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ABSTRACT

Due to the heterogeneous distribution of precipitation, predicting its occurrence is one of the primary and basic strategies to prevent possible

disasters and their damages. Hence, this study aims at evaluating the capabilities of Logistic Model Tree (LMT), J48, Random Forest (RF), and

PART classification algorithms in precipitation forecasts at Pars Abad station using previous 1–4 days data of meteorological variables. So, five

scenarios were considered based on the cross-correlation function and partial autocorrelation function for validation of the studied methods

in the period of 2004–2019. In general, by examining the Kappa, root mean squared error (RMSE), mean absolute error (MAE) indicators, scen-

ario number 1 using the input parameters of 1-day lag was determined as the most appropriate scenario to predict daily precipitation. Also,

the obtained results showed that the PART had better performance with more than 80% accuracy in precipitation forecasting. Moreover, the

most accurate performance of PART was scenario 1 with Kappa¼ 0.2007, RMSE¼ 0.3879 and MAE¼ 0.2856. The conclusive results indicated

that by implementing classification algorithms and decision trees and using meteorological data of the previous days, daily precipitation

could be predicted accurately.
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HIGHLIGHTS

• Classification algorithms and decision tree models were tested in precipitation occurrence forecasting.

• The capabilities of Logistic Model Tree, J48, Random Forest and PART were examined using kappa and accuracy criteria.

• PART algorithm indicated more than 80% accuracy.

• By implementing classification algorithms and decision trees and using meteorological data of the previous days, daily precipitation can be

predicted accurately.
1. INTRODUCTION

Precipitation is one of the most important input data to hydro climatology and hydrology systems. Precipitation studies and
measurements are in most cases, necessary for the study of runoff, groundwater, flood, sediment, etc. Due to rapid population
growth and increasing problems of access to drinking water in arid and semi-arid regions such as Iran, the importance of
proper and providing reliable rainfall models is increasing day by day. Since precipitation depends on many factors such

as temperature, humidity, and evapotranspiration, it is complicated to emulate mathematically and predict the precipitation
occurrences in the temporal and spatial domain. The influence of tangible and intangible factors on event of rainfall occur-
rence is so high that it leads to a complex and chaotic structure. In addition to the dynamic and thermodynamic mechanisms

for precipitation to occur at a suitable vertical velocity, the presence of sufficient moisture is also essential. Adequate and
appropriate humidity is necessary not only during rainfall but also for a certain time. The connection between the precipi-
tation system and humidity source must be established continuously to compensate for the humidity reduction and

continues rainfall. This process will strengthen the system again, and this cycle will lead to significant rain with the help
of geographical conditions. In precipitation forecasting, various methods have been proposed that these methods are divided
into two general categories: dynamic and empirical models. Due to the computational complexity in dynamic methods and
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finding features and spatial and temporal relationships of historical precipitation data in empirical methods, in recent years

intelligent systems based on data mining have been adopted in the modeling of hydrological processes, which has the poten-
tial of modeling complex nonlinear processes and can provide more accurate estimates of regional conditions using
meteorological and hydrological data (Bhattacharya & Solomatine 2005).

In recent years, several studies have developed and examined different methods for predicting precipitation. Mandal &
Choudhury (2014) predicted maximum daily rainfall using a series of probabilistic models and found that the probability
of total monthly rainfall of more than 100 mm in summer and winter was about 75–85%. Ramsundram et al. (2016) compared
the decision tree data-driven model with Artificial Neural Network (ANN) based rainfall prediction model. The results

showed that the developed model with weakly correlated input data compared to ANN could be forecast future precipitation
circumstances. Bahrami et al. (2017), by examining the effect of pre-processing methods on the performance of the ANN,
concluded that the minimum-maximum pre-processing method has the best performance in predictions. Nourani et al.
(2017) used a combination of decision tree and association rules in long-term rainfall forecasting, and the results showed
that the confidence index was estimated to be above 60%. Dash et al. (2018) used artificial intelligence methods (AI)
K-NN, ANN, Extreme Learning Machine (ELM) to predict seasonal rainfall; they proposed that AI approaches for predicting

rainfall in both summer monsoon and post-monsoon have good potential. Diop et al. (2019), using a hybrid artificial intelli-
gence model, integration of Multilayer Perceptron models (MLP) with whale optimization algorithm (MLP-WOA) predicted
annual rainfall. They concluded that the accuracy of standalone MLP using MLP-WOA improved. In addition, other machine

learning techniques have also been used in the prediction of precipitation. Balamurugan & Manojkumar (2019) used a
machine learning-based approach in the study of short-term rain forecasting. The results implemented those machine learning
methods compared with statistical methods had better results. Diez-Sierra & Jesus (2020) used atmospheric synoptic patterns
in semi-arid climates with statistical and machine learning methods for predicting long-term rainfall; they demonstrated that

selected hyperparameters had the most influence on the performance of machine learning methods. According to the studies
conducted in precipitation forecasting, the importance of daily precipitation estimating is well understood. Mohammed et al.
(2020) provided a comparative study among multiple linear regression (MLR), support vector regression (SVR), and lasso

regression. However, the key issue is their black-box nature since only their predictions are presented, and the rules
remain hidden within the black-box itself. In addition, the MLR, though it provides rules, is unable to capture the non-linear-
ity in a data set, making it not suitable (Mohammed et al. 2020). Data mining is a relatively new methodology for finding

meaningful relationships between large amounts of data utilizing pattern recognition techniques. Essentially these methods
can be categorized in predictive and descriptive modeling, in which predictive modeling may be implemented to estimate
particular numerical value. In contrast, descriptive modeling investigates data and focuses on the connections and the
hidden relationship between them. Decision trees are the descriptive types of predictive modeling approaches. On the

other hand, the decision tree explains its prediction in of clear-cut rules. In addition, in the decision tree, unlike neural net-
works, nominal data can also use. Consequently, decision tree modeling does provide an apt alternative in the prescriptive
data-driven models for precipitation predictions. Decision rules, PART, K-nearest neighbor, J48, M5P, and random forest,

etc. are as classification algorithms. PART regards as one of the leading classification algorithms that produce rules. By com-
paring data to each rule, decision trees create, and the best leaf changes to the new rule. This method combines ripper and
C4.5 algorithms and is popular for classification purposes (Hussain et al. 2018). A literature review represents that in the field

of rainfall predicting, various models such as machine learning methods, artificial neural network and, etc., with the strength,
and weakness of each used. However, there are still some state-of-the-art models, such as logistic model tree (LMT), J48,
random forest (RF) and PART, which rarely employee for prediction occurrence of precipitation. Therefore they need to

be further compared investigated. Hence, this study aims to examine the probability of daily precipitation occurrence by
implementing novel classification, and decision trees including LMT, J48, RF and PART due to the introduction of models
with a straightforward and understandable structure for decision making. Although these models use very simple techniques,
the field of diagnosis and prediction can work with complex methods as well as ANN models. Antecedent input parameters

include precipitation (P), average relative humidity (RHmean), minimum relative humidity (RHmin), maximum relative humid-
ity (RHmax), average air temperature (Tmean), minimum temperature (Tmin), maximum temperature (Tmax), sunshine hours
(�ssh) and average wind speed (Sw) from 2004–2019 used as the inputs. The daily meteorological data from Pars Abad

station, as a case study, are utilized. For best feature selections, five scenarios based on cross-correlation function (CCF)
and partial autocorrelation function (PACF) are developed to channel the optimal features to the respective models. To
the best of the author’s knowledge, the considered LMT, J48, RF, and PART models have not been applied previously for
om http://iwa.silverchair.com/ws/article-pdf/22/4/3879/1041472/ws022043879.pdf

4



Water Supply Vol 22 No 4, 3881

Downloaded from http
by guest
on 10 April 2024
forecasting precipitation occurrence. The development, application and evaluation of the classification and decision trees

algorithms as the prescriptive data-driven models for precipitation predictions are the key contribution of this study.

2. METHODS

2.1. Decision tree (DT)

DT is used for data mining and it is one of the powerful and standard tools for classification and prediction that generates a set
of rules in emulating precipitations. During the model training process, the data series is subdivided into homogeneous sub-
sets in predicting or regulating an objective variable culminating into its tree regression structure. The process of creating a

tree consists of three steps: dividing the nodes and assigning the nodes to the end classes. A decision tree combines a root, a
series of branches and finally leaves. LMT, J48 and RF are famous and practical decision trees.

2.2. Logistic model tree (LMT)

LMT is one of the methods for classification that formed from a combination of logistic regression (LR) and DT learning
methods (Landwehr et al. 2005). This algorithm uses the LogitBoost algorithm to build the LR model on each node and
for growing up the tree. Then CART algorithm prunes the tree wherever necessary (Breiman et al. 1984) and then cross-vali-
dation is implemented to detect a number of LogitBoost iteration to intercept training data, subsequently reducing overfitting.

For each class C, the Logit Boost model employs least-squares fitting additive logistic regression as follows (Doetsch et al.
2009):

LC(x) ¼ b0 þ
XF
i¼1

bixi (1)

where F is the number of traits and bi represents the coefficient of ith ingredient in the observational vector x. Linear logistic
regression can use to estimate posterior probability in leaf nodes (Landwehr et al. 2005) as in the following equation:

P(Cjx) ¼ exp(LC(x))PC
C0¼1

exp(LC0 (x))
(2)

Here C is the number of classes and in this equation, for the least-squares to change in proportion to LC(x), it must bePC
C¼1 LC(x) ¼ 0. The structure of LMT showed in Figure 1.

2.3. J48

In the J48 decision tree algorithm, the predictions include if-then conditions. Root, branch, and leaf nodes are parts of a
decision tree. Each inward node works on a state with several input features, while each branch appoints the results of
the situation and each leaf node has a class label (Bhatia 2019). J48 produces the rules for the prediction of purpose and
it is an extension of the ID3 algorithm. J48 has been found effective in calculating missing data, pruning the decision tree,

and derivation rules, etc. J48 implement using JAVA with the CART algorithm (Kaur & Chhabra 2014). The steps of this
Figure 1 | Logistic model tree structure (Nachiappan et al. 2016).
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algorithm are as follows: (i) If the examples are related to a class, a leaf is introduced which label with the same classes; (ii)

The potential information is calculated. In the next step, the information gain compute; (iii) At last, the best feature is selected
and it use for branching. For counting, Gain is used from Entropy and the Entropy of ~y is calculated by

Entropy (~y) ¼ �
Xn
j¼1

jyij
j~yj Log

jyij
j~yj

� �
(3)

Entropy ( jj~y) ¼ jyjj
j~yj Log

jyjj
j~yj

� �
(4)

And Gain is

Gain(y,�!j) ¼ Entropy (~y)� Entropy ( jj~y) (5)

The aim is to maximize the gain, dividing by overall entropy due to split argument~y by value j. Finally, the tree is pruned to
solve the problem of overfitting.

2.4. Random forest (RF)

RF is a new decision tree method proposed by Breiman 2001 that use for supervised learning, classification, and regression.
The RF model performs classification at high speeds for many datasets. Unlike classical models such as regression, which rely
on one model, RF uses hundreds of trees to use more information in the data better to infer the variables (Kohestani et al.
2015). To create a regression tree, recursive partitioning and multiple regressions used, to prevent the adaptive of different

regression trees, RF reduces the diversity of trees by creating training data, which is called bagging. Bagging is a method
used to generate train data by random sampling with replacement. In addition, those samples that are not selected in the train-
ing of the trees in the bagging process include a subset called out-of-bag, which in the RF method can use to evaluate model’s

performance. After the formation of the trees, the average of all predicted trees is calculated to obtain the final output. The
general process of the RF algorithm is illustrated in Figure 2. The formation of RF-based regression begins with the growth of
Figure 2 | Random forest structure.
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the trees based on training data and random vector u, and the result is a set of trees, k, equal to {h1(x), h2(x),…, hk(x)} which

here are represented as hk(x)¼ h(x,uk), x¼ {x1, x2,…,xp}. These input p-dimension vectors form a forest. The group ‘k’ gener-
ated outputs for each tree are equal to Y1¼ h1(x), Y2¼ h2(x)… YK¼ hk(x) where Y is the output of the kth tree, and to obtain
the final outputs, the average of all tree predictions calculated. The average square of the generalization error of each predic-

tor h(x) is as follows:

Ex , y ¼ (Y � h(x))2 (6)

As the number of forest trees increases, the error is estimated as follows:

Ex , y ¼ (Yavkh(x , uk))
2 ! Ex , y(y� Euh(x , u))2 (7)

2.5. PART

Essentially, the main advantage of the PART method over other methods is that combining the two set patterns, it creates
rules that do not require global optimization. PART is distinct and conquers classifier algorithm. The PART algorithm pro-
duces decision lists that are used as a set of rules in the list. As new data is added, it is compared to the existing rule and
the clause is transferred if the matching rule does not exist. The partial decision tree formed by part results from the combi-

nation of C4.5 and repeated incremental pruning to produce an error reduction (RIPPER) algorithm. In this method, the data
set is divided back into a partial tree then the test selected and divided to subsets. The subsets are developed based on the
average entropy. This process continues until a subset expands and reaches the leaf and in the next steps, other subsets

that have not yet risen are selected (Frank & Witten 1998). The best leaf is introduced as a rule (Shawkat & Smith 2006).
The tree-building algorithm showed in Figure 3.

2.6. Study area and data

Pars Abad is the second-largest city in Ardabil province in north-western Iran which is on the border of Iran and the Republic
of Azerbaijan. Pars Abad is located in a flat plain with a warm climate. The meteorological data for this study were from Pars
Figure 3 | Structure of PART (Frank & Witten 1998).
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Abad station and the geographical location of Pars Abad station is 72.6 meters above sea level at 39° 360 north latitude and 47° 460

east longitude (Figure 4). It should be noted that in this study Pars Abad is only a case study. In this study, daily meteorolo-

gical data of 16 years related to the period of 2004–19 were used. Daily data included precipitation (P), average relative
humidity (RHmean), minimum relative humidity (RHmin), maximum relative humidity (RHmax), average air temperature
(Tmean), minimum temperature (Tmin), maximum temperature (Tmax), sunshine hours (�ssh) and average wind speed (SW).
The statistical characteristics of implemented meteorological parameters in Pars Abad station are shown in Table 1. Follow-

ing Table 1, P has the greatest skewness. Sw also shows the skewed distribution. Other studied parameters show normal
distributions since they have considerably low skewness values. The data set was divided into two parts. In the first part,
70% of the total data were used for training (2004–2015) and the remaining 30% of data were used to test the studied
Table 1 | Statistical characteristic of the meteorological inputs utilized in this study

Variable Minimum Maximum Median Mean Coefficient of variation Standard deviation Skewness Kurtosis

P mm.day�1 0 32 0 0.61 4.08 2.49 6.42 50.63

Tmin °C �13.2 27.4 11.4 10.63 0.78 8.25 �0.18 �1.11

Tmax °C �2.8 44 22.6 22.01 0.45 10 �0.16 �1.14

Tmean °C �8.2 32.2 16.4 15.8 0.57 9.02 �0.13 �1.23

RHmin % 9 98 49 51.31 0.33 16.7 0.45 �0.45

RHmax % 39 104 91 89.51 0.09 7.78 �1.56 3.23

RHmean % 32.25 99.75 73.13 72.33 0.17 12.16 �0.28 �0.56

�ssh hour 0 16 7.4 6.55 0.62 4.07 �0.32 �1.18

Sw m.s�1 0 13.38 2.13 2.25 0.67 1.51 1.07 2.4
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Figure 5 | The proposed method of the present study for the occurrence of daily precipitation.
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models (2016–2019). Then, based on rainfall data, the days of the year were divided into two classes: rainfall days and non-
rainfall days, and meteorological data were analyzed in the form of 5 series of data with delays of 1–4 days to predict the
occurrence and non-occurrence of daily rainfall. The process of the present study illustrated in the Figure 5.

2.7. Model evaluations and error measurement techniques

Statistical performance measurement evaluators are derived from the confusion matrix. In binary classification, positive or
negative is as the output. Table 2 shows the performance evaluation criteria for each studied method, and also, the assessment
of models was measured with root mean squared error (RMSE) and mean absolute error (MAE), as shown in Equations (8)

and (9).

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
j¼1

(Pj � Ôj)
2

N

vuuut
(8)

MAE ¼ 1
N

XN
j¼1

Pj � Ôj

��� ��� (9)

Here, Pj is the predicted value obtained from models, Ôj is the observed value and N is the number of data set.

3. RESULTS AND DISCUSSION

3.1. Model development approach

In this study, the feasibility of using meteorological parameters; RHmean, RHmin, RHmax, Tmean, Tmin, Tmax, P, �ssh, and SW in
different combinations to predict the occurrence of daily precipitation is tested (Table 1). To this end, we first defined five
scenarios by delaying meteorological data from 1–4 days and for each scenario the input parameters were selected based
on their correlation coefficient with precipitation. Moreover, for the feasibility of computations, 7–9 input parameters

were chosen for each lag. For example, for the first lag, all nine input parameters were selected as scenario one, but in lag
2, instead of using 18 input parameters resulted, i.e., lags 1 & 2 for all the nine variables, based on cross-correlation function
(CCF) and partial autocorrelation function (PACF), seven best inputs with higher correlations were selected to have low

latency models. This process was continued for all lags and finally, 5-input combinations were established, as mentioned
in Table 3. Furthermore, since the correlation of RHmax(t�1) was high, it was used in all scenarios. Moreover, the absolute
value of the correlation coefficient of meteorological parameters was the criteria used for selecting input parameters. As a
://iwa.silverchair.com/ws/article-pdf/22/4/3879/1041472/ws022043879.pdf



Table 2 | Statistical criteria used in this study

Statistical parameter Equation Definition

True Positive Rate
(TPR)

TPR ¼ TP=(TPþ FN) A ratio of the actual positives which are
correctly classified as a given class

False Positive Rate
(FPR)

FPR ¼ FP=(FPþ TN) Proportion of wrong positive prediction
to quiescent

Precision Precision ¼ TP=(TPþ FP) Reflects the percentage of the total set of
test records that are correctly classified

Recall Recall ¼ TP=(TPþ FN) The efficiency of the algorithm according
to the number of events in that class

F-measure F�measure ¼ (2� Precision� Recall)=(Precisionþ Recall) Used in cases where no special
importance can be attached to
precision and recall in relation to each
other. In other words, the harmonic
mean is between precision and recall

Matthews
Correlation
Coefficient
(MCC)

MCC ¼ (TP� FP� FN� FP)=
p
(TPþ FN)(TPþ FP)(TNþ FN)(TNþ FP) A criterion modality of binary

classifications and indicate
randomness of model

Receiver Operating
Characteristic
(ROC)

Area under the curve Plot of TPR vs. FPR

Precision Recall
Curve (PRC)

Area under the curve Plot of precision vs. recall

Accuracy Accuracy ¼ (TPþ TN)=(TPþ TNþ FPþ FN) The percentage of samples that are
correctly classified with respect to all
samples

Kappa Kappa ¼ (Total accuracy� Random Accuracy)=(1� Random Accuracy) a randomly adjusted criterion for
matching between classification and
correct classes
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result, five scenarios were developed based on the CCF and PACF for calibration and validation of the studied methods

(Figure 6).
Because there is not any direct method for dividing the training and testing data into data-driven approaches, scholars have

used different proportions, such as 67% of data for training (Qasem et al. 2019; Kargar et al. 2020), or 70% for training (Asadi

et al. 2020; Samadianfard et al. 2020) and as high as 80% for training (Zounemat-Kermani et al. 2019) has been used. There-
fore, for developing the LMT, J48, RF, and PART algorithms, the data were divided into 70% training data (2004–2015) and
30% testing data (2016–2019). Then, based on rainfall data, the days of the year were divided into two classes: rainfall days

and non-rainfall days, and meteorological data were analysed in the form of 5 series with delays of 1–4 days and the combi-
nation of parameters in each scenario was done based on the cross-correlation function (CCF) and partial autocorrelation
function (PACF) for calibration and validation of the studied methods to predict the occurrence or non-occurrence of

daily rainfall (Table 3). The input parameters in Table 3 were selected based on the higher values of correlation coefficients
in different lags. In other words, while considering different lags, 7–9 meteorological parameters with higher correlation coef-
ficients were selected as input parameters. Moreover, the computations were completed with Weka software, which contains
a large number of machine learning and data mining techniques that will enable the comparison of machine learning tech-

niques and allow users to access features such as visualization and analysis of many data mining algorithms (Witten & Frank
2000).

3.2. Discussion

Our motivation for conducting the present study is to introduce the capability of classification and decision tree models to
anticipate the occurrence of daily rainfall with the help of effective meteorological variables in the form of multi-day lags.
om http://iwa.silverchair.com/ws/article-pdf/22/4/3879/1041472/ws022043879.pdf

4



Table 3 | Modeling of defined scenarios
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The daily scale data of meteorological station, namely Pars Abad was used to expand LMT, J48, RF, and PART methods. The

evaluation of the decision tree-based modeling approaches in predicting daily precipitation levels is presented here. Table 4
explains the details of the criteria for implemented LMT, J48, RF, PART, and methods in predicting precipitation conditions
Figure 6 | Partial autocorrelation function (PACF) plots of precipitation and cross-correlation function (CCF) plots between meteorological
parameters and corresponding precipitation. (continued.).
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Figure 6 | Continued.
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based on a series of daily meteorological data. It reveals that in Scenario 1 with one day lag, PART method with weighted
average of precision¼ 0.770, Recall¼ 0.806, F-measure¼ 0.764, MCC¼ 0.242, AUC¼ 0.681 and PRC¼ 0.759 had the best
performance compared to the other three methods. In the same scenario, RF with precision¼ 0.741, Recall¼ 0.784,
F-measure¼ 0.750, MCC¼ 0.180, AUC¼ 0.691 and PRC¼ 0.773 was recognized as the method with the weakest perform-

ance. Then, in Scenario 2 and 3, the PART method had the highest precision and Recall, but in Scenario 4 and 5, the J48
method had the highest precision and again, the PART had the most Recall. In general, the highest and lowest precision
was in Scenario 3, the PART method registered precision¼ 0.788, achieved the highest precision, and LMT with precision¼
0.732 had the lowest precision among all defined scenarios. Furthermore, Table 5 shows the results of the utilized indicators,
including Accuracy (%), Kappa, RMSE, and MAE for all studied methods. The results of different algorithms used in this
study to predict the occurrence or non-occurrence of precipitation showed in Table 5. According to the results in Table 5,

the PART method had the highest accuracy of the patterns used in precipitation predictions, while the J48 method had
the lowest accuracy. In Scenario 1, the PART method with Accuracy¼ 80.5503%, Kappa¼ 0.2007, RMSE¼ 0.3879, and
MAE¼ 0.2856 was selected as the superior method in predicting precipitation conditions one day later. Moreover, the
LMT with Accuracy¼ 80.4878%, Kappa¼ 0.1895, RMSE¼ 0.3845, and MAE¼ 0.3047 had a better performance for predict-

ing precipitation and J48 and RF methods were in the next position to predict the probability of precipitation in scenario 1,
respectively. In Scenario 3 and 5, the RF method was more suitable for predicting rainfall conditions due to its high accuracy,
F- measure and MCC compared to other methods. Although daily precipitation was predicted in all methods with more than
://iwa.silverchair.com/ws/article-pdf/22/4/3879/1041472/ws022043879.pdf



Table 4 | Detailed accuracy of studied models

Scenario Method Class TP Rate FP Rate Precision Recall F-Measure MCC AUC Area PRC Area

1 J48 Y 0.169 0.041 0.514 0.169 0.255 0.207 0.651 0.322
N 0.959 0.831 0.819 0.959 0.884 0.207 0.651 0.852

Weighted Avg. 0.799 0.670 0.757 0.799 0.756 0.207 0.651 0.744
PART Y 0.188 0.037 0.565 0.188 0.282 0.242 0.681 0.347

N 0.963 0.812 0.823 0.963 0.888 0.242 0.681 0.864
Weighted Avg. 0.806 0.655 0.770 0.806 0.764 0.242 0.681 0.759
RF Y 0.194 0.065 0.432 0.194 0.268 0.180 0.691 0.358

N 0.935 0.806 0.820 0.935 0.873 0.180 0.691 0.879
Weighted Avg. 0.784 0.656 0.741 0.784 0.750 0.180 0.691 0.773
LMT Y 0.175 0.035 0.564 0.175 0.268 0.233 0.703 0.389

N 0.965 0.825 0.821 0.965 0.887 0.233 0.703 0.888
Weighted Avg. 0.805 0.664 0.769 0.805 0.761 0.233 0.703 0.787

2 J48 Y 0.105 0.022 0.548 0.105 0.176 0.172 0.614 0.292
N 0.978 0.895 0.811 0.978 0.887 0.172 0.614 0.836

Weighted Avg. 0.801 0.718 0.757 0.801 0.742 0.172 0.614 0.726
PART Y 0.098 0.020 0.561 0.098 0.168 0.171 0.667 0.327

N 0.980 0.902 0.810 0.980 0.887 0.171 0.667 0.860
Weighted Avg. 0.801 0.722 0.759 0.801 0.741 0.171 0.667 0.752
RF Y 0.135 0.040 0.463 0.135 0.210 0.162 0.657 0.352

N 0.960 0.865 0.813 0.960 0.880 0.162 0.657 0.863
Weighted Avg. 0.792 0.697 0.742 0.792 0.744 0.162 0.657 0.759
LMT Y 0.040 0.012 0.464 0.040 0.074 0.087 0.687 0.370

N 0.988 0.960 0.801 0.988 0.885 0.087 0.687 0.885
Weighted Avg. 0.795 0.767 0.733 0.795 0.720 0.087 0.687 0.780

3 J48 Y 0.022 0.002 0.778 0.022 0.042 0.107 0.609 0.293
N 0.998 0.978 0.800 0.998 0.888 0.107 0.609 0.835

Weighted Avg. 0.800 0.780 0.759 0.800 0.716 0.107 0.609 0.725
PART Y 0.034 0.003 0.733 0.034 0.065 0.128 0.673 0.334

N 0.997 0.966 0.802 0.997 0.889 0.128 0.673 0.862
Weighted Avg. 0.801 0.770 0.788 0.801 0.721 0.128 0.673 0.755
RF Y 0.154 0.034 0.538 0.154 0.239 0.206 0.666 0.358

N 0.966 0.846 0.817 0.966 0.886 0.206 0.666 0.874
Weighted Avg. 0.801 0.681 0.761 0.801 0.754 0.206 0.666 0.769
LMT Y 0.037 0.011 0.462 0.037 0.068 0.083 0.689 0.373

N 0.989 0.963 0.801 0.989 0.885 0.083 0.689 0.885
Weighted Avg. 0.795 0.770 0.732 0.795 0.719 0.083 0.689 0.781

4 J48 Y 0.022 0.002 0.778 0.022 0.042 0.107 0.609 0.293
N 0.998 0.978 0.800 0.998 0.888 0.107 0.609 0.835

Weighted Avg. 0.800 0.780 0.795 0.800 0.716 0.107 0.609 0.725
PART Y 0.095 0.017 0.585 0.095 0.164 0.176 0.668 0.336

N 0.983 0.905 0.810 0.983 0.888 0.176 0.668 0.859
Weighted Avg. 0.802 0.724 0.764 0.802 0.741 0.176 0.668 0.753
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RF Y 0.145 0.034 0.522 0.145 0.227 0.194 0.665 0.366
N 0.966 0.855 0.816 0.966 0.885 0.194 0.665 0.872

Weighted Avg. 0.799 0.688 0.756 0.799 0.751 0.194 0.665 0.769
LMT Y 0.043 0.011 0.500 0.043 0.079 0.098 0.688 0.373

N 0.989 0.957 0.802 0.989 0.886 0.098 0.688 0.885
Weighted Avg. 0.797 0.765 0.741 0.797 0.722 0.098 0.688 0.781

5 J48 Y 0.022 0.002 0.700 0.022 0.042 0.098 0.613 0.292
N 0.998 0.978 0.800 0.998 0.888 0.098 0.613 0.836

Weighted Avg. 0.799 0.780 0.780 0.799 0.716 0.098 0.613 0.726
PART Y 0.095 0.017 0.585 0.095 0.164 0.176 0.667 0.335

N 0.983 0.905 0.810 0.983 0.888 0.176 0.667 0.859
Weighted Avg. 0.802 0.724 0.764 0.802 0.741 0.176 0.667 0.752
RF Y 0.135 0.030 0.537 0.135 0.216 0.193 0.679 0.361

N 0.970 0.865 0.815 0.970 0.886 0.193 0.679 0.881
Weighted Avg. 0.801 0.695 0.758 0.801 0.750 0.193 0.679 0.775
LMT Y 0.043 0.011 0.500 0.043 0.079 0.098 0.687 0.371

N 0.989 0.957 0.802 0.989 0.886 0.098 0.687 0.886
Weighted Avg. 0.797 0.765 0.741 0.797 0.722 0.098 0.687 0.781
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Table 5 | Performance indices for J48, PART, RF, LMT models based on test datasets

Scenario Performance index

MODELS

J48 PART RF LMT

1 Accuracy (%) 79.8624 80.5503 78.424 80.4878
Kappa 0.1712 0.2007 0.1619 0.1895
RMSE 0.401 0.3879 0.3919 0.3845
MAE 0.2831 0.2856 0.3012 0.3047

2 Accuracy (%) 78.3615 80.1126 79.237 79.5497
Kappa 0.1999 0.1138 0.1295 0.0428
RMSE 0.4245 0.3884 0.3942 0.3865
MAE 0.2796 0.2856 0.2867 0.2889

3 Accuracy (%) 79.9875 80.1126 80.1126 79.5497
Kappa 0.0313 0.0476 0.1636 0.0395
RMSE 0.3904 0.3857 0.3917 0.3859
MAE 0.2905 0.2828 0.2844 0.2897

4 Accuracy (%) 79.9875 80.2376 79.925 79.6748
Kappa 0.0313 0.1135 0.1517 0.0486
RMSE 0.3904 0.3858 0.3911 0.3859
MAE 0.2905 0.2827 0.287 0.2896

5 Accuracy (%) 79.925 80.2376 80.05 79.6748
Kappa 0.03 0.1135 0.1463 0.0486
RMSE 0.3909 0.386 0.3894 0.3867
MAE 0.2903 0.2826 0.2857 0.289
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78% accuracy, the PART method was recognized as the superior one in all scenarios due to its accuracy of nearly 80%.

Additionally, in scenario 2 the J48 method with Accuracy¼ 78.3615, Kappa¼ 0.1999, RMSE¼ 0.4245 and MAE¼ 0.2796
had the weakest performance comparing with other methods. So, the results indicate that the PART method, rule-based, com-
pared to the other three methods based on tree classification, has a significant ability to estimate the days on which

precipitation occurred or not. Therefore, PART, LMT, RF, and finally J48 methods have the first to fourth position, in predict-
ing occurrence or non-occurrence daily rainfall. The results of this study are consistent with the findings of Mahtabi et al.
(2018), who reported that using meteorological data from 1–5 days ago, daily precipitation was predicted with an accuracy

of more than 80% and the performance of DT was the best. Also, the relative humidity and maximum daily temperature had
the highest correlation of the occurrence of daily precipitation. The results are also agree with Agnihotri & Mohapatra (2012),
which examined the forecast of daily summer monsoon rains in the Karnataka region of India and concluded that the highest

correlation of daily rainfall is with relative humidity parameters and minimum daily air temperature.
To evaluate the susceptibility of the models in prediction more clearly, Figure 7 displays a detailed diagram of the weighted

average accuracy of the algorithm criteria for all four methods. As shown in Figure 7, the PART method showed higher capa-
bility in predicting precipitation in most scenarios due to its accuracy of nearly 80%.

The PART method with more input data, estimates the occurrence of precipitation with higher accuracy, while the perform-
ance of this method decreases when the number of input variables is low. For future studies, it is suggested that the methods
used in this study be evaluated for different areas (arid or humid) with different lags. In this study, we used only a rule-based

model in predicting the occurrence of daily precipitation, which ironically provided the best results among other methods,
however in general it cannot be concluded that the performance of all rule-based models will be better than models based
on tree classification or not. So, it is recommended that in future studies, the performance of other rule-based models be

examined.
4. CONCLUSIONS

In the current study, the daily precipitation occurrences in Pars Abad station was predicted with the application of classifi-
cation and decision tree models including PART, J48, LMT, and RF using meteorological parameters. To this end, five
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Figure 7 | Bar graphs of the weighted average of the detailed accuracy of studied models.
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scenarios were defined by delaying meteorological data from 1–4 days and for each scenario the input parameters were

selected based on the CCF and PACF functions. A robust performance evaluation of the models was carried out using accu-
racy and Kappa. Comparison of the results showed that using daily meteorological data, rainfall up to 4 days can be predicted
with more than 78% accuracy. Among five selected scenarios, Scenario 1 with the PART method with accuracy of 80.5% was

determined to be the best case. The performance of PART method was more suitable than the other methods, because in all
five scenarios, the accuracy of the PART was higher than 80%. In all scenarios, the relative humidity and maximum daily
temperature had the most significant influence in predicting daily precipitations. Conclusively, based on the obtained results,
the PART method was recommended in predicting precipitation occurrences using the previous meteorological data.
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