | The proposed forecasting model for runoff.

82). After optimal models are obtained, the forecasted value of each forecasting model is added to get the final forecasting
results. The implementation steps of the proposed forecasting model for runoff can be described as the following.

Step 1 Training process. Assuming that the length of original runoff is N. The original runoff is decomposed by CEEMD
algorithm, and K IMF components and one residual component are obtained.

Step 2 The approximate entropy of IMF components is calculated. According to the different approximate entropy value,
ARIMA, SVM, and GPR are chosen as the corresponding prediction model.

Step 3 ARIMA for each component is obtained by using the training set. Based on the training set, the parameters of SVM
and GPR are optimized by IFWA.

Step 4 The prediction process. Assuming the current time is ¢, the length of input data is N. The input runoff is decomposed
by CEEMD algorithm, and K IMF components and one residual are obtained. The established forecasting model is used to
forecast each component. s is prediction step. The s forecasted values of each component are obtained. These s forecasted
values of each model are added to obtain the final s forecasting results.

Step 5 Let £ =t + 1. These s forecasting results are inserted at the head of the runoff queue; the oldest s ones in the tail of the
runoff queue are removed. Then, return to Step 4, until all test set data is forecasted.

6. CASE STUDY

In this section, the effective of the proposed forecasting model for runoff is verified. The runoff dataset of Manasi River in
Section 2 is used as the research object.

6.1. The performance indicators

In order to illustrate the effectiveness of the runoff forecasting model, the forecasting accuracy is measured using the follow-
ing performance indicators: root mean square error (RMSE), mean absolute error (MAE), mean absolute percentile error
(MAPE), relative root mean square error (RRMSE), square sum error (SSE), R?> (R Square), Theil inequality coefficient
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(TIC) and the index of agreement (IA) (Tian 2020a, 2021). The definitions of TIC and IA are as follows.

TIC = (39)

IA=1-— i=1 (40)
> (IR(i) — Rmean| + |R(i) + R.mean|)”

where, N is number of samples, R(i) is actual value of runoff, R(i) is forecast value of runoff, R_mean is the average value of
runoff.

In order to test the statistical significance of the forecasting model, the Wilcoxon Sign-Rank test and the Ranksum test are
introduced. These two indicators can effectively evaluate the consistency between the forecast value and the actual value.
Furthermore, the Pearson’s test and the Diebold-Mariano (DM) test are used to test forecasting accuracy from the statistical
perspective. The definition of these algorithms can be found in the corresponding references (Tian 2020b).

6.2. The results

The runoff dataset in Section 2 is chosen as the research object. We collected a total of 250 groups of runoff data. Generally,
the data set of regression prediction performance of the model is divided into training set, verification set and test set, and
their ratio is 6: 2: 2. Because the data set in this paper is small, and the idea of the CEEMD and combination prediction
model is adopted at the same time, the verification set is not used, but only the training set and test set are used; 80% of
the runoff data set is used as the training set and 20% of the runoff data set is used as the test set. Meanwhile, the order
of data needs to be considered in the regression prediction of time series. There are complex associations between time
series data. Therefore, the first 200 groups of runoff data are used as the training set and the last 50 groups of runoff data
are used as the test set.

According to the calculation results of approximate entropy in Section 2.3, ARIMA, SVM and GPR are chosen as the fore-
casting model for different IMF components and residual component after decomposition of the CEEMD algorithm. The
prediction step s is taken as 50. The parameters of ARIMA are determined by least squares estimation. The parameters of
SVM and GPR are optimized by IFWA. In this study, for [IFWA, the maximum number of iterations is set to 100, the popu-
lation number is set to 30, a is 0.02, B is 0.005, w; is 1, and w; is 0.02. For GPR, the parameters to be optimized are [ € [0, 10],
6? € [0, 100], 8 € [0, 100]. For SVM, the parameters to be optimized are C € [0.001, 1000] and ¢® € [0.001, 1000]. After
optimization, the parameters of these prediction models can be found in Table 1.

After the forecasting models of these components are achieved, 50 groups of test set data are tested. The forecasting results
of these forecasting models for each component are shown in Figure 5. As can be seen from Figure 5, these forecasting models

Table 1 | The parameters of each forecasting model for IMF component and residual component

Component Model Parameters

IMF 1 GPR l: 6.447; &7: 45.362; 5,: 16.671
IMF 2 GPR 1: 4.092; 57: 61.008; &2: 24.207
IMF 3 SVM C: 9.853; 0?: 16.337

IMF 4 SVM C: 12.352; 0?: 25.408

IMF 5 ARIMA p:3;d:1;q:2

IMF 6 ARIMA p:2;d:1;q: 1

Residual ARIMA p:2;d:1;q: 1
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Figure 5 | The prediction results of each IMF component and residual component.

have good forecasting effect for each IMF component and residual component. Through these forecasting models, the change
trend of each component can be well fitted.

When the forecasting results of each component are obtained, the final forecasting results can be obtained by adding these
forecasting results. In order to verify the effectiveness of the proposed forecasting model, five state-of-the-art runoff forecasting
models are chosen to compare. These comparative models are ARIMA (Dhote et al. 2018), TAR (Sabzevari 2017), SVM
(Liang et al. 2018), LSTM (de la Fuente ef al. 2021), and MEED-ARIMA (X. Q. Zhang et al. 2020). The detailed parameters
of these comparative models are shown in Table 2.

The proposed forecasting model and other comparison models are used to predict the runoff data of 50 samples in the test
set. The forecasting results are shown in Figure 6. It can be seen from the comparison results in Figure 6 that the predicted
values of the proposed forecasting model can better fit the variation trend of runoff, and can accurately forecast the runoff at
each sampling time.

Meanwhile, the forecasted error of each forecasting model is shown in Figure 7. The results in Figure 7 further show that
the designed forecasting model has smaller prediction error, which means that the forecasting accuracy of the proposed fore-
casting model is the highest. It can also be seen from Figure 7 that the forecasting error range of the forecasting model in this
paper is [-20.4191, 21.5435], the forecasting error range of ARIMA is [-74.7433, 36.2671], the forecasting error range of TAR
is [-113.8104, 47.4017], the forecasting error range of SVM is [-30.3388, 37.6182], the forecasting error range of LSTM is
[-55.4537, 39.6386], and the forecasting error range of MEED-ARIMA is [—35.3607, 37.8586]. After comparison, compared
with other comparison models, the prediction error of this paper is reduced.

Figure 8 shows the histogram of the forecasting error distribution. It can be seen from this figure that the forecasting error
distribution of the proposed forecasting model is more concentrated around the abscissa zero, which means that the number

Table 2 | The parameters of the comparative models

Comparative model Parameters

ARIMA p:5;d:1;q: 4

TAR n:5; k:5.371

SVM C: 25.741; o?: 18.007
LSTM

number of input nodes: 150; number of output nodes: 50; mini batch size: 16; L1: 200; L2: 200
MEED-ARIMA IMF1(p: 3; d: 2; q: 2); IMF2 (p: 3; d: 1; q: 2; IMFE3 (p: 3; d: 1; q: 2); Trend (p: 3; d: 1; q: 2)
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Figure 7 | The forecasting error comparison between the proposed model and comparison models.

of smaller forecasting errors is greater than that of larger forecasting errors. Therefore, the forecasting error distribution of the
proposed forecasting model is centralized rather than decentralized, and the forecasting performance is better.

The box-plot of the forecasting error for each mentioned forecasting model for runoff is shown in Figure 9. As can be seen
from Figure 9, compared with the existing comparison model, the proposed forecasting model has a smaller forecasting error.
It is clear that the proposed forecasting model has a lower prediction error and a smaller difference. The proposed forecasting
model has a higher level of stability.

Table 3 shows the comparison of the eight performance indicators between the proposed model and other comparison
models. In order to show the effectiveness of the forecasting model, the performance indicators during training phases are
provided in Table 4. It can be seen from the results in Tables 3 and 4 that the performance indicators of this paper are
better than other comparison models in training and test phases. Specifically, as can be seen from the comparison results
in this table, RMSE, MAE, MAPE, RRMSE, SSE, and TIC values of the proposed forecasting model are smaller than
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Table 3 | Comparison of the performance indicators between the proposed model and other comparison models (test phase)

Model RMSE (m®/s) MAE (m®/s) MAPE (%) RRMSE SSE ((m%/s)?) R? TIC 1A

Proposed model 10.4193 8.5891 4.0122 0.0942 5.4281 x 10° 0.9958 0.0190 0.9995
ARIMA 19.1757 12.6628 5.5846 0.1176 18.3854 x 10° 0.9872 0.0346 0.9984
TAR 27.6452 18.6944 8.6813 0.1915 38.2215 x 10° 0.9741 0.0490 0.9968
SVM 12.8959 10.7082 5.6369 0.1143 8.31526 x 10° 0.9914 0.0237 0.9985
LSTM 16.5479 11.1744 5.7865 0.1127 13.6924 x 10° 0.9900 0.0298 0.9988
MEED-ARIMA 12.0232 10.8470 5.2037 0.1536 13.0648 x 10° 0.9928 0.0288 0.9989

those of the other comparative models. The smaller the values of these performance indicators, the better the forecasting per-
formance of the forecasting model. Meanwhile, R? and IA value of the proposed forecasting model are closer to 1 than the
comparison models. The closer the value of R? and IA to 1, the better the regression forecasting performance of the model.
Therefore, the forecasting accuracy of the proposed forecasting model for runoff is better than the other comparison models.
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Table 4 | Comparison of the performance indicators between the proposed model and other comparison models (training phase)

Model RMSE (m/s) MAE (m®/s) MAPE (%) RRMSE SSE ((m%/s)?) R? TIC 1A

Proposed model 8.4639 5.4875 2.1084 0.0241 1.4328 x 10* 0.9982 0.0135 0.9997
ARIMA 20.6924 13.6110 5.7271 0.0667 8.5635 x 10* 0.9900 0.0327 0.9985
TAR 33.3071 20.2336 7.9662 0.0968 2.2187 x 10° 0.9755 0.0518 0.9962
SVM 16.9785 11.1892 4.4788 0.0527 5.7654 x 10* 0.9930 0.0269 0.9990
LSTM 17.1655 11.2025 4.7237 0.0562 5.8931 x 10* 0.9928 0.0272 0.9989
MEED-ARIMA 15.1384 9.9670 4.0823 0.0486 4.5834 x 10* 0.9946 0.0272 0.9992

Pearson’s test is introduced to measure the association strength between the actual value and the forecasted value of runoff.
If Pearson’s correlation coefficient is equal to 1, it indicates that the actual value and the prediction of the forecasting model
have a linear relationship. On the other hand, if Pearson’s correlation coefficient is equal to 0, there is no relationship
between the actual value and the forecasted value of the forecasting model. Table 5 gives the results of the Pearson’s test
between the proposed model and comparison models. The result clearly shows that the result of Pearson’s test of the pro-
posed forecasting model is higher than those of the other prediction models.

The DM test values of these forecasting models for runoff are listed in Table 6. From the results in Table 6, the DM test
value between the developed forecasting model and the other comparative forecasting models is greater than 0; the developed
forecasting model significantly outperforms the other forecasting models at 1, 5, and 10% significance levels. Thus, it can
reasonably be concluded that the developed forecasting model is superior to the other forecasting models.

In brief, the comparison between the forecasted value and the actual value, the comparison of the forecasting error and its
histogram distribution, the comparison of the performance indicators, the Pearson’s test and the DM test results all show that
the forecasting model proposed in this paper has better forecasting accuracy and forecasting effect than other comparison
models.

Table 5 | The Pearson’s test results between the proposed model and comparison models

Model Pearson’s test coefficient (test phase) Pearson’s test coefficient (training phase)
Proposed model 0.9989 0.9991
ARIMA 0.9948 0.9956
TAR 0.9909 0.9902
SVM 0.9954 0.9967
LSTM 0.9961 0.9966
MEED-ARIMA 0.9983 0.9987

Table 6 | The DM test values of the forecasting models

significance level (test phase) significance level (training phase)
DM (model 1, model 2) 1% 5% 10% 1% 5% 10%
DM (ARIMA, proposed model) 1.9963 2.9335 2.8536 5.1758 5.2608 5.0268
DM (TAR, proposed model) 2.4325 3.2743 3.6537 4.3627 4.8926 4.7780
DM (SVM proposed model) 2.7765 3.7485 3.7643 5.0239 5.3789 5.2364
DM (LSTM, proposed model) 2.4031 2.7643 3.8834 3.9958 4.8211 4.8752
DM (MEED-ARIMA, proposed model) 2.4436 2.7875 3.5463 3.2594 3.1687 3.2658
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6.3. Discussion

From the obtained results, it can be shown that the forecasting performance of the proposed forecasting model is better than
other comparative models. The analysis and discussion of the results are as follows.

1. As can be seen from Figure 6, the forecasting value of the proposed model almost coincides with the original runoff data.
Meanwhile, the results in Figure 7 show that the forecasting error of the proposed model is also smaller than that of other
forecasting models. In addition, the results of Figures 8 and 9 show that the forecasting error distribution of the proposed
model is relatively uniform, and there are larger amounts of smaller errors.

2. The results in Tables 3 and 4 show that the RMSE, MAE, MAPE, RRMSE, SSE and TIC of the developed forecasting
model are smaller than those of the comparative models. Meanwhile, the R?> and IA of the developed forecasting
model are closer to 1 than the comparative models. In these indicators, RMSE can reflect the degree of dispersion of a
data set; MAE can avoid the problem of mutual cancellation of errors, so it can accurately reflect the actual prediction
error; MAPE represents the percentage of the forecasting error to the actual value. A perfect forecasting model is rep-
resented by 0% of the MAPE, while a very poor forecasting model is represented by a MAPE greater than 100%);
RRMSE represents the relative difference between the forecasting value and the actual value, and is a dimensionless stat-
istic, which can be used to compare different variables; SSE calculates the sum of the error squares of the corresponding
points between the fitting data and the actual data; R? represents the fitness of a prediction model by the change of data;
TIC represents the fitting effect of the forecasting model; IA gives the ratio of the mean square error and potential error of
the forecasting values to the actual value is subtracted from 1. These results show that the performance indicators of the
developed forecasting model are better.

3. The results in Table 5 show that the Pearson’s test results of the developed forecasting model are higher than those of the
other comparative models. These results mean that compared with other forecasting models, the average probability that
the forecasting value is equal to the actual value of the developed forecasting model is greater. Therefore, the forecasting
value of the developed forecasting model is more consistent with the actual value of time series.

4. Table 6 shows that the DM test results of all comparative models are greater than the critical value of the 1, 5, and 10%
significance level. Therefore, we can reject the null hypothesis at the 1, 5, and 10% significance level, and we believe that
the developed forecasting model significantly outperforms all comparative models. Therefore, we can reasonably draw the
conclusion that the developed forecasting model not only achieves higher forecasting accuracy, but also shows a signifi-
cant difference in terms of the forecasting accuracy level, which further proves the superiority of the developed
forecasting model.

7. CONCLUSION

This paper investigates the problem of runoff forecasting. Although many combination forecasting models are widely used to
capture the statistical features of runoff, there are some issues when they are applied to applications. These issues mainly con-
sist of the selection of the forecasting model and the optimization of forecasting model parameters. Motivated by these
observations, we proposed a runoff forecasting model based on the CEEMD and combination model. In the proposed com-
bination model, approximate entropy is used to determine the appropriate forecasting model for each IMF and residual
component. And the IFWA is proposed to obtain optimal parameters of the GPR and SVM. The proposed forecasting
model was evaluated on real runoff data. According to the evaluation, the proposed model can forecast runoff effectively.

However, some works are still necessary to improve the performance of the proposed model adequately, which will be our
main work in the future. Extreme weather occurs frequently, and the impact of climate change on runoff is increasing, so the
impact of meteorological factors on runoff cannot be ignored. In this paper, meteorological factors are not considered in
runoff prediction. The next step will start from the meteorological factors, through the analysis and search for the atmospheric
circulation anomaly factors which have significant impact on runoff, combined with the rainfall evaporation meteorological
factors, to further carry out the meteorological-runoff forecasting research.
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