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ABSTRACT

The use of statistical models to predict pipe failures has become an important tool for proactive management of drinking water networks.

This targeted review provides an overview of the evolution of existing statistical models, grouped into three categories: deterministic, prob-

abilistic and machine learning. The main advantage of deterministic models is simplicity and relatively minimal data requirements.

Deterministic models predicting failure rates for the network or large groups of pipes perform well. These models are also useful for shorter

prediction intervals that describe the influences of seasonality. Probabilistic models can accommodate randomness and are useful for pre-

dicting time-to-failure, interarrival times and the probability of failure. Probability models are useful for individual pipe models. Generally,

machine learning approaches describe large complex data more accurately and can improve predictions for individual pipe failure models

yet is complex and requires expert knowledge. Non-parametric models are better suited to the non-linear relationships between pipe failure

variables. Census data and socio-economic data require further research. Choosing the most appropriate statistical model requires careful

consideration of the type of variables, prediction interval, spatial level, response type and level of inference required.
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HIGHLIGHTS

• Discusses key statistical models, including regression, probability, and machine learning.

• Reviews fundamental characteristics, limitations, and progress.

• Compares between the main outcomes and discusses future research.

• Synthesises the findings and includes an aid for different decision-making contexts.
1. INTRODUCTION

Developing reliable infrastructure decision-making tools is essential for managing large deteriorating Water Distribution Net-

works (WDNs), which pose economic, societal, and environmental threats if they fail (St. Clair & Sinha 2012). Water
companies are interested in proactive management to determine which assets are likely to fail in the short (monthly, inter-
annual), medium (annual) or long term (asset management period) (Watson et al. 2004). One area of innovation and oppor-
tunity is predictive pipe failure modelling, an area that focuses on predicting the time and location of pipe failures (also

referred to as breaks), and a variety of such statistical models exist in the literature. Early pipe failure models were developed
with the emergence of modern asset management and a drive to understand the cost of pipe failures. Over the past few dec-
ades, many models have been developed, benefitting from advances in computing and geographical information systems and

databases able to collect and manipulate the substantive volumes and variety of data involved (Deadman 2010). Water com-
panies now use pipe failure models in seeking new ways to understand and manage assets. Many such approaches focus on
medium (annual) to long term (.annual) planning and concern the vital area of asset management, assessing the condition of

a WDN and exploring strategies for pipe replacement, rehabilitation, and maintenance. However, few approaches focus on
the short term, which would provide a framework to help operational management, an area of continued discussion. Model
development is based on an initial assessment of the desired output, the specific needs of each water company and the
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performance required across varying geographic locations. Other key variables concern the age of the WDN, the mix of

material types, and the range of variables available within the data. It is essential to understand the different modelling
approaches, each with its own merits and reasons for achieving different outcomes.

Pipe failure models may be broadly classified as heuristic, physical or statistical. Several comprehensive reviews summarise

pipe failure models extensively (Kleiner & Rajani 2001; St. Clair & Sinha 2012; Nishiyama & Filion 2013; Scheidegger et al.
2015; Wilson et al. 2017). These literature reviews are systematic and focus on a particular period (the last decade) or type of
model (deterministic and probabilistic), or specific aspects such as large-diameter pipes. These review papers do not capture
the machine learning models widely used today. The idea of this exposition is to look purposefully at the progression of pipe

failure models encompassing a range of statistical models, including deterministic, probabilistic and machine learning used in
the literature. We use a targeted or focussed review process, selecting high-quality articles over time that help identify the
trend and current state of pipe failure models, rather than an exhaustive list of literature or literature from a specific

period or type. This approach is a means of discussing a narrative of change and progression in statistical pipe failure
models. Key historical models are discussed, as pipe failure models evolved from simple deterministic models to current
machine learning, describing some of the fundamental issues and discussing limitations and progress. The need to detail

machine learning is essential given the increasing trend towards these models in the past decade. Therefore, an emphasis
is placed on various methods being leveraged for their capability to describe and encapsulate complex relationships and
return more accurate predictions. Regulatory incentives driving innovation (Ofwat 2020) are likely to spur further desire

for machine learning and data analytics utilised to support data management of these substantive data repositories (Ponce
Romero et al. 2017). Figure 1 presents a taxonomy of the different model types discussed in this review.

2. HEURISTIC MODELS

Water utilities have historically adopted heuristic models to calculate the failure rates of pipes to prioritise replacement sche-
duling. Heuristic models are often not included in reviews; however, they represent a common approach for assessing

infrastructure where factors and mechanisms are not well understood. Instead, heuristic models use descriptive analytics
such as assumptions, expert opinion, or subjective weightings on leakage rates, material type, and age to determine the neces-
sity of a pipe’s replacement. Heuristic models are accessible to water companies and do not require extensive prior knowledge

of variable selection and data pre-processing. Furthermore, limited or missing variables will not affect overall accuracy. How-
ever, heuristic models are rarely optimal since they rely on subjective opinions and fail to capture the potential risks or
accurately describe future failure rates (St. Clair & Sinha 2012; Fitchett et al. 2020; Snider & McBean 2020).

3. PHYSICAL MODELS

Physical models (mechanistic models) ordinarily aim to describe the mechanisms that contribute to pipe failure by analysing
the pipe’s stresses and strengths and have been reviewed in detail by Rajani & Kleiner (2001). Relating these mechanisms
involves analysing detailed data on pipe structural properties (quality of installation, material type, age, diameter, and man-

ufacturing details), internal and external loads, proximal factors (environmental conditions), and material deterioration
(Rajani & Kleiner 2001). Physical models do not require large quantities of historical data for calibration or operation
(Wilson et al. 2017); alternatively, pipe investigation is necessary to determine the pipe’s state of deterioration and site inves-
tigations can be expensive and time-consuming. Once created, the model represents the specific pipe and does not extrapolate

to other areas of the WDN, limiting the use of the model. For these reasons, physical models are ordinarily limited to large
supply mains (Wilson et al. 2017).

4. STATISTICAL MODELS

Statistical models aim to predict pipe failures from historical data containing several correlated variables, which may be cate-

gorised broadly as pipe-intrinsic, environmental and operational (Barton et al. 2019, 2020). Finding an appropriate model
assumes that the response is not random but is functionally related to the variables. Variables take the form x1, x2, …, xn,
and form an n-dimensional input dataset typically denoted as X. In pipe datasets, ordinarily X is represented by quantitative

data, being either inherently categorical (soil or pipe material) or continuous (e.g., pH). These variables remain mainly static
whilst other factors include a dynamic time-dependent aspect (such as with weather and pipe pressure (Wols et al. 2019)).
The response variable is similarly defined by an output space of Y described from y1, y2, …, ym, either numerical, in which
://iwa.silverchair.com/ws/article-pdf/22/4/3784/1101074/ws022043784.pdf



Figure 1 | Taxonomy of pipe failure models (adopted from Snider & McBean (2020)).
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case it is regression and defined by the function w : x ! y, where y ¼ R, and here w represents the prediction, categorical and
therefore classification where y ¼ c1, c2, …,cm a set of classes, or probability where y ¼ P the probability of occurrence
(Louppe 2014). Statistical models are favoured over physical models because they are cost- and time-effective, do not require
information on the physical pipe mechanisms (such as deterioration) and are easily extrapolated to other pipes with similar

characteristics across an entire WDN (Kleiner & Rajani 2001). Statistical models are classified in numerous ways, but com-
monly into deterministic, probabilistic and machine learning (Nishiyama & Filion 2014).

4.1. Deterministic models

4.1.1. Single-variate regression

Linear models are simple deterministic models that have been used widely in statistics for many decades. The single-variate
linear model represents a one-dimensional space with a linear function given as yi ¼ b0 þ

P
i bixi þ 1, where b0 is the inter-

cept, bi is the weight of xi and 1 the error term. Its simplicity delivers reliability and interpretability, which is advantageous to
water companies (sometimes referred to as a white-box approach). Models using this approach have been used to return the
number of failures or by dividing the number of failures by pipe length provide a natural estimator of failure rate. Early aggre-

gate models predicted the number of failures as a function of time, using linear relationships. Kettler & Goulter (1985)
developed a time-linear regression model using pipe age and diameter, given by N ¼ k0A, where N is the number of failures,
k0 is the regression parameter, and A is age of pipe at first failure. The Kettler & Goulter (1985) model was applied to a small
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WDN in Winnipeg, Manitoba, using a ten-year failure record, and revealed a strong negative correlation between failure rates

and diameter size. Despite the term of linear, linear models can also model and represent non-linear relationships. Shamir &
Howard (1979) developed one of the first models on a small WDN of pipes, a single-variate time-exponential model using
pipe age to predict the number of failures per year per 1,000 ft of pipe, such that: N(t) ¼ N(t0) expA(t�t0), where t is time,

N(t) is the rate of failure at time t, t0 is the reference year, and A is a failure rate growth coefficient. These early studies
were limited by the single-variate approach, which proved of limited practicality for asset management due to its scale of oper-
ation, and for determining relationships with other important variables. Shamir & Howard (1979) also used a pipe group
approach, assuming similar failure rates for all pipes within the group, which is not often the case.

4.1.2. Multivariate regression

Studies began to focus on predicting the number of failures as a function of multiple factors (or covariates) (Andreou et al.
1987a). Kleiner & Rajani (2000) were the first to include dynamic time-related weather variables (soil moisture, temperature,
and frost) using multi-variate exponential models, which improved predictive capability and described the influence of the
weather on failure rates. The main limitation in the study was the removal of static variables, which are essential since

static variables such as soil are present in all WDNs and are known to influence pipe breakage (Rajani et al. 1996). Kleiner
& Rajani (2002) again used the multi-variate exponential model and the same weather variables on groups of pipes, this time
noting that more variables led to improved accuracy in the predictions. Additionally, operational factors such as cathodic

protection were used, as was mains replacement rate, not used before. These variables were able to accommodate data
bias in the WDN dataset caused by aggressive pipe replacement and the removal of several high failing pipes and essential
information. The use of both environmental and operational variables meant the model could account more accurately for
ageing over time, yet both models were simplistic in their approach and showed only moderate accuracy overall due to

many conditional assumptions.
To improve multivariate analysis, different models were explored and further operational factors such as pipe pressure

introduced. Wang et al. (2009) predicted annual failure rates for individual pipes using pipe-intrinsic factors for five pipe

materials using multiple regression. The study was completed on a 432 km WDN in St Foy, Quebec City, based on data col-
lected between 1987 and 2001. The approach showed a good level of accuracy through best-subset regression, with pipe
length being an important factor: R2 of 68.9, 65.0, 71.5, 78.4, and 81.3 for cast iron, ductile iron (without lining), ductile

iron (with lining), PVC, and Hyprescon pipes, respectively. The major limitation is the focus on how annual failure rates
affected variables, suggesting that longer pipes had lower failure frequency and that annual failure rates increased with
age but did not predict when the subsequent failure would occur on a pipe. In a comparison of different models, Asnaashari
et al. (2009) modelled failures for groups of pipes on a small-sized WDN (554 pipes) for ten years of pipe failure records,

comparing multiple regression to Poisson regression for four materials separately (AC, CI, DI and PE). The authors reported
a higher accuracy in the Poisson models compared with the multiple regression models; R2 between 0.71 and 0.95, and
between 0.52 and 0.88, respectively. The Poisson model was said to perform well because it can handle non-linear relation-

ships more accurately. However, a deviation and Pearson chi-square test calculated overdispersion, showing low unity
between the metrics, signifying overdispersion due to zero-inflated data. The study did not include dynamic time-related vari-
ables, which was another limitation, but focussed on intrinsic pipe factors of wall thickness, pipe diameter, pipe length, cover

depth, location, failure history and pipe pressure.

4.1.3. Generalised models

Moving towards addressing the pipe-grouping issue, failure models started to predict individual pipes. The Generalised Linear
Model (GLM) was used because of its capacity to model complex relationships through a differentiable monotonic link func-
tion (exponential, Poisson or logistic are favoured), allowing for non-normal distributions and taking the general form
yi ¼ bo þ bixi (Yamijala et al. 2009). Yamijala et al. (2009) compared multiple models on a medium-sized WDN in Texas

(,1,600 km) between 2000 and 2005, including exponential regression, Poisson GLM, and logistic regression, including
important factors such as pressure, soil parameters and temperature. The model predicted failures for individual pipes on
a six-month interval to capture temperature variation. The authors reported no good results due to data imbalance between

the number of failures and non-failures observed in the data, potentially imbalanced further by the short prediction period.
Nevertheless, the authors suggest that logistic GLM provided valid test model estimates of pipe reliability at this spatiotem-
poral scale since predicting the probability of a discrete outcome is often helpful for water companies (Yamijala et al. 2009).
://iwa.silverchair.com/ws/article-pdf/22/4/3784/1101074/ws022043784.pdf
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The linear, exponential and Poisson models were performed on a reduced dataset, consisting only of pipes with failures to

avoid the zero-inflation problem. The linear and exponential models were fitted with fewer variables than the Poisson and
logistic model, which also used an iterative process to drop variables for a parsimonious model. In this instance, the Pearson’s
correlation coefficient was low for the Poisson model, which suggested overdispersion was not a problem in the data, unlike

that found by Asnaashari et al. (2009), potentially due to using only pipes with failures. In a similar study by Motiee & Gha-
semnejad (2019), the authors compared four models on individual pipes for a medium-sized WDN (583 km) in Tehran over
four years of failure records (2004–2007), including linear regression, exponential regression, Poisson GLM, and logistic
GLM. The authors found similar results, with the logistic regression model observed to be the most useful, but the study

failed to include a range of important variables such as soil, temperature or pipe pressure and did not handle the zero-inflated
data.

4.1.4. Zero-inflated models

Other studies have attempted to use models to accommodate the zero-inflated data inherent in most pipe failure datasets. The
Zero Inflation Poisson (ZIP) model handles zero-inflation by allowing different probabilities through two components: the

first generates zero counts, and the second generates counts with probability, some of which may be zero. In a study by
Konstantinou & Stoianov (2020), several models were compared and evaluated on a network of 374 km during 2003–
2016, using 550 pipe failures. A ZIP GLM and negative binomial GLM were amongst those used but were the only

models that could manage the zero-inflated dataset for individual pipes. Both models poorly fitted the data and underesti-
mated failures in the network: R2 of 0.091 and 0.082, respectively. The authors recognised a lack of complete (no
environmental variables) and reliable data, which is likely to have reduced the accuracy of the model, yet the machine learn-
ing models were capable of accurate predictions. Therefore, the zero-inflated and negative binomial models did not perform

well on this dataset, but no explanation was given. The models were applied to pipe segments in two scenarios, first for each
pipe and second for pipe lengths partitioned into 200 m lengths. The model performed better on individual pipe lengths
because of the direct classification of the pipe type in the first scenario. The variables provided were sufficient and were stan-

dardised with a mean of 0 and standard deviation of 1, but with few pipe failures in the dataset, groups of pipes may have
yielded better results.

4.1.5. Comments

The simplistic mathematical framework of deterministic models has made them popular with water companies, especially
given the ease of interpreting their results. Single-variate models such as the time-linear and time-exponential models are
easy to develop, and early models that predicted the whole network condition were informative. However, these approaches

were of limited use since they do not provide enough information to describe pipe failures in detail, and the parametric design
fails to describe the non-parametric nature of pipe failures. The introduction of multivariate models improves predictions by
providing further information. Multivariate regression and Poisson regression models were used to some success when pre-

dicting and deriving further understanding of pipe failures. The introduction of dynamic variables showcased the influence of
seasonal weather variation but can only be used with relatively large groups of pipes or the entire network and is not suitable
for individual pipes. Further introduction of operational variables was necessary, yet studies observed that data was not

always available. Predicting the number of failures or failure rate using pipe length as a normalisation factor was well
suited to these high-scale models since failure frequencies are discrete and non-negative (Asnaashari et al. 2009).

A practical step in pipe failure models was the use of multivariate approaches predicting individual pipes due to the appar-

ent advantages to water companies. However, this proved mathematically problematic due to the zero-inflation problem
caused by an insufficient number of failures for each pipe. The GLM model extended more basic multivariate regression
by allowing greater flexibility via a link function, with the Poisson distribution proving more successful than others, such
as the exponential or linear distributions. One assumption of the Poisson model is that the response variance is equal to

the mean, yet this is seldom the case in many pipe failure data, especially for zero-inflated data, resulting in overdispersion
(Asnaashari et al. 2009). When this assumption is violated, the methodology does not meet the Poisson distribution assumptions
(Asnaashari et al. 2009; Kleiner & Rajani 2012) and overestimates pipe failures with residuals showing significant error and bias

(Konstantinou & Stoianov 2020), and other studies suggested no useful results (Yamijala et al. 2009). By definition, it can be
suggested that predicting failure rates is problematic for individual pipes and would be best suited to models using large pipe-
groups or network-wide models. In an attempt to resolve the overdispersion problem, zero-inflated models were introduced.
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The ZIP GLM and ZIP negative binomial GLM models are reported in the literature and treated failures and non-failures

separately in the model. However, ZIP models show mixed outcomes, suggesting they do not necessarily improve predictive
accuracy. Grouping pipes is essential for the Poisson model to meet the appropriate assumptions. Careful consideration
should be given to selecting grouping schemes since they can affect the accuracy of the model and must consider the spatial

scale for management decisions (Kleiner & Rajani 2001). Alternatively, individual pipe models should make use of probabil-
istic approaches. Table 1 provides a summary of the main deterministic models discussed.
4.2. Probabilistic models

4.2.1. Survival analysis

The main disadvantages of deterministic models are their inability to accommodate left-truncated data and their limited
response, which led to the popularity of survival analysis. Survival analysis is capable of handling left-truncated data
addressed analytically through the adaption of the likelihood function (see Carrión et al. (2010) for further detail), and

can be used to predict service life, the time between failures, or the development of consecutive failures over time (Wilson
et al. 2017). This is achieved through predicting the elapsed time between an initiating event and a terminal event, or the
time between events (requiring a particular condition, see Røstum (2000, p. 43)), revealing a pipe failure history (Alvisi &

Franchini 2010). The survival function and hazard function are fundamental aspects of survival analysis. The survival func-
tion is the probability that a pipe survives longer than a time, such that S(t) ¼ P(T . t), where S(t) is the pipe at time t, and T
represents the time until the occurrence of an event. The hazard function hi(t) is the probability of a pipe i failing within that
Table 1 | Summary of the main deterministic pipe failure models

Author Modela Network size Failure history
Pipe
materialsb Variables Spatial level Response

Shamir &
Howard (1979)

Time-exponential
model

– – – Pipe-intrinsic Network Number of
failures

Kettler &
Goulter (1985)

Time-linear
regression model

– 1959–1985 AC, CI Pipe-intrinsic Network Failure rate

Kleiner & Rajani
(2002)

Multivariate
exponential model

– 1973–1998 CI, DI Environmental
Pipe-intrinsic

Pipe groups Failure rate

Wang et al.
(2009)

Five multiple
regression models

432 km 1987 and
2001

CI, DI,
HY,
PVC

Pipe-intrinsic Pipe groups Failure rate

Asnaashari et al.
(2009)

Multiple regression
& Poisson
regression

554 pipes 10 years AC, CI,
DI, PE

Pipe-intrinsic Pipe groups Number of
failures

Yamijala et al.
(2009)

Exponential
regression &
Poisson GLM

,1,600 km
(85,000
pipes)

2000–2005 AC, CI,
DI,
PVC, ST

Pipe-intrinsic
Environmental

Individual pipes Failure rate

Kleiner & Rajani
(2010)

Zero-inflated Poisson 146.6 km
(1,091
pipes)

1961–2006 AC, CI Pipe-intrinsic
Environmental

Pipe groups Number of
failures

Motiee &
Ghasemnejad
(2019)

Linear regression,
exponential
regression &
Poisson GLM

583 km July 2004–
December
2007

AC, CI,
DI, PE

Pipe-intrinsic Individual pipes Failure rate

Konstantinou &
Stoianov
(2020)

ZIP GLM and ZIP
negative binomial
GLM

374 km 2003–2016 AC, CI, DI Pipe-intrinsic
Environmental
Operational

Individual
pipes/pipe
lengths of
200 m

Failure rate

–, Unavailable information.
aGLM¼Generalised Linear Model; ZIP¼Zero-Inflated Poisson.
bCI, cast iron; DI, ductile iron; ST, steel; AC, asbestos cement; PVC, polyvinyl chloride; PE, polyethylene; HY, Hyprescon; RC, reinforced concrete.
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time, formally expressed as hi(t) ¼ f(t)=1� F(t) ¼ f(t)=S(t), where f(t) is the probability density of function T and F(t) is a

cumulative distribution function (Rodríguez 2007). The hazard function is represented as either a constant, increasing,
decreasing or bathtub-shaped (Røstum 2000), where a hazard of greater than 1 signifies an increased hazard and a decreased
life expectancy of the pipe. The survival rate and failure of a pipe are illustrated in Figure 2, taking an exponential shape.

The Proportional Hazard (PH) is a standard model introduced by Cox (1972) and focuses directly on the hazard function.
Early pipe failure models using the Cox PH were developed by Andreou et al. (1987a, 1987b), including a semi-parametric
model developed to determine slow and fast failure phases. The proportional hazard and survival function are fundamental
elements that define the Cox PH, which takes the general form: hi(t=X) ¼ h0(t) � exp (b1x1 þ . . .þ bixi), with the assumption

that the baseline hazard h0 varies over time t, equivalent to the total hazard rate when the covariates equal 0 (Kabir et al.
2016; Wilson et al. 2017). The model predicted the probability of failure for individual pipes applied to two water utility net-
works in the USA. The authors reported that the failure rate increased with every subsequent failure up to the third failure,

after that remaining constant. This was one of the first studies understanding the relationship between failures over time. The
authors made other practical observations: smaller-diameter pipes fail more often, pipe pressure has a low correlation with
pipe failures and pipes that fail early in their life-cycle outperform those that fail later. The main limitation with the study was

the use of varying pipe lengths, with some pipes over 1 km, a length where conditions affecting pipe failure can vary greatly. A
further limitation was the use of a single pipe material, which does not represent the whole network, and the lengths of pipe
vary greatly in the study, which can affect the break rate. The main advantage of the Cox PH is that the hazard function

assumes no form. Therefore, it is semi-parametric, which makes evaluating the effect of covariates on the hazard easier.
The authors developed their model specifically for this reason.

When the objective is to predict future failures over a time horizon and of a particular form, a parametric model is con-
sidered more appropriate, such as the Weibull PH (Røstum 2000). The Weibull PH has also been widely used for pipe

failure models (Mailhot et al. 2000; Røstum 2000; Alvisi & Franchini 2010) and is a simpler parametric model that assumes
the natural log of time-to-failure is linearly related to the covariates (Le Gat & Eisenbeis 2000). Le Gat & Eisenbeis (2000)
used a Weibull PH to understand the inter-arrival time of pipe failures, using short maintenance records to forecast failures

for different pipe materials. In this study, the authors used a Monte Carlo simulation to generate random data in the model,
which helped improve the predictions. Applied to two datasets in Charente-Maritime and Lausanne, the model worked well
in the first but failed to predict the second dataset well due to inherent increased pipe degradation, inadequate data, and miss-

ing environmental variables. Mailhot et al. (2000) used a failure order model applied to a 21-year (1976–1996) dataset in
Chicoutimi near Quebec City, with a WDN of approximately 352 km (2,096 pipes). The authors used four combinations
of the Weibull and exponential distributions, comparing different installation periods on the shape of the hazard function,
specifically considering short failure records and left-truncation of the data. The results showed that the installation period

strongly influenced pipe failures and it was concluded that an explicit unrecorded period of data must be included when fail-
ure history is absent. However, the model was limited by considering subsequent failures to follow a single-variable
Figure 2 | Illustrative example of a survival curve (adapted from Le Gat & Eisenbeis (2000)).
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exponential-type distribution. Alvisi & Franchini (2010) applied both models from Le Gat & Eisenbeis (2000) and Mailhot

et al. (2000) to a WDN in Ferrara, Italy, with a failure record of seven years and ∼3,500 failures. Comparing groups of pipes,
the authors found that the models performed similarly in predicting failures, yet the model by Mailhot et al. (2000) was restric-
tive due to only considering the pipe installation period, where large networks have more data availability. Scheidegger et al.
(2013) used a Weibull distribution to model the first failure and all subsequent failures using an exponential distribution to
facilitate smaller datasets by simplifying the approach to accommodate fewer variables.

Debón et al. (2010) compared different models to understand which performed more reliably when predicting the time of
failure. Three models were chosen: a Cox PH model, Weibull accelerated lifetime model and a GLM. The results led the

authors to conclude there was minimal difference between the Cox and Weibull models, but comparing the Cox model to
the GLM, the GLM showed a better fit when comparing the Receiver Operating Curve (ROC) (0.77 and 0.83, respectively),
a measure of accuracy that would later be used in many more studies. Unusually, the authors noted that pipes installed under

sidewalks were less prone to failure. Comparing the different survival analysis models and a Poisson model using a WDN
consisting of 31,662 individual pipes (4,281 km) grouped by similar characteristics, Kimutai et al. (2015) reported a lower
RMSE for the Weibull PH for two out of three materials, suggesting it performed better than the other models on this dataset.

The Weibull model managed to capture the failure phases of metallic pipes more appropriately. Comparing the Weibull to a
machine learning gradient-boosting model, Snider & McBean (2019) found that the machine learning outperformed a Wei-
bull PH model on a WDN with a long failure history (1960–2006). The dataset had a failure period of 55 years, with 47% of

the pipes having at least one failure record, which was reported as advantageous for the models. The machine learning pre-
dicted failures early because it was unable to account for censored data like the Weibull PH model.

4.2.2. Logistic regression

Logistic regression calculates the probability P of failure over the joint probability distribution P(x, y) through the logit func-
tion (Louppe 2014), where a probability of 1 indicates a failure and a probability of 0 no failure, and all probabilities must be
within this [0-1] interval (St. Clair & Sinha 2012). As previously discussed (see section 4.1.3), probabilistic models such as

logistic regression have proved to be more useful when compared with Poisson, linear and exponential models, and returning
the probability of a failure is enough to inform management decisions (Yamijala et al. 2009; Motiee & Ghasemnejad 2019),
yet these studies are limited in their linear assumptions. Further studies used the logistic function in the Generalised Additive

Model (GAM), rarely used or discussed in pipe failure literature, but valuable since it extends the GLM by including a smooth-
ing function fi that can measure arbitrarily non-parametric relationships, such that a simple form might be
yi ¼ b0 þ bixi þ fi(xi) (Barton et al. 2020). The semi-parametric models are advantageous over parametric models since
they are adaptable to the complexity of pipe failure data. Chen et al. (2019) performed a comparison of models at two

levels, the road level and the census level (2.3 km2 grid areas), predicting the probability of failure using data recorded
between 2010 and 2014. The study was one of the first to include a GAM with a logistic regression function and found
that it performed best compared with several other deterministic and machine learning models at the road level, being

able to identify areas of a high probability of failure more accurately. The authors acknowledged the limited accuracy overall
due to a lack of asset-level information, the short prediction interval, the limited network information, and the limited failure
records. Data imbalance was addressed, but the full details were not provided. Variable selection was performed for the

models but found to have a limited effect on the overall accuracy. Compared with historical failure-rate-based ranking
models, the GAM performed better and was preferred since it is easier to develop and computationally efficient when com-
pared with machine learning models.

4.2.3. Bayesian models and expert knowledge

Due to a lack of suitable data, researchers have explored Bayesian models for their ability to incorporate prior beliefs or
expert knowledge by constructing a probability distribution that describes the model uncertainty prior (prior distribution)

to the data from the experiment to provide a formal estimate of failure rate (posterior distribution), such that
Posteriori ¼ Priori � Likelihoodi=

P
i Priori � Likelihoodi (Watson et al. 2004; Kabir et al. 2016); a significant advantage

given the complexity of WDNs and their local geographic nature (Deadman 2010). Watson et al. (2004) were one of the

first to employ a hierarchical Bayesian model to simulate an object-orientated event, assuming the underlying failure rates
for all pipes are drawn from the same prior distribution, called the hyperprior. Adjusting the hyperprior variance determines
the individual failure information, where a small variance implies pipes have similar failure rates and a high variance that
://iwa.silverchair.com/ws/article-pdf/22/4/3784/1101074/ws022043784.pdf
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pipes are different. The model was tested on two pipes over 50 years, updating the model every five years. Compared with a

natural estimation (Poisson distribution), the Bayesian model with gamma prior distribution provided a better failure rate esti-
mate. More recent developments combine survival analysis with the Bayesian model. Kabir et al. (2016) developed a Bayesian
Weibull PH Model (BWPHM) using Bayesian model averaging for parameter estimation. The covariates included length,

diameter, vintage, land use, freezing index, rain deficit, soil resistivity, and corrosivity. When comparing the BWPHM against
a Cox PH and Poisson model for a medium-sized WDN (4,281 km) on individual pipes and data collected between 1956 and
2013, the results were favourable, with a Root Mean Squared Error (RMSE) of 8.65, 11.73, and 13.08 respectively for cast iron
pipes. However, the Bayesian averaging benefits are not clear since the Weibull approach has been shown to outperform the

Poisson and Cox PH models in previous studies (Kimutai et al. 2015). The model showed soil resistivity and soil corrosion to
be the most important variables.

Further developments included the use of Bayesian Networks (BN), capable of capturing conditionally dependent and

independent relationships through a directed acyclic graph structure with edges and parent and child nodes and links repre-
senting the causal dependencies between them, therefore explicitly quantifying uncertainties. A full description of the model
is provided by Tang et al. (2019). This complex approach can explicitly quantify uncertainties, identify complex relationships,

and incorporate engineering knowledge and data. In a study by Francis et al. (2014), a BN was applied to a WDN in the
United States using a short dataset collected between 2010 and 2011. The data included 3,686 failure records, which were
poorly located on the street level. To overcome this, the pipes were grouped at the census level. The results showed sustained

challenges for the model, which the authors suggested were due to the monthly prediction interval and zero-inflation pro-
blem, and the inability of the BN model to discriminate between signal and noise due to limited information in the
distributions. The study was limited by the unavailability of important pipe data, and therefore census, demographic, weather,
and soil variables were used and standardised to deal with scaling issues; however, not many studies have tried to incorporate

such population characteristics. The authors noted that many BN structures assume all random variables to be discrete, and
so variables were discretised, which can have a significant impact on model accuracy, and in this study may have biased the
results because of the zero-inflation problem. The authors also suggested that no single technique is better for obtaining the

joint distribution from expert knowledge. Tang et al. (2019) applied an automated BN based on historical data and a guided
BN utilising historical data, literature, and expert knowledge. The methods were applied to individual pipes collected across
many WDNs across the UK. The authors reported poor accuracy (Area Under Curve (AUC) of 0.786 and 0.702, respectively)

because of poor data quality, which influenced the Bayesian approach despite expert knowledge. Although not reported in
this study, expert knowledge can be problematic with issues arising from different expert knowledge providing different pos-
terior distributions (Kabir et al. 2018). Scholten et al. (2013) suggested that experts cannot be expected to know the
distributional form or the correlation of variables with failure, and so developed a means to elicit expert knowledge into a

form of stated quantiles, using an approach that minimised cognitive bias. The method used several experts to define the
likely probability or frequency of relationships. Using the Bayesian inference and Weibull model to predict service life, the
results showed improved service life estimation under scarce data. The authors compared the Weibull distribution to lognor-

mal and gamma and found the Weibull more effectively approximated the non-parametric curve. However, these
distributions take standard recognisable forms, which is rarely the case, therefore some studies have used the Monte Carlo
Markov Chain (MCMC) technique to solve this problem (Economou et al. 2008; Lin & Yuan 2019).

4.2.4. Non-homogeneous poisson process

The Non-Homogeneous Poisson Process (NHPP) is a probabilistic modelling approach that captures pipe deterioration,

expressed as a failure rate using a monotonic function of time such as the log-linear or log-power relationship. A critical fea-
ture of the model is that it relaxes the Poisson process and can, therefore, allow the failure rate to vary over time, capturing the
deterioration mechanism (Economou et al. 2012). Røstum (2000) applied the NHPP to a WDN of 808 km in Trondheim,
Norway, favouring the NHPP compared with a Weibull PH that overestimated the number of predictions. Economou

et al. (2008) developed an NHPP and a Zero-Inflated NHPP (ZINHPP) using Bayesian parameter estimation and random
effects. The NHPP process was flexible and captured the deterioration of pipes well, yet the ZINHPP model did not outper-
form the NHPP since the data had adequate information on pipe failures. Economou et al. (2012) further updated their initial

study to account for the over-parametrisation. Here the model was applied to a case study of two medium-sized WDNs (532
pipes and 1,349 pipes, respectively) with different observation periods of 11 years (1990–2001) and 41 years (1962–2003). The
authors found that the ZINHPP model performed better than the NHPP when comparing the Deviance Information Criteria
om http://iwa.silverchair.com/ws/article-pdf/22/4/3784/1101074/ws022043784.pdf
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(DIC) for one dataset (New Zealand data DIC 344 and 515, respectively), allocating more probability to no failure. Both

models showed similar results for the second dataset, potentially because there were more failures (only 22% non-failures
compared with the first dataset of 85% non-failures) in the data; therefore, the data was less imbalanced. Neither Røstum
(2000) nor Economou et al. (2012) used environmental variables limiting the study, and the main limitation of the NHPP

is that the influence of previous failures cannot be modelled.
Kleiner & Rajani (2010) applied a ZIP model for a Non-Homogenous Poisson Process (NHPP) to a WDN in western

Canada, comprising 1,091 pipes (length of 146.6 km) with a failure history between the dates 1961 and 2006. The vari-
ables used included material, diameter, installation year, length and soil and weather. The model successfully predicted

the number of failures in each group for the five-year training dataset (R2¼0.61) but failed to accurately predict failures
for individual pipes (R2¼0.43), overestimating the number of failures, which may have arisen due to many pipes having
zero failure, and a few pipes having many failures. The study was performed on only 150 mm diameter unlined cast iron

pipes, which limits the study, and whilst weather variables were used in training, they cannot be used to forecast pipe
failures (Kleiner et al. 2010). Further developments for time-dependent weather variables (temperature, water tempera-
ture and freezing index) were undertaken by Rajani et al. (2012) to understand the influence on pipe failures and the best

time-step for predictive accuracy. Predicting the mean failure rate for three datasets in the USA and Canada, the findings
showed all influenced failure rates, but the temperature was vital since it is usually available. Comparing a prediction
interval of 5, 15, 30, 60 and 90 days, the results showed improved accuracy with more extended periods, ultimately

deciding on 30 days to be the most appropriate. However, the study modelled six large groups of pipes and did not
address individual mains within the group, and the authors noted poorer results with shorter intervals. Kleiner &
Rajani (2012), in a continuation of their research (Kleiner & Rajani 2010), used an NHPP model to predict annual fail-
ures from a long failure history (1961–2006) and a medium WDN of 146.6 km. Comparing four alternative models (an

ordered list heuristic model, naïve Bayes, logistic regression and NHPP) and using important weather variables, the
authors noted that the large dataset introduced noise which led to difficulty in obtaining meaningful results, and weather
variables showed limited influence due to the pipe depth (2.4 m). The authors also noted time lags between the occur-

rence of failures and their discovery, potentially having discernible impacts on short prediction intervals. Amongst the
models, only the NHPP could predict the number of failures. Therefore, the models were compared by their ability to
rank pipes expected to experience the highest number of failures. The results revealed that no model was superior in

ranking pipes overall, but that the NHPP was better at considering the time-dependent covariates and was advantageous
since it could predict the number of failures.
4.2.5. Comments

Probabilistic models are flexible, can handle randomness, capture the complexity of multiple variables, and are capable of
various response types. Probabilistic models are appropriate for modelling individual pipes, providing helpful information

for rehabilitation and replacement. Survival analysis and, in particular, the PH model is insensitive to left-truncated data
and can measure different failure phases of a pipe’s life-cycle and times between failures. In this respect, survival analysis
is unique since it can determine the best time to replace a pipe over a long prediction interval, considering the likely

number of failures and the financial comparison between replacement or repair. Much of the literature has reported that
the Weibull distribution suitably describes time-to-first failure, and the exponential distribution suitably describes subsequent
failures. The main disadvantages of survival analysis include the complexity and difficulty handling short failure-recording

periods, where explicit unrecorded periods of data should be included (Mailhot et al. 2000).
Logistic models offer a simple mathematical framework that water companies can readily use and provide a probability of

failure between 0 and 1 or a classification approach of failure or no failure, helpful for supporting management decisions.
Yamijala et al. (2009) and Motiee & Ghasemnejad (2019) have shown that logistic regression can work with short failure

records, and is favourable compared with the linear, exponential and Poisson approaches when modelling individual
pipes. However, all studies show limitations in data quality and focus on short-term intervals and short failure records,
which may have resulted in the poor performance of other models. The main disadvantage is the assumption that the vari-

ables are related to pipe failures in a linear manner, which fails to describe complex non-parametric relationships. Therefore,
Chen et al. (2019) explored the logistic approach using a GAM, which almost compared in performance to machine learning.
However, other probabilistic models are more likely to outperform logistic regression, such as Bayesian models.
://iwa.silverchair.com/ws/article-pdf/22/4/3784/1101074/ws022043784.pdf
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Bayesian models offer a dynamic approach to modelling failures, uniquely using a graph structure that can describe com-

plex non-parametric relationships, are easy to interpret and can explicitly quantify uncertainty. Bayesian models are
important given they can also include expert knowledge, advantageous given the lack of information in many datasets, but
the joint distribution must be carefully chosen, and there is no preferred technique over others for obtaining this (Francis

et al. 2014). Collecting expert opinions can be onerous (interviews can be used to elicit suitable responses (Scholten et al.
(2013)) and introduces bias, since it is difficult for managers to establish the most important effects on pipe failures when
they are often responsible for small areas of the entire network, instead of having a holistic view (Deadman 2010). Care
must also be taken with insufficient failure data, since estimated parameters will be more sensitive to this prior information

(Dridi et al. 2005). Bayesian models have been combined with survival analysis or non-homogeneous Poisson models as a
means of parameter estimation, which has suggested improved accuracy. Like survival analysis, Bayesian models are compu-
tationally complex, which dissuades their use somewhat. The NHPP model is advantageous since it is flexible and allows

failure rates to vary over time, capturing the deterioration mechanism in water pipes, which is useful when the actual time
of a pipe failure is unavailable. Care must be taken when discretising data since this may cause bias in zero-inflated datasets
(Francis et al. 2014). However, NHPP approaches account for the zero-inflation problem, yet little evidence suggests that

zero-inflated models more accurately represent pipe failures. Table 2 shows a summary of the main probabilistic models
discussed.

4.3. Machine learning

Recent developments in machine learning have greatly expanded the capabilities of statistical models and are now more com-
monly used than traditional models due to their improved predictive accuracy (Giraldo-González & Rodríguez 2020). The
advantages of machine learning include removing unnecessary mathematical processing steps in some instances (decision

trees (Winkler et al. 2018)), variable selection through shrinkage estimators, and tuning of interaction terms through cross-
validation, which offers greater flexibility than simple regression models. For structured data, such as that seen in pipe failure
data, supervised grey-box models are more appropriate (see Figure 3). Supervised models can be tuned for improved model

accuracy and are interpretable through variable importance measures and partial plots (Wols et al. 2019), which is more
appealing than black-box approaches to industry professionals (Barton et al. 2021). There are various studies in the literature
that have applied machine learning and explored its effectiveness. Commonly used models in the literature include Artificial

Neural Networks (ANN), Support Vector Machines (SVM), Evolutionary Polynomial Regression (EPR) and more recently,
tree models.

4.3.1. Clustering

Pipe failures can be modelled based on spatiotemporal relationships, assuming that more failures present within proximity to
one another indicating distress in the network. Spatiotemporal relationships in failures were first noted by Clark et al. (1982)
and Goulter & Kazemi (1988), reporting that consecutive failures were related to the first. These early studies provided essen-

tial insights not seen before. However, the studies did not constrain the relationships along with a pipe network, which
distorted the results. De Oliveira et al. (2011) expanded this further by suggesting that spatiotemporal relationships should
be network-restricted and used Dijkstra’s algorithm (Dijkstra 1959) to ensure that the constraints of the pipe network

have been considered. In the study, the authors used Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) to find areas of the network underperforming by identifying hot spots with high failure rates. The authors con-
clude that poor repairs of failures might be responsible for producing new failures. Chen & Guikema (2020) used locally

weighted DBSCAN and two Poisson-based models to determine the historical cluster of breaks and used the results as an
exploratory variable in pipe failures. The results suggested that DBSCAN results in higher precision clusters and was then
used in different regression models, including GLM, GAM, Random Forest (RF), and Gradient Boosting Trees (GBT),
with each model including and excluding the cluster variable. The results revealed improved AUC scores for all models,

including the cluster variable by 6.2%, 3.1%, 3.3% and 4.6%, respectively. The authors note that it is important to normalise
data (to achieve a common scale of data) when performing cluster analysis and reported that overall accuracy measures do
not always reflect the success of a model. Instead, the success should be based on the ability to prioritise pipes at high risk and

therefore use a rank-based performance measure. Aslani et al. (2021) continued the use of failure clusters by using Getis–Ord
(Getis & Ord 1992) to recognise spatial clusters of pipe failures in the city of Tampa, Florida, for a five-year dataset (2015–
2020). The results of the cluster analysis were used as a variable for various machine learning models. The data were prepared
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Table 2 | Summary of the main probabilistic models discussed

Author Modela Network size
Failure
history

Pipe
materialsb Variables Spatial level Response

Andreou et al.
(1987a, 1987b)

Cox PH – – – Pipe-intrinsic
Operational

Probability of
failure

Le Gat & Eisenbeis
(2000)

Weibull proportional
hazard model

1,243 km
(1,212
pipes)

Nine
years

AC, CI,
PVC, ST

Pipe-intrinsic
Environmental

Individual
pipes

Number of failures

688.7 km
(6,966
pipes)

Since
1926

Pipe-intrinsic
Operational

Mailhot et al. (2000) Weibull exponential
model

352 km
(2,096
pipes)

1976–
1996

– Pipe-intrinsic
Environmental

Pipe groups Failure age
probability

Røstum (2000) NHPP
Weibull PH

7,627 pipes 1988–
1996

CI, DI,
plastic,
others

Pipe-intrinsic
Environmental

Individual
pipes

Number of failures

Watson et al. (2004) NHPP – – – Pipe-intrinsic Expert
Knowledge

Individual
pipes

Time-to-failure

Economou et al.
(2008)

NHPP/ZINHPP
(Bayseian
framework)

1,349 pipes 1969–
2003

CI Pipe-intrinsic Individual
pipes

Failure rate

Yamijala et al. (2009) Logistic regression ,1,600 km
(85,000
pipes)

2000–
2005

AC, CI, DI,
PVC, ST

Pipe-intrinsic
Environmental

Individual
pipes

Probability of
failure

Debón et al. (2010) Cox PH
Weibull
accelerated lifetime
model
GLM

32,387 pipes 2000–
2006

CI, DI, PE Pipe-intrinsic
Environmental
Operational

Individual
pipes

Time-to-failure

Alvisi & Franchini
(2010)

Weibull proportional
hazard model
Weibull
exponential model

2,400 km
(23,000
pipes)

2000–
2006

AC, CI, PE,
PVC, ST

Pipe-intrinsic
Environmental

Pipe groups Time-to-failure
(inter-arrival
time)

Kleiner & Rajani
(2010)

Zero-inflated Non-
homogeneous
Poisson process

146.6 km
(1,091
pipes)

1961–
2006

AC, CI Pipe-intrinsic
Environmental

Pipe groups Probability of
failure

Economou et al.
(2012)

ZINHPP 1,349 pipes
532 pipes

1962–
2003

CI Pipe-intrinsic
Operational

Individual
pipes

Failure rate

Rajani et al. (2012) NHPP 2,200 km
(16,383
pipes)

1972–
2001

CI Environmental Pipe groups Number of failures

Kleiner & Rajani
(2012)

Heuristic model,
Naïve Bayes,
Logistic regression
and NHPP

370 km 1962–
2006

AC, CI, DI Pipe-intrinsic
Environmental

Individual
pipes
(within a
group)

Rank (pipe
expected to
experience the
highest number
of failures)

Scholten et al. (2013) Weibull, lognormal
and gamma models

322 km
(3,643
pipes)

2001–
2010

AC, CI, DI,
PE, ST

Pipe-intrinsic
Environmental
Expert knowledge

Pipe groups Time-to-failure
(inter-arrival
time)

Kimutai et al. (2015) Weibull PH model
Cox PH model
Poisson model

4,281 km
(31,662
pipes)

1956–
2013

CI, DI, PVC Pipe-intrinsic
Environmental

Pipe groups Time-to-failure
(inter-arrival
time)

(Continued.)
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Table 2 | Continued

Author Modela Network size
Failure
history

Pipe
materialsb Variables Spatial level Response

Kabir et al. (2016) Bayesian Weibull PH
Cox PH
Poisson model

4,281 km
(49,531
pipes)

From
1956

CI, DI,
PVC,
other

Pipe-intrinsic
Environmental

Individual
pipes

Time-to-failure
(inter-arrival
time)

Snider & McBean
(2019)

Weibull PH
xgboost

30,000 pipes 1960–
2005

AC, CI, DI,
PVC

Pipe-intrinsic Individual
pipes

Time-to-failure
(inter-arrival
time)

Motiee &
Ghasemnejad (2019)

Logistic GLM 583 km 2004–
2007

AC, CI, DI,
PE

Pipe-intrinsic Individual
pipes

Probability of
failure

Tang et al. (2019) Bayesian network
Guided/learning
Bayesian network

– 1980–
2017

AC, CI, DI,
GRP, PE,
PVC, ST

Pipe-intrinsic
Environmental
Expert
Knowledge

Individual
pipes

Probability of
failure

Francis et al. (2014) Bayesian belief
networks

– 2010–
2011

– Pipe-intrinsic
Environmental
Census

Pipe groups
(census)

Probability of
failure

–, Unavailable information.
aGLM, Generalised Linear Model; NHPP, Non-Homogeneous Poisson Process; PH, Proportional Hazard; ZINHPP, Zero-Inflated Non-Homogeneous Poisson Process.
bAC, asbestos cement; CI, cast iron; DI, ductile iron; GRP, glass reinforced plastic; PE, polyethylene; PVC, polyvinyl chloride, concrete; ST, steel.

Figure 3 | Pictorial representation of white-box, grey-box, and black-box models, showing how the greater the physical knowledge that
exists, the better the interpretability of pipe failures (adapted from Rezania (2008)).
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using multiple imputations for missing values, and categorical data were processed into numeric data using one-hot-encoding.

The accuracy of the models was presented as RMSE and rank-ordered break (similar to Chen & Guikema (2020)) and
suggested poorly fit models, which is likely to be a result of the spatiotemporal extent of the model leading to data imbalance.
However, the authors found the cluster variable to be significant and concluded that a boosted regression tree was the most

reliable model.
K-means clustering assigns data samples into clusters around a centroid, using a function that iteratively minimises the dis-

similarity between data (the Euclidean distance). The process then recalculates and moves the centroid reassigning the data,

repeating the process until an optimal balance is achieved (Kleiner & Rajani 2012) (see Figure 4). K-means clustering is
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Figure 4 | Illustrative example of K-means clustering in a two-dimensional space, depicting three clusters of the n data samples, based on
Euclidean distance to the cluster centroid.
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typically applied during pre-processing failure models to group pipes with precision (Farmani et al. 2017), modelling each
group individually to improve failure prediction accuracy. There is no specific study that suggests K-means clustering outper-
forms other grouping methods. However, Kakoudakis et al. (2017) compared an EPR model with a K-means-clustered EPR
model, using a UK city WDN. The results showed better predictive accuracy in the clustered models when categorising pipe

failure rates; 55% and 85% accuracy, respectively, for low, medium, high, and very high-risk categories. Cluster analysis is a
valuable tool for identifying why failures may occur, yet it cannot predict the future pipe state since there is no response vari-
able; therefore, it is not strictly in itself a failure model.

4.3.2. Artificial neural networks

ANNwas one of the first machine learning models adopted in pipe failure models. It was used to improve the sometimes poor
predictive accuracy seen from traditional models and is often likened to a biological neural network based on how the algor-
ithm processes information (Kalogirou 2004). Considering this, ANNs comprise several process units known as neurons l
arrayed in each layer. Each neuron within a layer is connected to each neuron within the joining layer. The neuron calculates
a weighted sum wij of each input variable from the first layer to the second layer (hidden layer), which is made of activation
units that perform the activation function f, transforming the data into non-linear outputs (such is the hyperbolic symmetric

sigmoid function (Kutyłowska 2015), though many other functions exist). The third layer is a single activation unit that takes
weighted outputs from the second layer and predicts y. An ANN takes the general form yj ¼ f

Pl
i¼1 wijxi þ a

� �
where a is a

threshold (Wei et al. 2018). The process is illustrated in Figure 5.

Some of the early ANN models were combined with fuzzy logic; an algorithm used to handle imprecise information and
approximate reasoning. In this respect, fuzzy logic is a technique that can return a logic gradient of between 0 and 1, and
when combined with ANN, provides a human-style logic with the neural-style learning structure (Kleiner et al. 2004).
Fuzzy logic alone has been used to determine a pipe deterioration procedure (Kleiner et al. 2004) and translate inspection
investigations into pipe condition ratings (Rajani et al. 2006). One of the first ANN models was developed by Christodoulou
et al. (2003), who used an ANN in a hybrid model with fuzzy logic. The model was used with Weibull distributions and
Kaplan–Meier survival curves to explain the time-to-failure on groups of pipes. Twelve variables were used in the model

and applied to a network in New York covering a total length of 365 km. Pattern recognition using fuzzy logic was employed
to rank the risk of failure and finally assembled in a GIS platform for visualisation. The authors suggested that the model
successfully ranked the risk of failure and identified material, diameter, length, and the number of failures as the most influ-

ential variables. Building on this model, Christodoulou & Deligianni (2010) further developed the use of the ANN model
again with fuzzy logic for two small WDNs (365 km in New York, and 795 km in Limassol, Cyprus) of individual pipes
using only five significant variables identified as important from previous studies, including traffic (not typically used in
://iwa.silverchair.com/ws/article-pdf/22/4/3784/1101074/ws022043784.pdf



Figure 5 | Simple Artificial Neural Network architecture illustrating only three network layers (adapted from (Wei et al. 2018)).
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models). The fuzzy logic approach is linked to a management tool that predicts the risk of failure over time, a useful output for
industry. The authors attest to the success of the model, which was rolled out into a pilot scheme in two cities and highlighted

the strength of ANN to facilitate incomplete time-sensitive multi-parameter data suitably. Tabesh et al. (2009) used an Adap-
tive Neuro-Fuzzy Inference System (ANFIS), a method that obtains the if-then rule automatically through the learning
capability of the ANN model instead of through fuzzy rules. The ANFIS was compared with an ANN and applied to a net-
work of 580 km of pipe and five pipe-intrinsic variables. The authors concluded that the ANN model provided more reliable

results since it had a lower magnitude of variation in the results.
Other notable studies include Jafar et al. (2010), who employed different ANNmodels (split by material and a global model

for comparison) to predict failure rates and replacement times of individual pipes on a dataset of 162 km (4,862 pipes) in

northern France between 1991 and 2004. The authors used 11 variables that were standardised (since ANN models can
be sensitive to outliers) to their minimum and maximum values after categorical data were converted into separate variables
using dummy coding, including soil and pressure. A variety of variables were used, with length, age, and the number of pre-

vious failures the most significant. Like other studies, the global model performed well for cement, plastic, metallic and global
models, R2 of 0.589, 0.671, 0.522, 0.671 for the testing data. The main advantage of this research was its use of a benefit index
for optimising investment, identifying 5% of pipes in the global model for replacement, potentially reducing failures by 53%.

Nishiyama & Filion (2014) predicted the total number of failures over a two-year and five-year period applied to a WDN in
Ontario, Canada. Pipe failure records were collected between 1998 and 2011 and included diameter, age, length, and soil-
type variables. The results showed an approximate AUC of 0.78 and overall accuracy of 85%, yet the true positive predicted
only ∼40%. Harvey et al. (2014) only found acceptable results when predicting time-to-failure for asbestos cement, cast iron

and ductile iron, with an adjusted R-value of 0.70, 0.70 and 0.81, respectively, when using data from a medium WDN of
5,850 km over a pipe failure dataset recorded between 1962 and 2005.

Kakoudakis et al. (2018) advanced the use of ANN by using the model to distinguish between a day with and without fail-

ure, a short prediction interval not previously attempted. The model used six clusters of pipes determined using k-means
clustering, cross-validation for tuning and a binary response. The authors observed an AUC measure of 0.184, and the results
help alert water companies to potential failure areas. Sattar et al. (2019) proposed a novel Extreme Learning Machine model

(ELM), an alternative to ANN with a basic structure of a single-layer network, making it computationally fast and having a
high generalisation capacity. The authors predicted time-to-failure using pipe coatings, material, length, and diameter and
applied the model to a network in Scarborough, Greater Toronto, which contains 6,342 water mains over 1,000 km, and
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failure records were collected from 1962. Comparing the model to feed-forward ANN, SVM and non-linear regression, the

ELM had superior predictive accuracy. One significant advantage of this study was the long duration of failure records,
which resulted in 44% of the pipes having had at least one failure.

When comparing ANN with other models, there are, however, mixed results. Asnaashari et al. (2013) predicted the

failure of two models and found ANN (R2 of 0.94) to have a better predictive capability than multiple linear regression
(R2 of 0.75, or 0.63 with cross-validation) when applied to a 5,850 km WDN with a long failure record history (since
1960). Giraldo-González & Rodríguez (2020) compared the probability of failure in four machine learning models and
found that neural networks poorly predicted the minority class (failures). Over-fitting is the main disadvantage of

ANN since the network must be identified a priori (e.g. the number of neurons, activation functions, training epochs,
hidden layers, learning rate and momentum term) (St. Clair & Sinha 2012). In a review of literature, Wilson et al.
(2017) excluded ANN models, suggesting they had high data requirements and were therefore unsuitable for large-diam-

eter pipe models.

4.3.3. Evolutionary polynomial regression

EPR is a data-driven hybrid regression technique that uses mathematical structures based on evolutionary computing devel-
oped by Giustolisi & Savic (2006) and is widely used for pipe failure modelling. EPR is a two-step process: firstly, it looks for
the best model structure using a Multi-Objective Genetic Algorithm (MOGA); secondly, it finds the parameter estimation

using the ordinary least squares method (Berardi et al. 2008). In this respect, EPR builds symbolic models by integrating fea-
tures of genetic programming (Xu et al. 2011), numerical regression, and symbolic regression, establishing parsimony
between the polynomial terms and the variable. The general EPR form is y ¼ Pm

j¼1 F(X, f(X), cj)þ b, where cj is the con-
stant, f is a user-defined function and F an EPR constructed function (Giraldo-González & Rodríguez 2020).

Berardi et al. (2008) used an EPR model to predict pipe failures and to derive performance indicators as a means of repre-
senting the propensity of a pipe to fail. The study assessed individual pipe criticality, defined as the failure likelihood and
the expected damage. Pipes were grouped by diameter and age and only included pipes ,250 mm in diameter, since the

model was only economical for small-diameter pipes. The variables used in the model included age, length, diameter,
and the number of properties. The accuracy measure for EPR was the Coefficient of Determination (CoD). The results
showed that the EPR model overall fitted with a CoD of 0.822, but over-estimated failure rates in pipes with no failure his-

tory because of the limited failure history. The approach was simple and produced understandable relationships between
failures and variables, yet the study did not validate the predictions. The main disadvantage in this study was that the
timing of failures was unknown. Laucelli et al. (2014) used EPR to understand dynamic time-related climate variables.
Using Rajani et al. (2012) as a starting point, the authors extended the range of dynamic temperature variables and applied

EPR on a dataset for Scarborough (Ontario, Canada) focusing on 150 mm diameter CI pipes with a failure period between
1962 and 1985. Overall, the model showed reasonable accuracy (CoD¼0.79); however, when investigating the relationship
between climate data, the authors found good accuracy for failure rates during the winter, but not for the summer, since the

phenomena that result in high failure rates for cast-iron pipes during the winter cannot explain the failures during the
summer. However, the models determined warm and cold seasons by applying a threshold for the number of freezing
days rather than distinct seasons, which may have influenced the results. The sensitivity of the model to these thresholds

was not explored in the study.
Farmani et al. (2017) and Kakoudakis et al. (2017) explored the use of k-means clustering with EPR models, and both

studies identified an improved performance when grouping the pipes and modelling each group with a separate EPR

model. The authors presented the response as failure rates, and the risk of failure was categorised successfully by using Natu-
ral Jenks, an approach rarely used for pipe failure models. This premise was continued in a further study by Kakoudakis et al.
(2018), where the authors used EPR with k-means clustering to partition the training data into different groups for the EPR.
The pipes were divided into six clusters based on diameter and age, showing reasonable results from very low- to very high-

risk categories for long-term predictions (with an accuracy of between 46% and 87%) and good performance for the short-
term probability model (AUC of 0.814). Comparing EPR with other models, Giraldo-González & Rodríguez (2020) found
that Poisson regression outperformed EPR (R2 of 0.927 and 0.885, respectively) when predicting groups of pipes for a

medium-sized WDN. The authors used k-means clustering to create pipe groups and observed its benefits. EPR models
are intuitive and can include expert judgement in the process. The approach has mainly been used for groups of pipes and
not for individual pipe models (Berardi et al. 2008).
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4.3.4. Support vector machines

SVMs are linear models that maximise the width of separation between data classes while minimising the error (Louppe
2014, p. 22). Good separation between the data classes is achieved when a large distance, also known as the margin,

exists on either side of a hyperplane (see Figure 6). A linear hyperplane satisfies wTx� b ¼ 0, and the upper and lower mar-
gins wTxi � b � 1 if yi¼1 and wTxi � b � 1 if yi¼�1 respectively, where w is the weight of the variable space, and b is a bias
term. SVMs can implicitly model non-parametric data using a kernel function (standard kernel functions commonly used
include polynomial, hyperbolic tangent, and radial), mapping the variables into a high-dimensional space, separated by mul-

tiple hyperplanes (Louppe 2014; Robles-Velasco et al. 2020). SVM is useful for handling outliers by allowing
misclassifications, letting some data fall within the margin to obtain better results, but limiting their use in the model via a
slack variable [i applied to the outlier (Giraldo-González & Rodríguez 2020). Put together for a range of input variables,

the basic SVM model is yi(wT :;(xi)� b) � 1� [i for i ¼ 1, . . . , N (Robles-Velasco et al. 2020).
In one of the first pipe failure studies using SVM, Shirzad et al.(2014) used regression to predict the failure rate of pipes on

two WDNs in Iran, Mashhad WDNwith 580 km of pipe and Mahabad WDN with 140 km of pipe. The dataset was limited to

one year, with no further historical data, and only one pipe material used in each WDN, asbestos cement and polyethylene,
respectively. Comparing the results with an ANN, the authors found that the ANN showed better statistical accuracy when
predicting polyethylene pipes (R2 of 0.963 and 0.775 respectively), but similar results when comparing AC pipes (R2 of 0.995
and 0.997 respectively). However, the authors suggested that the ANN did not generalise well since it was not consistent with

the observed data, and the SVM was considered more suitable. Kutyłowska (2019) also used an SVM regression model on a
WDN dataset in Poland, including data collected between 2008 and 2014. The results showed a low relative error of between
4% and 14% for the different pipe materials (cast iron, PVC, and polyethylene) and compared four kernel functions (linear,

polynomial, sigmoidal and radial), finding that failure frequency was predicted well employing a linear kernel for all
materials.

Robles-Velasco et al. (2020) compared a logistic regression and an SVM probabilistic classifier to predict the likelihood of

failure in a medium-sized WDN of 3,800 km of pipes in Spain, recording failures between 2012 and 2018, using sampling
techniques to balance the data, k-fold cross-validation for tuning, and pipe-intrinsic data and pipe pressure, but without
the inclusion of any environmental variables. The study revealed that a global pipe model performed well (better than

many material-specific models) and that the logistic regression showed similar results to the SVM, AUC 0.873 and 0.872,
respectively. The logistic model prevented 34.09% of all failures by replacing 3.16% of the WDN, whilst the SVM prevented
29.52% of failures by replacing 3.84% of the WDN. The study managed data imbalance by under-sampling and removing data
from the majority class, which can be a limitation since some information may have been lost. Giraldo-González & Rodríguez

(2020) also used an SVM probabilistic classifier, comparing it against ANN, Bayes, and Gradient Boosting Trees (GBT) for
asbestos cement and PVC pipes using age, diameter and length for a medium-sized WDN (1,819 km) on data collected
between 2012 and 2018. The results found SVM to perform better on asbestos cement pipes over PVC pipes; AUC 0.991
Figure 6 | A simple one-dimensional illustration of an optimal linear hyperplane maximising the separation between two categories of data,
with a single slack variable within the margin.
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and 0.795, respectively. Both Bayesian models and GBT outperformed the SVM. SVM performs poorly on datasets with noise

and overlapping classes (common in pipe failure datasets) and is perhaps why it compares poorly with other machine learn-
ing models. The authors identified that SVM is useful for handling outliers by allowing misclassifications, letting some data
fall within the margin to obtain better results, but limiting their use in the model (Giraldo-González & Rodríguez 2020) via a

slack variable[i applied to each of these data points (see Figure 6). Since SVM assumes the data is within a standard range, it
is important to standardise the covariates.
4.3.5. Tree models

Decision tree models are simple and can be used for regression and classification, and often as probabilistic classifiers
(Robles-Velasco et al. 2021). Tree-based models have commonly been overlooked because they quickly become complex
and prone to overfitting and high variance (more so than other machine learning models). Ensemble models significantly

improve accuracy (Hastie et al. 2009), but are computationally expensive. With computational advances and quicker proces-
sing speeds, ensemble methods are more common and have shown better accuracy, even compared with several other data-
driven pipe failure models (Chen et al. 2017; Giraldo-González & Rodríguez 2020). Tree ensemble models are simple in their

approach and do not require mathematical pre-processing steps, and for this reason, they are an attractive machine learning
model that is easily accessible (Winkler et al. 2018).

Ensemble approaches are best described in two parts, the decision tree and the ensemble method. A decision tree T par-

titions data into disjoint regions Rj through recursive partitioning along the axis. The regions are split to minimise prediction
errors until the size of the tree reaches the terminal nodes J and stops based on a stopping criterion (the Gini index is com-
monly used); the process is visualised in Figure 7. A decision tree is formally described by Hastie et al. (2009) as
Figure 7 | An example of data partitioning by a classification decision tree: (i) shows the two-dimensional data space; (ii) shows the first
condition for splitting the data by variable x2 at 200, where disjoint region R1 is�200 and disjoint region R2 .200. This creates two additional
nodes for further conditions; (iii) shows the second condition for splitting data by variable x1 at both 30 and 60 to create two more disjoint
regions R3 and R4 (adapted from Soguero-Ruiz et al. (2020)).
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f̂(x) ¼ PJ
j¼1 cRI(x [ Rj), where I is an indicator function, equal to 1 if the condition is true (failure) or 0 otherwise (non-fail-

ure). A simple model like a constant cR is applied to each partitioned region that determines the probability in that region.
The ensemble method fits several trees, improving weak classifiers through bagging or boosting and averaging the results.

Bagging decreases the variance by generating additional data from the training set, producing multiple original datasets. Bag-

ging is illustrated in Figure 8, such that: f̂avg(x) ¼ 1=B
PB

b¼1 f̂b(x), where f̂b(x) are the independent classifiers from Bi

separate training sets run in parallel, and the average of the trees is returned (Winkler et al. 2018).
Boosting is conceptionally like bagging but uses the residuals of the previous tree to improve learning (Hastie et al. 2009).

Taking a regression model as an example, gradient boosting aims to minimise the loss function in the existing collection of

trees by adding, at each step, another tree that best reduces the loss function. The loss function is the residual of the response
minus the fitted probability mean (Elith et al. 2008). The final regression gradient boosting model is depicted in Figure 9 and
can be expressed as (Hastie et al. 2009) f̂M(x) ¼ PM

m¼1 T (x; gm), where f̂M(x) is the average of the tree values, M is the boost-

ing iteration, T is a tree, and x is the multivariate argument characterised by a set of parameters g.
Winkler et al. (2018) studied a variety of ensemble tree methods, applying the model to a medium-sized WDN in Austria of

851 km of individual pipes (39,637 pipes), with a failure record of .30 years. The predictions were made over a long time-

frame (five years and ten years) and compared RF with decision trees, Adaboost and RUSboost. The results found the RUS-
boost boosting method to be marginally better than the RF bagging method (AUC of 0.93 and 0.92, respectively). However, all
models showed excellent results, partly due to dividing the pipes into street sections (having more equal lengths of pipe), deal-

ing with the imbalanced data for all models through sampling methods, and using stratified sampling to represent the
materials in both training and test datasets. Snider & McBean (2018) proposed using xgboost, an extreme gradient boosting
model not previously used in the literature, to predict time-to-failure for a 16,866 ductile iron water mains dataset, recorded
between 1960 and 2017. The xgboost model is faster than other gradient boosting models, increasing its appeal to industry, yet

the model requires extensive pre-processing of data, with categorical data requiring one-hot-encoding. The variables used in
Figure 8 | Depiction of the bagging process, showing the parallel trees returning classifiers averaged for the final model.
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Figure 9 | Depiction of Boosting, like bagging, but using the residuals of the previous tree to improve the learning. The final model is the
average of all trees.
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this study included the year of construction, district, pipe material, length, diameter, soil, lining, and cathodic protection vari-
ables. The xgboost was compared with RF and ANN models using RMSE (test RMSE of 5.81, 5.90 and 7.32 respectively) and

it was found that the xgboost had a 1.2% improvement over the RF model and a 25.9% improvement over the ANNmodel. In
this study, the variable importance heavily leaned towards the previous failure date, whilst soils, district, and cathodic protec-
tion had only limited importance. Overall the authors found xgboost to be a reliable option, following with further research

(Snider & McBean 2019). Chen et al. (2019) compared many models, including GLM, GAM, RF, GBT and Generalised
Linear Mixed Models (GLMM), on pipes divided by a road network. The authors concluded that the GBT model performed
best, returning the lowest Brier score (a more accurate measure for probabilistic predictions). The main limitations here are
the monthly prediction interval and limited access to variables correlated to pipe failure. GBT models are useful, yet they can

be computationally expensive and prone to overfitting if the hyperparameters are not tuned correctly. No calibration curve is
provided. Giraldo-González & Rodríguez (2020) compared SVM, ANN, Bayes and GBT for a medium-sized WDN over a
long prediction-interval (five years). Predicting the probability of individual pipe failures, the authors found the GBT to

have the best performance (AUC 0.998 for AC pipes and 0.990 for PVC pipes), although again, all models showed excellent
results. The limitation here is that the authors present the probability of failure and but did not provide a calibration curve to
show how well the probabilities are observed with the outcomes in the sample test data.

The main limitation in most GBT studies is a lack of information on the model’s performance, particularly the absence of a
calibration plot or the Brier score to show the accuracy of the probabilities, which is helpful for models that are probabilistic
classifiers. Further issues include the difficulty tuning hyperparameters and the risk of overfitting due to the additive process
and the regularisation criteria used to control complexity (Wei et al. 2018).

4.3.6. Comments

Adopting machine learning for pipe failure modelling appears an obvious choice since these approaches are capable of mod-
elling complex relationships between variables and complement the increased data collection over the past decade. Machine
learning has been shown to improve predictive accuracy compared with deterministic and probabilistic approaches (Konstan-

tinou & Stoianov 2020), although some studies show similar accuracy (Chen et al. 2019; Robles-Velasco et al. 2020), and when
methodologies include large groups of pipes, deterministic models show comparable accuracy, as shown by Giraldo-González
& Rodríguez (2020). Machine learning models can be used for regression, classification, or as probabilistic classifiers.
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Supervised machine learning models are preferred since they perform well on structured data and are interpretable through

variable importance and partial dependency plots, amongst other widely used accuracy metrics. The predictive capability of
machine learning models works best with larger datasets. However, there is a greater need for advanced pre-processing
methods, such as data transformation, data infusion, encoding categorical data through one-hot-encoding or dummy

coding and standardisation (e.g. maximum, and minimum values), which are essential since the models are often sensitive
to outliers. Pre-processing methods can be extensive and can consume some 60%–80% of the effort (Kahn 2021). Cross-vali-
dation and hyperparameter tuning are essential for reducing overfitting and bias. Machine learning is a complex
mathematical framework that could deter its use within industry.

Clustering is a straightforward process and is used to identify spatial relationships between failures. These relationships
were used successfully by de Oliveira et al. (2011) to target areas for investigation. However, this approach is backwards-look-
ing and cannot predict future failures. Nevertheless, spatial relationships are essential, and Chen & Guikema (2020) used the

information as a variable in a dataset, suggesting beneficial results.
ANN is widely used for its flexibility. Firstly, the algorithm automatically adjusts the connection weights to reflect non-lin-

earities in the data, and secondly, the ANN can be developed using multiple training algorithms. This flexibility continues

through extensions of alternative algorithms to help improve results, such as the fuzzy logic used by Christodoulou & Deli-
gianni (2010) and the neuro-fuzzy inference system used by Tabesh et al. (2009). The ANN framework can generalise well but
is also prone to overfitting if not tuned correctly. Some studies have reported poor generalisation (Shirzad et al. 2014), but this
may be the result of the limited data typically seen in pipe failure datasets, especially considering ANN ordinarily performs
better on high-dimensional unstructured data. The complexity of the model structure is problematic for two reasons: the opti-
mum structure of an ANN is identified a priori (i.e. inputs, hidden layers and data transformation within the activation units),
such that a time-consuming trial-and-error approach is typically required, and knowledge of the weight terms or bias is gen-

erally unknown, which limits interpretability (Xu et al. 2011).
EPR models provide transparent and well-structured relationships from a simple, easy-to-use formula that water companies

can apply. Unlike other machine learning models, EPR has few parameters to tune, can include expert knowledge and is

reasonably fast. However, EPR, like other machine learning models, is computationally expensive and prone to overfitting,
resulting in poor accuracy and overestimating failures in pipes with no recorded failures (Berardi et al. 2008). Another major
disadvantage is that only a single output can be achieved since the model is regression, and therefore works best on groups of

pipes to return the failure rates (Giraldo-González & Rodríguez 2020).
SVM is a flexible model that can be a regression or a probabilistic classifier and improves linear models by modelling

linear relationships with a single hyperplane. Non-linear relationships can be implicitly modelled using a kernel function,
which can be difficult. This is advantageous since the approach is efficient with high-dimensional data. The algorithm fails

to cope with noisy data where the clear separation between classifications is not easily defined; poor quality has been
observed in pipe failure data (Debón et al. 2010; Kabir et al. 2016; Tang et al. 2019). Considering this, SVM is often out-
performed by different machine learning models (Giraldo-González & Rodríguez 2020) and also simplistic mathematical

frameworks like the logistic regression model (Robles-Velasco et al. 2020), which is perhaps why the model is not often
used.

Ensemble tree methods consistently outperform other machine learning models, as found in several comparison studies

(Chen et al. 2019; Giraldo-González & Rodríguez 2020). Bagging and boosting are two approaches commonly used in the
literature, and a comparison of different methods by Winkler et al. (2018) has shown that gradient boosting is statistically
more accurate. All the methods in this study showed good results predicting the probability of failure, although accuracy

measures, such as calibration plots or Brier scores, were not presented. The methodology for many ensemble studies has
included stratification when dividing testing and training datasets and predicting over long periods, typically five years,
adding to the improved accuracy (Winkler et al. 2018; Giraldo-González & Rodríguez 2020). Another advantage of ensemble
methods is that data normalisation is not required, making the pre-processing slightly easier. Table 3 shows a summary of the

main machine learning models discussed.
5. SUMMARY AND STATISTICAL MODEL DECISION AID

This review has focussed on providing an overview of the standard methods and models used to predict pipe failures. The
evolution of pipe failure models is clear, from simplistic single-variate regression models at a network scale to the use of
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Table 3 | Summary of the main machine learning pipe failure models

Author Modela Network size
Failure
history

Pipe
materialsb Variables Spatial level Response

Christodoulou
et al. (2003)

ANN
Fuzzy logic

365 km 1982–
2002

AC, CI, DI Pipe-intrinsic
Environmental

Pipe groups Number of
failures
(inter-arrival
time)

Berardi et al.
(2008)

EPR 172 km
(3,669
pipes)

1986–
1999

– Pipe-intrinsic
Environmental

Pipe groups Failure rate

Tabesh et al.
(2009)

ANN
ANFIS

580 km – AC, CI Pipe-intrinsic
Operational

– Failure rate

Christodoulou &
Deligianni
(2010)

ANN
Fuzzy logic

365 km
795 km

10
years

CI, Plastic,
ST

Pipe-intrinsic Individual
pipes

Risk of failure

Jafar et al. (2010) ANN 162 km
(4,862
pipes)

1991–
2004

Cement, CI,
DI, Plastic

Pipe-intrinsic
Environmental
Operational

Individual
pipes

Number of
failures

Nishiyama &
Filion (2013)

ANN 670 km 1998–
2011

CI Pipe-intrinsic
Environmental

Pipe groups Number of
failures

Asnaashari et al.
(2013)

ANN 784 km 1959–
2004

CI,
Concrete,
DI, AC,
PVC

Pipe-intrinsic
Environmental

Pipe groups Failure rate

Harvey et al.
(2014)

ANN 1,021 km
(6,346
pipes)

1962–
2005

AC, CI, DI,
PVC

Pipe-intrinsic
Environmental

Individual
pipes

Time-to-failure
(inter-arrival
time)

Laucelli et al.
(2014)

EPR 679 km
(6,879
pipes)

1962–
2003

CI Pipe-intrinsic
Environmental

Pipe groups Failure rate

Shirzad et al.
(2014)

ANN
SVR

580 km
140 km

1 year AC, PE Pipe-intrinsic
Operational

Pipe groups Failure rate

Farmani et al.
(2017)

EPR 300.63 km
(7,987
pipes)

– CI Pipe-intrinsic
Environmental

Pipe groups Number of
failures

Kakoudakis et al.
(2017)

EPR – – AC, CI, DI,
PE, PVC

Pipe-intrinsic
Environmental

Pipe groups Failure rate

Kakoudakis et al.
(2018)

ANN
EPR

647 km
(18,872
pipes)

2003–
2013

CI Pipe-intrinsic
Environmental

Pipe groups Failure rate

Winkler et al.
(2018)

Adaboost
RUSboost
RF
GBT

851 km
(39,637)

.30
years

CI, DI, PE,
ST

Pipe-intrinsic
Operational

Individual
pipes

Probability of
failure

Snider & McBean
(2018)

GBT (xgboost)
RF
ANN

3,042 km 1960–
2017

Cement, CI,
DI, PVC

Pipe-intrinsic
Environmental
Operational

Individual
pipes

Time-to-failure

Sattar et al. (2019) Extreme Learning
Machine (ELM)
ANN
SVM
Non-linear
regression

.1,000 km
(6,342
pipes)

From
1962

AC, CI, DI Pipe-intrinsic
Environmental

Individual
pipes

Time-to-failure

(Continued.)
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Table 3 | Continued

Author Modela Network size
Failure
history

Pipe
materialsb Variables Spatial level Response

Kutyłowska (2019) SVM 17 km
14 km

2008–
2014

CI, PE, PVC Pipe-intrinsic
Operational

Individual
pipes

Failure rate

Chen et al. (2019) GAM
RF
DT
GBT
GLMM

– 2010–
2014

– Environmental
Census

Individual
pipes (road
segment)
Pipe group
(census
track)

Probability of
failure

Giraldo-González
& Rodríguez
(2020)

Linear, Poisson,
and EPR

652 km
(20,793
pipes)

2015–
2017

AC, CI, DI,
PE, PVC

Pipe-intrinsic
Environmental
Operational

Pipe groups Failure rates

GBT, Bayes, SVM,
ANN

Individual
pipes

Probability of
failure

Robles-Velasco
et al. (2020)

SVM
Linear

3,800 km 2012–
2018

Cements,
metal,
plastics

Pipe-intrinsic
Operational

Individual
pipes

Probability of
failure

Chen & Guikema
(2020)

GLM
GAM
RF
GBT

680 km
(12,092
pipes)

2008–
2017

CI, other Census
Pipe-intrinsic
Environmental
Operational

Individual
pipes

Number of
failures

Aslani et al.
(2021)

RF
GBT
Multivariate
adaptive
regression
splines
ANN

76,000 pipes 2015–
2020

CI, DI, PE,
PVC

Pipe-intrinsic
Environmental
Operational

Individual
pipes

Failure rate

–, Unavailable information.
aANN, Artificial Neural Network; DT, Decision Tree; EPR, Evolutionary Polynomial Regression; GAM, Generalised Additive Model; GBT, Gradient Boosting Tree; GLM, Generalised Linear

Model; GLMM, Generalised Linear Mixed Effect Model; RF, Random Forest; SVM, Support Vector Machine.
bAC, asbestos cement; CI, cast iron; DI, ductile iron; HY, hyprescon; PE, polyethylene; PVC, polyvinyl chloride; ST, steel.
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more complex machine learning, able to accommodate large multivariate datasets and finer individual pipe-scale methods.
Each category of statistical model has advantages and disadvantages, detailed in Table 4.

Static variables are fundamental to pipe failure models, and throughout the literature, pipe-intrinsic factors such as pipe

material, pipe age, pipe length, and the number of failures are consistently among the most significant. The temporal scale
of predicting pipe failures has moved towards predicting shorter time scales, motivated by the need to assist operational
management. Shifting towards predicting failures over shorter time intervals can use time-dynamic variables that capture
the effects of seasonal or annual variations (and potentially future climatic variations). However, modelling time-depen-

dent dynamic variables is more complex, especially for models that attempt to predict response for individual pipes,
because pipe failures are rare and result in imbalanced data. In this scenario, the assumptions of the Poisson distribution
are not met; therefore, predicting the number of failures or failure rate has resulted in poor accuracy. Predicting the prob-

ability of failure or the time-to-failure is reported as more useful for individual pipes and often provides enough
information for decision-makers. Zero-inflated models may be used, but these have not necessarily proved to be more
accurate. Alternatively, models should group pipes for greater accuracy if short prediction intervals are necessary. The

Poisson distribution can return the number of failures or failure rate if the data is such that enough failures are captured
by pipe group for statistical significance. However, in such instances, pipes that regularly fail may also be included in a
group with pipes that never fail, distorting the true failure rate for many pipes. Therefore, grouping must be considered
carefully, with some authors choosing census-level groups to provide more accurate predictions. Concisely, time-depen-

dent dynamic variables can be included in pipe failure models, though the statistical analysis may prove to be more
challenging.
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Table 4 | Advantages and disadvantages of deterministic, probabilistic and machine learning methods

Category Advantages Disadvantages

Deterministic • Simplistic mathematical frameworks.
• Easy to implement within industry.
• Easy to develop and quick to run.
• Interpretable results.
• Easy to develop and interpret.
• Computationally efficient.

• It cannot account for randomness.
• Does not easily handle large complex datasets.
• Cannot be used to return the probability of failure.
• Not accurate for individual pipe models.
• Not flexible (cannot be tuned)

Probabilistic • Survival analysis can predict different outcomes and
cope with left-truncated data.
• Can account for randomness.
• The probability of failure is more accurate for
individual pipe models.
• Bayes models can incorporate expert knowledge.

• Some models have complex mathematical frameworks.
• Not easy for water companies to implement as it would
require expert, specialised knowledge.
• Survival analysis requires extensive failure records.
• The probability of failure is not always required.

Machine
Learning

• Can describe complex relationships for large datasets.
• Generally, it improves accuracy for individual pipe
models.
• Can be used to return failure rate, time-to-failure and
as probabilistic classifiers.
• Is flexible and can be tuned using hyperparameters.

• Requires complex mathematical frameworks.
• Not easy for water companies to implement. It would require
expert knowledge.
• Computationally expensive to run and during pre-processing.
• Prone to overfitting.
• Results are harder to interpret.
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The most statistically accurate temporal scale for model accuracy on individual pipes remains long-term prediction inter-

vals, annual or greater, and in many recent machine learning efforts, individual pipes are predicted over five or more years
(Nishiyama & Filion 2013; Harvey et al. 2014; Snider & McBean 2019; Robles-Velasco et al. 2020). Long-term prediction
intervals show favourable accuracy where enough failures accumulate for statistical significance but at a loss of inter-

annual information. Survival analysis lends itself well to long-term planning because there are options to predict inter-
arrival times of failures. Advances in survival analysis have shown valuable results based on the Weibull distribution
used for time-to-first failure and the exponential distribution for subsequent failures. Typically, a long pipe failure dataset

is required. Alternatively, Bayesian models return the probability of failure and accommodate explicit expert domain
knowledge using prior distributions. The graphical nature of Bayesian models provides a useful means of viewing the inter-
actions between failures and the variables. If the objective is to analyse the results, then Bayesian networks are appropriate
due to their interpretability. Yet, a lack of failure data means the influence of prior information is greater, resulting in bias

introduced from opinions.
Machine learning models are not strictly probabilistic but can be termed probabilistic classifiers and have also proved to be

useful when predicting the probability of failure for individual pipes over long periods (Winkler et al. 2018). Supervised
models are the obvious choice for the structured nature of pipe failure datasets, and comparing machine learning models,
the gradient boosting model has shown great promise in terms of accuracy (Giraldo-González & Rodríguez 2020), yet
SVM and ANN have also shown useful results (Robles-Velasco et al. 2020). There is a level of complexity in machine learning

that can deter its use in industry, and therefore very few models have transferred into industry working models. The complex-
ity is associated with pre-processing, often, extensive datasets since the models are more sensitive to outliers; one-hot-
encoding or dummy coding and standardisation (e.g., maximum and minimum values) are two examples. Tuning hyperpara-

meters using cross-validation can be difficult but is essential to avoid overfitting. However, machine learning models are still
subject to the same difficulties when considering the spatiotemporal scale and the limited number of failures observed in pipe
failure datasets. Classification models predicting probability can use various sampling techniques (e.g., under- or oversam-
pling) to balance the data, yet there are limitations to these techniques, and the results are not always favourable, nor do

they necessarily improve the model accuracy (Fan et al. 2022).
Choosing the correct model is a complex process and can directly impact the usefulness of the response for decision-makers.

No single model is superior, and so the choice of model should be one that carefully considers four key factors: (1) the type of

variables available, (2) the time interval for management interventions, (3) the spatial level of the model (e.g., pipes or grouped
pipes), and (4) the response type and level of inference required. Practitioners may find it useful to understand the most appro-
priate model; thus, Figure 10 shows a flow diagram devised to map these general assumptions, leading to a model selection that
://iwa.silverchair.com/ws/article-pdf/22/4/3784/1101074/ws022043784.pdf



Figure 10 | Prediction model decision aid to determine the most useful approach in different decision-making contexts, considering four
important key factors: (1) the type of variables available, (2) the time interval for management interventions, (3) the spatial level of the model,
and (4) the response type and level of inference required.
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is likely to be themost useful in different decision-making contexts. Themodel shows five steps, with the first four steps working

through the key factors and the final step suggesting potentially suitable statistical models.
6. CONCLUSIONS

From the literature, several general conclusions are deduced:

• There is much discussion on the benefits of more complex models, such as Bayesian and machine learning; however, these

models are still subject to poor and limited data. Considering this, simple models are often useful and more intuitive.

• Early failure models separated pipe materials for more accurate results due to their unique behaviour within environments.
Yet, recent literature has shown improved results for global models, where failure can be accumulated to avoid non-conver-

gence due to too few failures. Using stratified sampling, the global model ensures representative materials are found in both
the training and test datasets. This benefits from developing a single model instead of multiple models for various materials,
saving time and providing a denser dataset for modelling.

• Data quality is generally poor, yet only a handful of studies explicitly identify data quality as a limiting issue. Furthermore,
many studies do not include clarified assumptions or study limitations; for example, the approach to pre-processing the
bursts data is often unknown, and yet there can be several issues in locating pipe failures accurately along with a network.
These issues should be detailed to provide a better understanding of the limitations.

• It has been acknowledged that failure records collected by water companies are typically short (Yamijala et al. 2009; Chen
et al. 2019). From the studies used here (noting this is not an exhaustive list and that not all literature had pipe failure record
length), some records are as short as three years; however, approximately 60% had failure records greater than ten years,

and 35% greater than 30 years. The studies with longer failure records report more useful results; however, it is unclear if
the length of failure records or the length of the prediction interval improves the results; perhaps a combination of both.

• Water utilities should endeavour to collect regular and consistent data in such a manner to facilitate long-term studies and

modelling efforts.

• Some studies do not demonstrate how the reported model can be transferred into a practical tool and utilised by water com-
panies. Furthermore, most of the models were not implemented in ways whereby the outcomes could be easily integrated

into a GIS framework for visualisation and further spatial analysis.

• Other than clustering algorithms that are not strictly failure models, there is a limited scope to address the spatiotemporal
relationship between pipe failures. More research could be usefully conducted in this area, especially incorporating the use
of cluster analysis.

• Limited studies have been undertaken on large networks, and many studies focus efforts in urban areas, typically cities.
More studies could be completed using rural areas or a combination of both.

• Few studies use a comprehensive list of pipe-intrinsic, environmental, and operational covariates, which shows a lack of

available data rather than shortfalls in the studies themselves.

• Few studies include data from decommissioned pipes, which would increase the dataset and number of failures to train the
models.

The following is a list of recommendations related to improving the practice of pipe failure modelling for future
methodologies:

• Data is essential to modelling failures correctly. At a minimum, pipe-intrinsic data should be collected. Further research on
census data, environmental and socio-economic factors, could provide interesting insight.

• Data collection and management protocols are needed to improve data quality and quantity.

• Additional research is required on effective data collection and information extraction from existing data.

• Data collection and temporal and spatial scales should be tied to the model that is used. Further research is needed to estab-
lish appropriate pipe groupings that improve accuracy whilst describing the influences of more localised conditions.
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