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ABSTRACT

The assessment of heavy metal pollution is crucial for water conservation. This study determined the contents of heavy metals (Cd, Cr, Cu, Ni,
Pb, Zn and As) from 39 soil samples surrounding a reservoir, and analyzed the corresponding source and enrichment using enrichment fac-
tors and partial least-squares regression. The concentration of Cr (54.06 mg/kg) was lower than the background value of the reservoir area,
while the Cd concentration was higher (0.96 mg/kg). Moreover, Cd, Cr, Ni, Pb, Zn and As concentrations in the south exceeded those of the
northeast in the Nanwan lake reservoir (NLR). Cd and As were the dominant contaminated elements in the NLR. The Cd enrichment factor
value was 11.25, areas with moderate and higher levels of pollution of Cd occupied 89.0% of the total area, while As occupied 18.4%. The
dominant sources of Zn, Ni, Cu, Pb and Cr were identified as natural inputs, those of As were agricultural production activities, and those of
Cd were industrial production activities. This study provides insight into the heavy metal pollution and key factors of land-use types in water-
sheds with tea trees as the dominant vegetation cover, and aids in the planning of water pollution prevention and ecological protection.
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HIGHLIGHTS

® A novel technology partial least-squares regression model.
® The principle sources were identified by calculating the variable importance for the projection (VIP).
® The inherent defects of traditional regression algorithms in handling multicollinear and noisy data were overcome.

1. INTRODUCTION

Urbanization and industrialization exert significant pressure on the physical and biogeochemical processes in soil and aquatic
ecosystems (Resongles ef al. 2014; Shehab ef al. 2021). Many studies have been undertaken to investigate the relationships
between land use characteristics and the degradation of aquatic compartments by a range of pollutants, including nutrients,
organic compounds, and heavy metals (Suresh ef al. 2012; Wahsha ef al. 2014; Aiman et al. 2016). Heavy metals deserve
particular attention as these pollutants are abundant in residential areas, mining operations, factory discharge, sewage sys-
tems, etc. and persist in the environment without undergoing biodegradation. Furthermore, heavy metals can be highly
toxic, especially in countries where waste management is inadequate in the world (Resongles et al. 2014; Ota et al. 2020).
The enrichment of heavy metals in soil inhibits soil absorption and the corresponding metabolisms, reduces soil nutrient
supply, and also affects the yield and quality of agricultural products, directly harming human health through the food
chain (Ota ef al. 2020). Heavy metals and other soil pollutants migrate and enter the water system through the soil-water
interface, affecting water quality safety (Yang et al. 2021). The degradation of the water environment quality caused by the
accumulation and migration of heavy metals in soil is a hot topic in the field of environmental science (Ota et al. 2020;
Yang et al. 2021).
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The natural concentrations of heavy metals and metalloids including Cr, Ni, Cd, Cu, Pb and As in soils generally tend to
remain low, ensuring an optimum ecological equilibrium. However, the concentrations frequently increase due to human
activities, thus adversely affecting many parts of the world (Esmaeili ef al. 2014; Aiman et al. 2016). Land use (e.g. gardens,
farms, urban areas, industrial areas, and bare land), which are the most visible form of human activity, plays a pivotal role in
the generation, accumulation, and distribution of pollutants amongst air, soil, water, and sediments (Esmaeili ef al. 2014; Paul
et al. 2021). Subhani et al. (2015) determined As to be the most abundant heavy metal polluter at the surface soil of the Punjab
in Pakistan, caused by the rapid development of industrialization and urbanization. Niemitz et al. (2013) suggested that
sources of excess Cu, and Pb over the background to be fertilizer, pesticides, and other soil amendments. Significant multiple
human activities and natural sources of heavy metals present great challenges to the prevention and control of heavy metal
pollution (Nicholson et al. 2003; Resongles ef al. 2014). Therefore, quantifying the contributions of changes in individual land
use types to different heavy metal composition and enrichment characteristics is of practical importance for providing
insights into the heavy metal pollution and its dominant factors, and is essential for water quality security management
and planning.

The majority of research employs an integrated approach involving enrichment factors, clustering analysis, geological
accumulation indexing, and multivariate regression to relate land use to heavy metals (Suresh et al. 2012; Aiman et al.
2016; Islam et al. 2019). However, particular challenges associated with the use of conventional regression algorithms,
namely land use types, are highly co-dependent and are not independent variables (Krishnan ef al. 2011). Traditional statisti-
cal methods have great limitations in solving these problems, making it difficult to reveal the underlying relationship between
land use and the spatial and temporal distribution of heavy metals. Therefore, to overcome the inherent defects of traditional
regression algorithms in handling multicollinear and noisy data, an extension to the multivariate data analysis technique must
be applied (Krishnan ef al. 2011). Partial least-squares regression (PLSR) methods organically combine data cognition stat-
istical approaches (principal component analysis, canonical correlation analysis) with model-based statistical methods
(linear regression analysis) (Krishnan ef al. 2011; Boongaling et al. 2018). PLSR integrates regression modeling, data structure
simplification and correlation analysis between two groups of variables under a single algorithm, and is considered as the
second-generation regression analysis method (Krishnan ef al. 2011). As a novel data analysis technique, PLSR has been
widely used to overcome multi-collinear and noisy data in many fields for quantitative analyses (Krishnan et al. 2011; Boon-
galing et al. 2018; Huang et al. 2018; Ndehedehe & Ferreira 2020).

In recent decades, there has been significant concern regarding soil contamination by various toxic metals due to expand-
ing agriculture, industrialization and urbanization surrounding reservoirs (Ye et al. 2013). However, heavy metals and
metalloids may originate from various sources. Therefore, we must investigate how changes in each land use type influence
heavy metals to achieve a more effective and more accurate means of conducting a watershed management approach and to
predict heavy metal pollution consequences following land use changes. Nanwan lake reservoir (NLR) is an important pota-
ble water source of the Huai river basin, one of the major river systems in China. In recent years, human activities relating to
farm, urban, and industrial land around Nanwan lake have increased as a result of heavy metal pollution. In the current study,
we integrate field investigations, laboratory analysis, enrichment factor analysis and PLSR to understand the composition and
enrichment characteristics of heavy metals and to quantify the individual land use type contributions to major heavy metals.
We develop a powerful research strategy to quantify the dominant influencing factors of heavy metals that can act as a basis
for environmental planning and decision making at the global scale. The novelty of this study lies in the investigation of the
relationships between the partitioning of heavy metals and land use types by employing an integrated approach involving
enrichment factors and PLSR. The specific aims are to: (i) provide a scientific basis for research on the potential influence
of land use on reservoir water quality; and (ii) provide guidance for the aquatic ecosystem restoration and management of
Ieservoirs.

2. MATERIALS AND METHODS

2.1. Study area

The Nanwan lake reservoir (NLR) is the most important drinking water sources in south of Henan Province (Figure 1). The
reservoir area has a typical north subtropical monsoon climate, with an annual average temperature of 15-16 °C and annual

average rainfall of approximately 1000 mm. More than 80% of the rainfall mainly occurs from June to October in the mon-
soon season. The main soil types in the reservoir area are yellow brown soil, including lime soil, paddy soil, and purple soil. In
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Figure 1 | Location, land use types, and sampling points of the study area.

order to develop the local economy, a large number of economic tree species such as tea were planted around the NLR. Econ-
omic development has promoted the expansion of local industrial and urban land. Tea gardens, under both urban and
industrial land, may be heavy metals pollution sources for the NLR (Figure 1). Therefore, the NLR is suitable for developing
the relationship between heavy metal distribution characteristics and land use.

2.2. Sample collection

Field surveys were divided into the following two stages: (i) the first stage was from 16th May, 2020 to 7th June, 2020, when
the Nanwan lake reservoir’s water level was 95.75 m; and (ii) the second stage was from 27th June to 17th July, when the
reservoir’s water level was 96.73-102.40 m. We selected 39 sampling sites (upstream to downstream) based on the geographi-
cal characteristics in the NLR. At each site, a sampling plot (1 x 1 km) was randomly arranged at the elevation from 104 to
120 m (first stage) and 124 to 141 m (second stage). Land use types were investigated and soil samples were collected based
on the principle of typical representation and uniform distribution. Following the Technical Specification for Monitoring
Farmland Soil Environmental Quality (NY/T395-2000), a handheld GPS was used to determine the location of the sampling
points, and an ‘S’ shaped sampling route was employed to collect 41 surface mixed soil sampling sites with a depth of 0-20 cm
in each investigation unit. Amongst these, 13 sampling sites were located within farmland, 14 within urban areas, seven in
industrial land, and seven in bare land (Figure 1). All soil samples were taken back to the natural-draft laboratory at room
temperature for the removal of impurities (e.g. gravel solids and plant residues). After passing through a 100-mesh nylon
sieve, the samples were used for soil heavy metal analysis.

2.3. Test analysis

Soil heavy metal content was measured according to the National Soil Environmental Quality Standard of China (GB 15618-
1995). The soil samples were disboiled via the hF-HNO3; microwave method. Cd, Cr, Cu, Ni, Pb, Zn and Mn concentrations
were determined via the ViSTA-MPX plasma emission spectrometer (Varian Inc., UK). As concentrations were determined
using the AFS-8220 atomic fluorescence spectrophotometer (Jitian Instrument Company, China). All samples were blank
treated, and three repetitions were designed between each sample. In order to ensure the accuracy of the sample analysis,
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the national standard soil sample (GSS-1) was used for calibration, and the measurement results were within the allowable
error range (<5%).

2.4. Assessment of heavy metal pollution

The enrichment factor method can not only judge the degree of heavy metal pollution according to the enrichment coeffi-
cient, but can also quantitatively determine the contribution of anthropogenic and natural sources (Islam et al. 2019). The
appropriate reference elements must be selected in order to standardize the elements in the sample, thus eliminating the influ-
ence of the differences in environmental media, sampling, and sample preparation on the element concentration. Reference
elements are rich in content, stable in chemical properties, not affected by human activities and include Ca, Mn, Al and Sc
(Loska et al. 2004). The Mn content in the study area is reported as 556.90 mg/kg, and its geochemical properties are stable
and lower than the background value of soil in the reservoir area. Therefore, Mn is selected as the reference element. The
enrichment factor is calculated as follows (Loska et al. 2004):

EF = [(Cx/CMﬂ)sample]/[(Bx/BMn)background] 1)

where EF is the enrichment coefficient of the soil heavy metals; C, is the measured concentration of the heavy metal elements
in the soil; Cyy, is the measured concentration of the reference elements in the soil; B, is the concentration of the heavy
metals in the background environment; and By, is the concentration of the reference elements in the background environ-
ment. According to Sutherland (2000), heavy metal pollution can be divided into five levels via the enrichment coefficient
(Table 1).

We employed the soil environmental background value of Henan Province as the soil background value within the reser-
voir area, with Cd, Cr, Cu, Ni, Pb, Zn, As and Mn contents of 0.07, 62.50, 19.20, 26.10, 19.10, 58.40, 10.90 and 567.00 mg/kg,
respectively, according to the China National Environmental Monitoring Center (1990). In order to ensure the authenticity of
the evaluation results, the soil environmental background value was selected as the reference standard for the enrichment
degree of heavy metals in the reservoir area.

2.5. Statistical analysis

Prior to the statistical analysis of the data, we tested the normality of the data distribution using the Kolmogorov-Smirnov test
(KST) at the 5% significance level. Such tests have been widely used to verify the fitting of probability distributions in the field
of water science and typically prioritize the behavior of the probability in the distribution tails (Beskow ef al. 2015). The KST
is based on the largest difference, in absolute value, between the theoretical and empirical cumulative probabilities. The maxi-
mum deviation is characterized as follows:

Dinax = maximum |F(X) — Fn(X)| )

The bilateral probability associated with the occurrence (under Hy) of values as great as the value of the observed D, will be
determined according to the table of critical values. Therefore, if |Dpax| > Deritical, o, the null hypothesis is rejected, which
means that the sample has a different distribution to that of the tested theoretical distribution (Beskow et al. 2015). The
test results are reported in Table 2.

Table 1 | Enrichment factor grades

Enrichment coefficient (EF) Pollution levels The degree of pollution

EF<2 1 EF < 1 is pollution-free;1 < EF < 2 is mild pollution
2<EF<5 2 Moderate pollution

5<EF<20 3 High levels of pollution

20 <EF <40 4 Serious pollution

EF <40 5 Severe pollution
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Table 2 | Descriptive statistical summary of heavy metal content in soils (n = 41)

Sstandard

Ranges Average deviation
Heavy Coefficient of Partial K-s Distribution Soil environmental
metal (mg/kg) variation (CV) degrees kurtosis value type background value (mg/kg)
Cd 0.05-7.25 0.96 0.78 0.58 1.07 1.69 124  normal 0.07
Cr 4.23-158.56 54.06 42.96 0.76 0.20 0.65 0.86 normal 62.50
Cu 7.12-84.54 23.22 12.45 0.55 0.28 0.57 0.95 normal 19.20
Ni 3.85-194.58 31.98 17.46 0.65 0.22 0.06 0.78 normal 26.10
Pb 4.76-154.38 26.89 19.65 0.71 0.25 1.21 0.84 normal 19.10
Zn 31.87-165.45 70.52 21.89 0.39 0.34 0.45 0.84 normal 58.40
As 0.37-139.64 11.08 12.41 1.34 0.63 0.87 0.74  normal 10.90
Mn 122.84-875.12 557.76  117.49 0.17 0.97 2.35 0.79 normal 567.00

PLSR is a multivariate iterative projection approach used to model the quantitative relationship between different heavy
metals and land use areas in our study. Dependent variable matrix F is established for heavy metal concentration Y}, and
the independent variable matrix E is established for land use area X;. Both X and Y are simultaneously modeled to determine
the latent variables in X that best predicts the latent variables in Y. The basic PLSR algorithm combines and generalizes the
features from principal component analysis (PCA) and multiple linear regression. Based on PCA, first principal component T
of the independent variable matrix is calculated to obtain component vector ¢E. The first principal component U of the depen-
dent variable matrix is determined, and the correlation between U and T is calculated using the canonical correlation analysis
principle. The residual matrix following the extraction of the first principal component can be continued to extract the second
component, and canonical correlation analysis is performed until all the correlations are decomposed. The ordinary least
squares regression equations of dependent variable matrix F(Y) and score vector ¢E are established respectively, and the
ordinary least squares regression equations of tE and independent variable matrix E(X) are substituted into the ordinary
least squares regression equations of ¢E and independent variable matrix E(X). Finally, PLSR models for heavy metals are
constructed to identify the main land use controlling factors. Improving on ordinary PCA, PLSR uses only the most important
linear combinations and provides prediction results with a higher accuracy. The regression coefficient (RC) indicates the
direction and strength of the impact of each variable in the PLSR model. The contribution of each explanatory variable in
fitting the model can be described by the Variable Influence on Projection (VIP), derived as the sum of square of the
PLSR weights across all components (Huang et al. 2018). For interpretation purposes, variables with higher VIP values
are considered as more important (Krishnan ef al. 2011). More details on PLSR can be found in Krishnan ef al. (2011).

3. RESULTS AND DISCUSSION
3.1. Distribution characteristics of heavy metal content in soil

The heavy metal contents of soil in the NLR are reported in Table 2 and Figure 2. Compared with the background value of the
soil environment in the reservoir area, Cr (Cd) content in the NLR was lower (higher) than the background value. The higher
content of Cd may be related to the input of pollution load caused by the discharge of industrial wastewater around the reser-
voir, as well as the improper disposal of garbage left over by migration and relocation. In addition, reservoir functions (e.g.
flood control, irrigation, power generation, breeding, and tourism) are greatly affected by human interference, which can
easily cause Cd enrichment. These results are consistent with the study of toxic metals in Pakistan by Aiman ef al. (2016).
The content of Cu, Ni, Pb, Zn, and As in the NLR were similar to those of the background. Ni, Pb, Zn, and As exhibited
higher content in the northeast of NLR compared to the south. This can be attributed to the flatter terrain in the northeast
of NLR than the south, with a higher population density and faster growing economy. The enrichment of heavy metals by
intensive human activity is more obvious. These results are similar with Nicholson ef al. (2003) and Wahsha ef al. (2014),
who argued that the enrichment of Ni, Pb, Zn, and As are mainly attributed to human activity. The variation coefficient
of Cd, Cr, Cu, Ni, Pb, Zn, and As ranged from 0.39 to 1.34, with the latter exhibiting the largest value (Table 2). The minimum,
maximum, and average content of As were lower in the northeast compared to the south, and its enrichment was generally
concentrated in the south (Figure 2). This may be related to mining and sewage irrigation, as well as pesticide and fertilizer
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SOUTH
® The minimum(mg/kg) # The maximum(mg/kg) = Average(mg/kg)
“ The standard deviation(mg/kg) ™ Coefficient of variation(CV)

NORTHEAST

Cu Pb Zn As
B The minimum(mg/kg) ® The maximum(mg/kg) = Average(mg/kg)

= The standard deviation(mg/kg) ® Coefficient of variation(CV)

applications in agricultural activities. In the south of the NLR area, the cultivation of tea requires the application of a large

Figure 2 | Heavy metal content in the reservoir (n=41).

amount of phosphate fertilizer, which contains arsenic. In addition, the wharf in this region may also enhance the As content
in the south of the NLR area. These conclusions are consistent with Resongles ef al. (2014), who suggested that Cd and As
enrichment in soils may be related to the mining industry, smelting industry and agricultural fertilization.
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3.2. Enrichment level of heavy metals in soil

The heavy metal enrichment coefficients in the NLR are presented in Table 3. The average enrichment coefficients of Cd, Cr,
Cu, Ni, Pb, Zn and As were determined as 11.25, 0.62, 1.45, 1.21, 1.11, 1.52 and 1.40, respectively, most of which are close to
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Table 3 | Distribution of heavy metal enrichment coefficients of soil

Heavy metal Enrichment factor coefficient
Cd 11.25

Cr 0.62

Cu 1.45

Ni 1.21

Pb 1.11

Zn 1.52

As 1.40

1.0. This reveals the strong influence of natural sources. Moreover, the enrichment coefficient of Cd exceeds 10.0, indicating
that the Cd enrichment in the study area is not only from natural source substances, but is also influenced by human activities
(e.g. domestic pollution and pollutant discharge in industrial production). These results are in agreement with Suresh ef al.
(2012), who proposed the mining industry, agricultural production activities, pollutant discharging in industrial production,
and the domestic garbage of surrounding residents to be key influencing factors for the excess of Cd. Ye et al. (2013) inves-
tigated heavy metals in the fluctuation zone of the Three Gorges reservoir, and indicated that the high risk of Cd was generally
caused by the discharge of industrial pollutants. In summary, Cd has become a major ecological risk factor with complex
sources related to human activities. Thus, relevant departments should focus more attention on these sources to strengthen
their prevention and control.

The evaluation of the enrichment factors reveals that 85% of the study area exhibited no pollution to slight pollution of Cr,
Cu, Zn, Pb and Ni. Furthermore, 18.4 and 89.0% of the area exhibited moderate (or greater) As and Cd pollution, respectively
(Table 4). Cd enrichment was identified as the most serious pollution element in the NLR, followed by As. A comparison with
the ecological assessment results of heavy metals from the same data sources reveals serious Cd pollution across the study
area. This is in agreement with Ye et al. (2013), who employed the geological accumulation index to evaluate soil heavy
metals in the water-level fluctuation zone in the Three Gorges. The authors detected heavy Cd pollution, with agricultural
production activities as the dominant source, while As was associated with a low potential risk. Zhang et al. (2013) deter-
mined As to be the most abundant heavy metal polluter at the surface soil of the Qingshan reservoir, caused by the rapid
development of industrialization and urbanization. Previous research demonstrates the great impact of human activity on
heavy metals in the surface sediments and the surrounding soil of each reservoir. Therefore, it is necessary to analyze the
sources of heavy metals by evaluating their enrichment characteristics.

3.3. Correlation analysis of heavy metals in soil

The correlation analysis results of the heavy metals in the NLR soil indicate a strong correlation between the heavy metals.
The correlation coefficients of Cr, Cu, Ni, Pb and Zn ranged from 0.445 to 0.753, reaching a strong significant positive cor-
relation (Table 5, P < 0.01). Wahsha et al. (2014) demonstrated Cu, Pb and Zn to be strongly correlated, indicating significant
homology, and have similar geochemical behavior to the Cr and Ni. The degree of pollution with these metals was affected by

Table 4 | Percentage of heavy metals across different pollution levels (%)

The percentage

Pollution level cd cr Cu Ni Pb Zn As
EF<2 11.0 97.2 87.5 88.8 90.0 86.1 81.6
2<EF<5 8.4 2.8 10.2 10.8 10.0 13.9 17.6
5<EF<20 69.9 - 23 0.4 - - 0.8
20<EF <40 8.9 - - - - - -
EF <40 1.8 - - - - - -
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Table 5 | Coefficient correlations between heavy metals and soil properties

Heavy metals cd cr Cu Ni Pb zn As

Cd 1

Cr 0.120 1

Cu 0.142 0.487%* 1

Ni 0.055 0.714** 0.678%* 1

Pb 0.064 0.753% 0.454%* 0.578%** 1

Zn 0.214* 0.448* 0.485%* 0.565** 0.445% 1

As 0.221* 0.278%* 0.347%* 0.312%* 0.277%* 0.124 1
Total phosphorus 0.174 —0.057 0.059 —0.038 —0.123 0.068 0.203*

Note: *significant correlation at 0.05 level; **significant correlation at 0.01 level (n = 41).

the intrinsic properties of the soils and human activity. The Cu and Zn in farmland soils is affected by agricultural activities,
such as fertilization and wastewater irrigation (Nicholson ef al. 2003). The correlation coefficient between As and total phos-
phorus was 0.203, reaching a significant correlation level (P < 0.05), while that between Cd and the other six heavy metals
was not significant. As and total phosphorus were homologous due to the application of phosphate fertilizer which contained
arsenic (Nicholson ef al. 2003). Wahsha et al. (2014) revealed Cd, Cu, Pb and Zn to be strongly homologous, due to its unique
geographical location of suburban farmlands, with a dense road network and its role as an important vegetable and grain
production area for urban residents. However, our results suggested that the correlation coefficient between Cd and
the other six heavy metals was not significant in the NLR. Cd in soil may be derived from vehicle exhaust emissions
(Wahsha ef al. 2014). The tea gardens in the study area were planted in terraced fields across rural-urban fringes, located
far away from areas with dense road networks. Thus, Cd and the other six heavy metals exhibited spatial heterogeneity in
our study area.

3.4. Factor analysis of soil heavy metals

Kaiser-Meyer-Olkin and Bartlett sphericity tests were used to assess the validity and reliability of the data and are typically
performed prior to the factor analysis (Cortes ef al. 2021). According to Ye et al. (2013), the corresponding results of
0.81>0.7 and 352.16 (DF=21, P <0.01) determined in our study indicate a strong linear correlation between the seven
heavy metals, suggesting that the factor analysis was effective. Table 6 reports the factor analysis results, where the first
three factors reflect 78.5% of the total variance of the seven heavy metals, and can explain the majority of the heavy
metal source information. Factor 1 includes Cr, Cu, Zn, Pb and Ni, with a variance contribution rate of 46.8%; factor 2 con-
tains As, with a variance contribution rate of 17.4%; and factor 3 contains Cd, with a contribution rate of 14.4%. These results
indicated that Cr, Cu, Zn, Pb and Ni could be considered as similar dependent variables, with a similar proportion of

Table 6 | Varimax rotated factor loading soil heavy metals for farmland soil in the NLR

Rotate the pre-transformation factor Rotate the transformation factor

Heavy metal 1 2 3 1 2 3

Cd 0.235 0.852 0.378 0.015 0.156 0.975
Cr 0.785 0.146 0.097 0.945 0.185 0.056
Cu 0.602 0.076 0.185 0.656 0.421 0.078
Ni 0.875 0.167 0.089 0.845 0.365 0.124
Pb 0.849 0.198 0.028 0.985 0.323 0.015
Zn 0.628 0.025 0.685 0.699 0.345 0.452
As 0.568 0.476 0.752 0.256 0.754 0.258
Accumulated load (%) 50.25 67.25 78.54 46.81 64.16 78.54
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explained variability and cumulative explained in land use type, and similar main controlling factor in our subsequent PLSR
models.

3.5. PLSR analysis of heavy metals in the soil

Table 7 summarizes the PLSR model results. The first-order components of the Cr, Cu, Ni, Pb and Zn models included bare
land, tea garden and farmland on the positive and explained 62.7-71.2% of the variation of heavy metals. The addition of the
second-order components (bare, urban and industrial land), augmented the model-explained variance to 71.5-76.2% and gen-
erated minimum RMSECV values (1.25-3.65). The addition of more components did not promote the explanation
substantially but led to higher RMSECYV values, indicating that the subsequent components were not significantly correlated
with the residuals of the predicted variable (Carrascal et al. 2010) (Table 7). VIP values for bare land were greater than 1, while
tea gardens, farmland, urban and industrial land had VIP values smaller than 1 (Figure 3). According to Islam et al. (2019), Cr,
Cu, Ni, Pb and Zn can be considered as natural-related enrichment metals in soils. Bare land, which was less affected by
human activity, was the most important land use types for Cr, Cu, Ni, Pb and Zn. In the As model, the first-order component
was tea garden and farmland on the positive, and explained 71.4% of the As variance (Table 7). The addition of the second-
order and third-order components (agricultural and industrial land) on the positive augmented the model-explained variance
to 86.9% (Table 7). As shown in Figure 3, tea garden and farmland had VIP values larger than 1, while VIP values lower than 1
were observed for urban and industrial land. The results indicate that agricultural activities such as fertilization and pesticide
usage lead to arsenic enrichment. In the Cd model, the first-order component was urban and industrial land on the positive,
and explained 69.5% of the Cd variance (Table 7). The addition of the second-order and third-order components (tea garden
and farmland), augmented the model-explained variance to 83.3% (Table 7). As shown in Figure 3, urban and industrial land

Table 7 | Summary of PLSR models for heavy metals in the reservoir area

Response Y R Component % of explained variability in Y Cumulative explained in Y (%) RMSECV
Cd 0.83 1 69.5 69.5 11.25
2 10.2 79.7 2.53
3 3.6 83.3 2.47
4 0.8 84.1 4.65
Cr 0.75 1 71.2 71.2 3.56
2 3.7 74.9 2.89
3 0.9 75.8 3.04
Cu 0.76 1 67.9 67.9 7.58
2 8.3 76.2 3.02
3 1.0 77.2 4.87
Ni 0.72 1 65.9 65.9 8.12
2 5.6 71.5 1.25
3 0.6 72.1 298
Pb 0.72 1 62.7 62.7 8.45
2 9.4 72.1 3.65
3 25 74.6 4.18
Zn 0.74 1 68.4 68.4 7.64
2 5.9 74.3 2.69
3 0.6 74.9 4.78
As 0.87 1 71.4 71.4 9.54
2 12.0 83.4 4.12
3 3.5 86.9 3.24
4 0.4 87.3 4.29

@R? is goodness-of-fit.
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Figure 3 | VIP and regression coefficients for land use types (sampling TGFL = tea garden and farmland; UIL = urban and industrial land; BL =
bare land).

exhibited VIP values larger than 1, while VIP values lower than 1 were observed for tea garden and farmland. Amongst the
possible sources of Cd (residential areas, industrial areas, mining and agricultural activities), our results suggest that the effects
of urban and industrial land were much greater than that of agricultural areas due to large and dense populations, the reloca-
tion of waste, factory sites, and the existence of tungsten mines, as well as Cd-containing pollutant discharge from the power
station and wharf. Similar results were reported by Esmaeili ef al. (2014) and Aiman et al. (2016).

3.6. Source analysis of soil heavy metals

Based on the PLSR analysis, the sources of the seven target heavy metals in the NLR soil can be divided into three categories:
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(1) Natural inputs. Our study revealed the dominant sources of Cr, Cu, Ni, Pb and Zn to be natural inputs, with human activi-
ties having less of an impact (Ye ef al. 2013). In particular, strong relationships were observed between Cr, Cu, Zn, Pb and
bare land, which is less affected by human activity. The Cr, Cu, Ni, Pb and Zn content in the NLR were lower those of the
background values of the reservoir soil, while there was less of a difference between those of Cu, Ni, Pb and Zn and the
reservoir background values, with EF values less than 1.6. Moreover, 85.0% of the samples in the study area were pol-
lution-free to slightly polluted. The correlation analysis of the heavy metals revealed a significant correlation among
the five heavy metals (P < 0.01). Pb, Cu and Zn are cuprophilic elements, and have similar geochemical behaviors in
soil (Zhang et al. 2013). In summary, the five heavy metals belong to the same category (category 3), and originate
from natural inputs.

(2) Agricultural production activities. Table 7 demonstrates a significant positive correlation between As and agricultural
land (tea garden and farmland). This is attributed to the application of phosphorus fertilizer, which contains trace As
and is an important source of As in the soil (Signes-Pastor et al. 2007). The As content in the NLR is 1.28 mg/kg
higher than the soil background value of the reservoir area, and 18.4% of the samples exhibit a moderate (or greater) pol-
lution degree. Moreover, the content of As in the south exceeds that in the northeast due to the larger agricultural land
area and the relatively prominent non-point source pollution. Therefore, the enrichment of As is likely to be related to the
application of pesticides and chemical fertilizers, unreasonable farming methods and sewage irrigation.

(3) Industrial engineering and domestic waste. The average content of Cd was 14.8 times that of the soil environmental back-
ground value. The Cd content in the northeast was higher than that in the south, which can be attributed to the small
population and slow economic development in the latter. The majority of the study area contains suburbs or rural
land, and thus Cd pollution is most likely related to the large rural area and dense population covered by the Nanwan
lake watershed. Following the relocation of a large number of waste, factory sites and other incomplete cleaning pro-
cesses, the rain erosion and surface runoff is discharged into the nearby soil (Aiman et al. 2016). Furthermore, the
existence of tungsten mines in Henan Province, as well as the power station and wharf around the reservoir area, are
extremely likely to cause Cd enrichment.

The comprehensive application of clustering analysis, geological accumulation indexing and multiple regression methods
may seem like a reasonable strategy to generate a mathematical model that relates land use to heavy metals. However, our
results showed that the use of conventional regression algorithms to investigate the relative importance of land use is limited
as heavy metals and land-use types are highly co-dependent. Therefore, our research employed the coupling of enrichment
factors and partial least-squares regression to handle multicollinear and noisy data. This is a novel research strategy to inves-
tigate heavy metal pollution and the corresponding dominant land-use types in watersheds, and to provide useful information
for water pollution prevention and ecological protection.

4. CONCLUSION

In the current study, we focus on the contents and source of heavy metals surrounding a reservoir. We analyzed the corre-
sponding source and enrichment of Cd, Cr, Cu, Ni, Pb, Zn and As based on the enrichment factor (EF) method, and
quantified the relative importance of land use types on these heavy metals based on PLSR models and VIP values. The results
indicate the Cr content in the NLR to be lower than that of the background value of the reservoir area, while the Cd content is
higher. Moreover, unlike Cu and Cd, the contents of Cr, Ni, Pb, Zn and As in the south exceed those in the northeast. We
determine 85% of the NLR to exhibit pollution-free to slightly polluted levels of Cr, Cu, Zn, Pb and Ni; 89.0% of the study area
has moderate (or greater) pollution of Cd; 18.4% presents moderate (or greater) As pollution. Thus, the enrichment of Cd and
As is a key problem in the study area.

Heavy metals in the farmland soil of the NLR are generally attributed to natural sources, agricultural production activities
and industrial and domestic wastes, with contribution rates of 46.8, 17.4 and 14.4%, respectively. Cr, Cu, Ni, Pb and Zn can
be considered to have natural sources, with bare land dominating tea gardens, farmland, urban land and industrial land as the
key source. VIP values of tea gardens and farmland exceeded those for urban and industrial land for As, indicating that agri-
cultural activities lead to arsenic enrichment. For Cd, VIP values of urban and industrial land are larger than those of tea
gardens and farmland, suggesting that the effects of urban and industrial land are much greater than those of agricultural
areas. Cd enrichment is mainly affected by dense populations, waste, factories, mines, power stations and the wharf,
which discharges pollutants containing Cd.
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We developed a novel strategy to determine heavy metal pollution and the dominant land-use types in watersheds, effec-
tively overcoming the spatial collinearity of different land use types. By revealing the underlying relationship between heavy
metals and land use factors, our work can provide useful information for water pollution prevention and ecological
protection.
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