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ABSTRACT

Water resource management is a complex engineering problem, due to the stochastic nature of inflow, various demands and environmental

flow downstream. With the increase in water consumption for domestic use and irrigation, it becomes more challenging. Many more diffi-

culties, such as non-convex, nonlinear, multi-objective, and discontinuous functions, exist in real life. From the past two decades, heuristic

and metaheuristic optimization techniques have played a significant role in managing and providing better performance solutions. The popu-

larity of heuristic and metaheuristic optimization techniques has increased among researchers due to their numerous benefits and

possibilities. Researchers are attempting to develop more accurate and efficient models by incorporating novel methods and hybridizing

existing ones. This paper’s main contribution is to show the state-of-the-art of heuristic and metaheuristic optimization techniques in

water resource management. The research provides a comprehensive overview of the various techniques within the context of a thorough

evaluation and discussion. As a result, for water resource management problems, this study introduces the most promising evolutionary and

swarm intelligence techniques. Hybridization, modifications, and algorithm variants are reported to be the most successful for improving

optimization techniques. This survey can be used to aid hydrologists and scientists in deciding the proper optimization techniques.
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HIGHLIGHTS

• This paper reviews the different evolutionary algorithms and their applications.

• This paper reviews the different swarm intelligence algorithms and their applications.

• It identifies the importance and demerits of different heuristic and meta-heuristic algorithms.

• It highlights some of the observations on the challenges and needs.

• It highlights the state-of-the-art of water resources management and planning.
INTRODUCTION

Scarcity of water sources and increasing demand as a result of population increase and effects of climate change have always
been difficult and critical problems for many river planners and managers (Lun et al. 2021). In the last few decades, many
projects have been implemented. However, it is difficult to construct more and more water resource projects owing to the

high investments involved and the land acquisition problems (Kumar & Yadav 2019). In this regard, planning, design, devel-
opment and operational activities of projects need a solution based on qualitative procedures (Mohammed et al. 2017).
Optimization and effectively managing the existing projects is an alternative solution to overcome these problems. Optimiz-

ation techniques have been applied in the planning, operation and management of water resources for decades (Kumar &
Yadav 2020b).

Conventional optimization techniques include linear (LP), non-linear (NLP) and dynamic (DP) programming. Kantorovich

(1960) introduced LP in 1939; the technique was developed during World War II to plan and reduce army expenses. It is one
of the most popular and simplest optimization techniques. Later, it was implemented in other fields, including water
resources. Despite the advantages, it has certain limitations too (Azizipour et al. 2016). It can be applied only when the
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objective functions, equations and constraints are linear. The technique is unable to deal with the uncertainty problem

(Hossain & El-shafie 2013). NLP was developed to overcome the shortcomings of LP, and it is capable of solving non-linear
problems. NLP has been successfully applied in hydropower, reservoir operation and other water resource contexts. How-
ever, the technique fails when the dimensionality of the problem increases; it gets stuck in the local optimal solution and

is unable to achieve a global solution (Hossain & El-shafie 2013). DP was developed to solve stochastic and non-linear pro-
blems. The problem arises when multiple state variables are present. DP also has a few limitations, especially when the scale
of the problem increases (Ahmadianfar et al. 2017). It requires more memory and suffers from an exponential increase in
computational time. DP is also known as the curse of dimensionality (Kumar & Yadav 2020a). Therefore, these conventional

optimization techniques do not guarantee global optimum performance and have led to the quest for new methods.
Heuristic and metaheuristic optimization techniques were developed in the late ‘70 s to overcome the drawbacks of LP,

NLP and DP (Rao & Keesari 2018). A heuristic is a technique aimed to solve a problem faster when traditional techniques

are too slow. A metaheuristic is a higher-level technique or heuristic that seeks, generates, or selects a heuristic that may pro-
vide a sufficiently good solution to an optimization problem (Attea et al. 2021). These newer techniques were developed to
address problems such as nonlinearity, multi-objective, uncertainty and so on (Fayaed et al. 2013). Broadly, they are classified

into population-based algorithms and neighbourhood-based algorithms. Population-based algorithms are evolutionary com-
putation and swarm intelligence (Rao & Pawar 2020). These techniques are flexible and are capable of providing a global
solution with more ease. The results depend on the initial population, which is randomly generated to obtain the global sol-

ution based on probabilistic theory. Evolutionary computations include genetic algorithm (GA), differential evolution (DE),
genetic programming (GP), evolutionary programming (EP), and evolutionary strategies (ES) (Du & Swamy 2016). Swarm
intelligence-based algorithms include ant colony optimization (ACO), harmony search (HS), particle swarm optimization
(PSO), cuckoo search (CS), artificial bee colony (ABC), firefly algorithm (FA), bat algorithm (BA), honey bee mating optim-

ization (HBMO), and shuffled frog leaping algorithm (SFLA). Neighbourhood-based algorithms include simulated annealing
(SA) and tabu search (TS) (Kumar & Yadav 2021). Figure 1 shows the flow chart of different algorithms.

Several heuristics and metaheuristic techniques have been applied to solve water resource problems successfully. For

example, various algorithms have been used to solve reservoir operation problems such as GA (Khadr & Schlenkhoff
2021), PSO (Chen et al. 2020; Bozorg-Haddad et al. 2021), ABC (Moeini & Soghrati 2020), DE (Ahmadianfar et al.
2021), shark algorithm (SA) (Mohammed et al. 2017), and CS (Ming et al. 2015). To solve optimal cropping and water allo-

cation problems GA (Dutta et al. 2016), nondominated sorting genetic algorithm (NSGA-II) (Lalehzari et al. 2016), DE
(Adeyemo & Otieno 2010), and PSO (Davijani et al. 2016) have been used. For water distribution network problems, for
instance, PSO (Torkomany et al. 2021) DE (Pant & Snasel 2021), ABC (Li & Feng 2020), ACO (Mehzad et al. 2020). Reser-
voir flood control operation and management problems, for example, evolutionary algorithm (Qi et al. 2017), DE (Jia et al.
2016), PSO (Jahandideh-Tehrani et al. 2020), immune algorithm (Luo et al. 2015) and NSGA-II (Lei et al. 2018). Ground-
water system management can be implemented by GA (Fowe et al. 2015), surface water and groundwater using FA
(Kazemzadeh-Parsi et al. 2015a), GA (Ayvaz & Elçi 2018), agricultural land allocation using ACO (Mi et al. 2015), evapo-
transpiration modelling using FA (Tao et al. 2018).

Most of the algorithms have their advantages and limitations. For example, GA is one of the oldest EAs that has been suc-
cessfully applied in the water resources field. It can provide multiple solutions to a problem. However, it requires a proper

tuning of algorithm-specific parameters such as mutation, crossover and reproduction. Besides, the computational time is
high when it comes to simulation-optimization based links and it is time-consuming to fully understand the art (Zheng
et al. 2017). GP is a simple, robust, flexible, and effective algorithm, which requires less computational time and provides

accurate results. However, it necessitates internal parameters such as crossover and mutation probability (Rao & Pawar
2020). DE can handle non-differentiable, non-linear and multimodal functions. Nonetheless, careful selection of algor-
ithm-specific parameters is needed – for instance, the scaling factor and crossover rate. When the system dimensions are
increased, DE convergence ability and flexibility are affected. It could be observed that it may easily drop to the local optimal

solution (Rao et al. 2011). ACO is robust enough to solve non-uniform, complex and non-linear problems, and it is capable of
achieving quick convergence. Nevertheless, its computation gets affected when the problem is of the explicit or implicit sto-
chastic type. Further, it needs tuning parameters such as relative pheromone trail, heuristic information, and evaporation

(Chen et al. 2017b). PSO is simple to code, provides fast convergence, and involves low computational cost. But, tuning
of parameters such as inertia weight, social, and cognitive parameters is required. If the parameters are set correctly, the algor-
ithm can achieve a global solution (Rezaei et al. 2017). ABC is flexible, simple, robust, easy to implement and capable of
://iwa.silverchair.com/ws/article-pdf/22/4/3702/1040716/ws022043702.pdf



Figure 1 | Flow chart of different algorithms.
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performing a global search. However, it is quite slow in sequential processing and requires tuning parameters such as scout,
onlooker and employed bees (Li & Feng 2020).

While HS has fewer mathematical necessities and does not need the initial value to set the decision variables, it requires
many parameters, such as memory size and pitch adjustment. Moreover, the rate of choosing the memory and neighbouring
values is important (Jung et al. 2018). FA is useful in finding both global and local solutions synchronically and effectively. FA

is useful for parallel implementation as different fireflies can work independently. However, the tuning of randomization par-
ameter, attractiveness and absorption coefficient is needed (Wang et al. 2018). CS uses Levy flights, a process that helps the
search space to explore more effectively. CS provides an efficient and global convergence solution. Furthermore, it requires
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lesser tuning parameters, such as probability factor, and the results are not very sensitive to these parameters (Sheikholeslami

et al. 2015). BA is flexible, simple, and easy to implement. It yields the best solution in less time, has fast convergence at the
early state, and later the convergence rate decreases. The convergence is affected if the proper tuning of parameters such as
wavelength and emission coefficient is not done (Gandomi et al. 2013). SFL is faster in searching the space. However, too

many internal parameters need to be set, including the number of memeplexes, frogs in each memeplex and submemeplex,
and the step size (Mora-Melia et al. 2016). The advantage of the HBMO algorithm is its robust, adaptive, simple, and scalable
nature. The limitations include the necessity for tuning mating flights, size of the hive, number of accepted solutions and trial
solutions, and constant parameters such as queen’s energy and initial speed (Niknam et al. 2011). The tuning parameters are

called algorithm-specific parameters, which need to be entered before running the algorithm. Their improper tuning affects
the overall performance of the algorithm and may result in a local optimum solution. With practice, one can understand the
way to tune these parameters to obtain a global optimum solution.

The main aim is to show the state-of-the-art of heuristic and metaheuristic optimization techniques in water resource man-
agement. The research provides a comprehensive overview of various evolutionary and swarm intelligence techniques such as
GA, DE, GP, ACO, POS, ABC, HS, FA, CS, BA, and SFLA in water resource management. This survey can be used to aid

hydrologists and scientists in deciding the proper optimization techniques.
EVOLUTIONARY ALGORITHM

The most powerful metaheuristics technique for optimization is the evolutionary algorithm (EA), which is a nature-inspired
technique used for stochastic global optimization. The algorithm refers to a major approach in the field of optimization to
build adaptive systems (Whitley et al. 1996). The technique is quite simple; yet, it can reach the near-optimum or global opti-

mum (maximum or minimum) solution. EA is especially useful when a conventional calculus-based method is not able to
solve or is difficult to implement. EA can be applied to complex problems in multi-reservoir, multi-objective, non-continuous,
and non-differentiable contexts. The most popular EA is a genetic algorithm (GA). The steps involved in EA are population

generation, fitness selection and choice of the basic operators, namely crossover, mutation and selection. A few of the best
EAs are given as follows.

Genetic algorithm (GA)

GA is an EA based on the mechanism of genetics and is derived from the natural evolution and selection process. It is a meta-

heuristic technique developed by Holland (1975). GA is used in optimization and search problems. The algorithm comprises
four basic units, namely gene, bit, chromosome and gene pool. First, the initial population is selected for participation in the
reproduction process. The second one is the crossover, in which the two strings exchange building blocks to create new ones.
The next one is a mutation, where the new strings to the population are added and the best fitness selection is done. The

strings are repeated until an optimal solution is obtained. Figure 2 shows the pseudo-code of the genetic algorithm. The details
of GA can be found in Savic & Walters (1997).
Figure 2 | Pseudo-code of genetic algorithm.
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GA was utilized in water resources in the early 1990s. Goldberg & Kuo (1987) employed GA to obtain an optimal pipe-

line system. Dandy et al. (1996) proposed an improved version of GA by using variable power scaling as the fitness
function and creeping mutation for obtaining an optimal pipe network. Sharif & Wardlaw (2000) made use of the tech-
nique for multi-reservoir system operation. The results obtained by GA were quite close to the optimum solution. Deb

et al. (2002) proposed a multi-objective (MO) EA called Non-dominated Sorting Genetic Algorithm II (NSGA II); it
was tested with difficult test problems and the results were superior. Reddy & Kumar (2006) used a multi-objective genetic
algorithm (MOGA) to operate the optimum Bhadra reservoir system and presented the efficiency and utility of the MOGAs
in the development of multi-objective operating strategies in reservoirs. Kim et al. (2008) used NSGA II to operate the

operating rules of a single reservoir. Results indicate that different inflow series would be handled by the developed oper-
ating rule. Nicklow et al. (2010) provided a state-of-the-art for GA in water resources planning and management. The paper
covered pertinent work related to water distribution, fresh-water, sewer, hydrologic, and groundwater systems. Haghighi &

Bakhshipour (2012) used an adaptive GA for the optimal design of sewer networks. The result revealed that the model is
effective in terms of reliability and time. Tabari & Soltani (2013) used NSGA II to address the multi-objective model of
reservoir operation and compared the outcomes with sequential genetic algorithms (SGA). NSGA II has been discovered

to decrease the calculation burden significantly compared to SGA. Deb & Jain (2014) developed modified-GA, a multi-
objective optimization algorithm known as NSGA III. NSGA III has an advantage over Pareto-front and convergence opti-
mal solution. Although NSGA III is good, there is scope for development. Kalteh (2015) studied wavelet-based GA-support

vector regression (SVR) for forecasting the monthly flow. The results were more promising than those obtained with
normal GA-SVR. Zheng et al. (2017) proposed NSGA II with improved search behaviour using five crossover operators
to obtain improved results in the water distribution system. The findings ascertain that simplex and simulated binary cross-
overs have an enhanced ability to find Pareto-front solutions. Chen et al. (2017a) improved the NSGA III for enabling

reservoir flood control operation. The observations were compared with NSGA II and original NSGA III and superior per-
formance was witnessed. Table 1 provides the summary of the application of GA to water resource planning and
management.
Genetic programming (GP)

Fogel et al. (1966) initiated the concept of GP. Later, Koza (1990) extended the work and developed GP. In brief, GP is modi-
fied from GA (Harris et al. 2003). Meta-genetic programming is a method developed by the genetic programming system. The
initial population is randomly generated, and a termination criterion is assigned for the problem. GP uses specified inputs and
various operators (þ, �, *, /). Each population is assigned a fitness evaluator to help in solving the problem. The new gen-

eration is derived based on the operators and the fitness (selection). The reproduction process consists of crossover and
mutation. The algorithm is repeated until an optimal solution is reached. The details about the algorithm can be found in
Koza (1992). The application of GP in water resource problems started in the early 2000s. Savic et al. (1999) were the

first researchers to apply the GP in water resources to develop the weights’ matrix for the ANN to study the rainfall-
runoff. Guven & Kisi (2013) used linear GP (LGP) for the modelling of monthly pan evaporation and compared the results
with fuzzy genetics, ANN, adaptive neuro-fuzzy inference systems. The results suggested that LGP outperformed the other

techniques. Akbari-Alashti et al. (2015) applied fixed-length gene GP (FLGGP) in hydropower reservoir operation. The results
were compared with GA and NLP, and FLGGP was discerned to be more effective and powerful. Fallah-Mehdipour et al.
(2016) applied GP to solve flow routing in simple and compound channels. The results were compared with the Muskingum

model and 1-D coupled characteristic dissipative Galerkin. It was inferred that the GP model is effective in prediction and
decreases the computational burden. Cobaner et al. (2016) studied groundwater levels using GP. Five different models of arti-
ficial intelligence were used, namely radial basis neural network, multi-layer perceptron, multi-gene GP, multilinear and
nonlinear regression models. The multi-gene GP model provided more accurate predictions than the other methods. Herm̌a-

novský et al. (2017) studied GP to analyze the runoff models for 176 catchment areas. The results of GP were compared with
three conceptual models, and it was found that GP was satisfactory and can be used in runoff modelling. Ravansalar et al.
(2017) used a new approach known as hybrid wavelet linear GP for the prediction of monthly streamflow. The results

were compared with linear GP, hybrid wavelet-ANN and multilinear regression models. The data indicated that the
hybrid wavelet linear GP could help in streamflow prediction. Table 2 provides the summary of the application of GP to
water resource planning and management.
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Table 1 | Application of the Genetic Algorithm (GA) to water resource planning and management

Case study reference Algorithm Applications Catchment/study area Contribution

Goldberg & Kuo
(1987)

GA Application of GA for
pipeline optimization.

Benchmark
problem

The results showed that the algorithm doesn’t
depend on the search space’s underlying
continuity and requires no information
except the payoff values.

Dandy et al.
(1996)

Improved
GA

Application of GA for
pipeline network
optimization.

New York City
water supply
problem

The findings showed that improved GA
solutions are less cost-effective than the
standard GA.

Sharif &
Wardlaw (2000)

GA Application of GA for the
multi-reservoir system.

Brantas basin, East
Java, Indonesia

The results of this research have proved GA’s
effectiveness in optimizing the multi-
reservoir system, but the probability of the
optimal results being reduced when the
chromosomes are very long.

Deb et al. (2002) NSGA-II Developed NSGA-II to help
improve computational
complexity.

Difficult test
problems

The proposed NSGA-II is capable of finding a
much wider range of solutions and better
convergence.

Reddy & Kumar
(2006)

MOGA MOGA is used to generate a
set of optimal operation
policies.

Bhadra reservoir
system, in India

This research shows how MOGA can be used
to solve a real-life multi-objective reservoir
operator with a variety of alternative policies.

Kim et al. (2008) NSGA-II Reservoir operation using
NSGA-II

Soyanggang dam
basin, North Han
River

The results show that the operating rule
developed can handle a variety of inflow
series.

Haghighi &
Bakhshipour
(2012)

Adaptive
GA

Proposed to design sewer
network design

Benchmark sewer
network

The adaptive constraint handling method is
shown to be more effective in terms of speed
and reliability computation time.

Tabari & Soltani
(2013)

NSGA-II To address the multi-objective
model of reservoir
operation

Karaj reservoir The results of single-objective and multi-
objective model operation show that using
the NSGA-II model to assess optimum
quantities reduces the time it takes to get to
the optimal quantity of decision variables
and the exchange curve between objectives.

Deb & Jain
(2014)

NSGA-III Developed NSGA-III to
handle many-objective
optimization problem

Test problems This research shows that NSGA III has an
advantage over Pareto-front and convergence
optimal solutions.

Zheng et al.
(2017)

Improved
NSGA-II

Applied to different water
distribution system design
problems

Test problems Offers guidance for selecting appropriate
operators for real-life water resources
problems.

Chen et al.
(2017a)

Improved
NSGA-III

Application of improved
NSGA-III for the reservoir
flood control operation

Three Gorges
reservoir

The results of the simulation indicate that this
method can produce optimal Pareto
solutions that are well distributed.
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Differential evolution (DE)

DE is a heuristic optimization technique. Storn & Price (1996) introduced DE as an effective method for optimizing multi-
model objective problems. It has only a few controlling points; it is easy to use, robust and can solve complex engineering
problems. The first step in DE is to generate a random vector for the population. After initialization, a mutation process is

carried out for each vector. Once the mutation phase is over, a crossover operation is applied to increase the diversity.
The last one is the selection operation; if the termination criteria are satisfied, the algorithm provides an optimum solution,
else it gets repeated. Storn & Price (1997) presented DE and tested it with the minimizing continuous space problem. The

results were compared with adaptive simulated annealing (ASA), GA, annealed Nelder and Mead approach (ANM) (Press
et al. 1993) and, stochastic differential equations (SDE). DE outperformed all the techniques. Figure 3 shows the pseudo-
code of differential evolution. The details of DE can be referred from Storn & Price (1997).
://iwa.silverchair.com/ws/article-pdf/22/4/3702/1040716/ws022043702.pdf



Table 2 | Application of the genetic programming (GP) to water resource planning and management

Case study reference Algorithm Applications Catchment/study area Contribution

Savic et al. (1999) GP Applied GP over rainfall-
runoff modelling

Kirkton catchment The number of GP parameters (population
size, crossover and probability of
mutation) is much smaller and doesn’t
have to change for a runoff problem.

Guven & Kisi
(2013)

LGP Applied LGP for monthly
pan evaporation modelling

Mediterranean region The findings showed that the LGP method
can successfully model monthly pan
evaporations.

Akbari-Alashti
et al. (2015)

FLGGP Application of FLGGP in
hydropower reservoir
operation

Karun 3 reservoir The findings have shown that FLGGP is a
powerful, efficient tool and can be used as
an appropriate replacement for GP.

Fallah-Mehdipour
et al. (2016)

GP Application of GP to flow
routing

Silakhor River case study
and Treske channel
case study

The results showed that in simple and
compound channels differences are
similar between GP predicted
hydrographs and Muskingum modular
hydrographs and CCDG-1D methods.

Cobaner et al.
(2016)

GP Application of GP for the
estimation of groundwater
level with surface
observation

Upper Estonia Creek
Basin in North Central
Florida

GP produced more accurate predictions.

Herm̌anovský
et al. (2017)

GP Application of GP for runoff
modelling

Model parameter
estimation experiment
project

The study indicated that the GP is flexible
and easy to use and provides a quick and
easy way to solve runoff modelling.

Ravansalar et al.
(2017)

Wavelet
linear
GP

Application of wavelet linear
GP for the modelling of
monthly streamflow

Beshar River, Iran The model could be used to simulate the
cumulative streamflow data forecast.

Figure 3 | Pseudo-code of differential evolution.
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Application of DE in water resource engineering was first attempted by Reddy & Kumar (2007b), which used multi-objec-
tive (MO) DE in reservoir operation, compared the results with NSGA II, and they found that MODE exhibited superior
performance. Vasan & Simonovic (2010) used DE for the optimization of water distribution network design. The result

proved that DE can be an alternative tool for the planning and management of water distribution networks as it is economical
and reliable. Regulwar et al. (2010) used DE for the optimal operation of a multipurpose reservoir in hydropower generation.
The results were compared with GA, and DE was concluded to be a suitable alternative method for achieving an optimal
operation. Zheng et al. (2012) compared the use of DE, dither DE, GA and creep mutation GA in water distribution

system optimization. The result established that variants of DE significantly outperformed GA. Raju et al. (2012) applied
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MODE to irrigation planning problems. It was concluded that selecting a suitable parameter is required for the proper

implementation of the algorithm.
Nwankwor et al. (2013) proposed hybrid DE and PSO to identify the optimal hydrocarbon reservoir well. The result

showed that the hybrid algorithm outperformed the ordinary DE and PSO, apart from being capable of solving other reservoir

problems. Gurarslan & Karahan (2015) used DE to identify the sources of groundwater pollution. The results obtained from
DE were better than those derived from other models in the literature. Moosavian & Lence (2017) applied a non-dominated
sorting differential evolution algorithm (NSDE) and ranking-based mutation (NSDE-RMO) to solve a problem in a looped
water distribution system. The results were compared with NSGA-II, and it was found that both NSDE and NSDE-RMO

were similar and better than NSGA-II in their performance. Ahmadianfar et al. (2017) introduced an enhanced DE to
frame optimal hydropower policies. The applicability of the algorithm applicability was checked using different benchmark
problems. The results were effective and robust. Table 3 provides the summary of the application of DE to water resource

planning and management.
SWARM INTELLIGENCE

Swarm Intelligence (SI) was introduced by (Wang & Beni 1989) for simple cellular robotic systems. SI is an intelligent multi-

agent system that simulates the behaviour of social insects such as ants, bees, termites and cockroaches and also swarms such
Table 3 | Application of the differential evolution (DE) to water resource planning and management

Case study
reference Algorithm Applications Catchment/study area Contribution

Reddy & Kumar
(2007b)

MODE MODE applied to multi-
objective reservoir
operation

Hirakud Reservoir project
in Orissa state, India

The MODE performance for the reservoir
system optimization problem is found to be
better than NSGA-II.

Vasan &
Simonovic
(2010)

DE Application of DE to
optimize the water
distribution network

New York Water Supply
System & Hanoi Water
Distribution Network

It has been found that the DE model can be
combined with the EPANET simulation
model. The test results indicated that the
technique was robust and simple and could
be an alternative method for the water
distribution network.

Regulwar et al.
(2010)

DE Application of DE for the
reservoir operation

Jayakwadi project,
Godavari River

The analysis indicates that DE can effectively
be applied to the multi-objective reservoir
operation problems.

Zheng et al.
(2012)

DE Application of DE for the
water distribution
network

Benchmark problem DE is suited better to optimize the water
distribution network compared to GA

Raju et al. (2012) DE Used DE for irrigation
planning

Mahi Bajaj Sagar Project,
Rajasthan, India.

The result demonstrated proper parameter
selection is important for effective
implementation for real-world problems.

Nwankwor et al.
(2013)

Hybrid DE
& PSO

Application of Hybrid DE
& PSO for optimal good
placement

Test problems The results indicated that the hybridized
algorithm could be potential for reservoir
operational problems.

Gurarslan &
Karahan
(2015)

DE Application of DE for the
ground water pollution
source identification

Test problems The results obtained by the developed model
were better than the literature.

Moosavian &
Lence (2017)

NSDE Application of NSDE for
the water distribution
system

Benchmark problems The optimal Pareto front of the NSDE
algorithms dominated all other algorithms,
showing optimal Pareto solutions more,
distributed and converged earlier.

Ahmadianfar
et al. (2017)

Enhanced
DE

Application of enhanced
DE for reservoir
operation problems

Benchmark problems The outcome showed the highest
performance.

://iwa.silverchair.com/ws/article-pdf/22/4/3702/1040716/ws022043702.pdf



Water Supply Vol 22 No 4, 3710

Downloaded fr
by guest
on 11 April 202
as a flock of birds, a school of fishes, and a herd of quadrupeds. Unlike EAs where the populations are competitive among

themselves, the performance of SI is optimized by adapting to the environment. A few of the best SIs are given as follows.

Ant colony optimization (ACO)

The behaviours of ants were documented in the early 1970s. Later Dorigo et al. (1991) developed the behaviour into an

optimization technique. Thereafter, Dorigo has published many reports on ant colony optimization such as (Dorigo & Di
Caro 1999). ACO is a metaheuristic technique and applies to a wide range of problems. It works on the principle of identify-
ing the shortest route between the food sources and the colonies. Figure 4 shows the pseudo-code of ant colony optimization.

The details about ACO can be referred from (Maniezzo 1996; Maier et al. 2003). The application of ACO to water resources
began in the early 2000s. Abbaspour et al. (2001) estimated the hydraulic parameters of an unsaturated soil using ACO and
obtained promising results in eight different applications. Later, many researchers have applied ACO for several water

resource problems. Maier et al. (2003) studied ACO for designing water distribution systems. The main purpose of the
study was to come up with an alternative to GA for tackling the problem. The results established that ACO outperformed
GA in terms of its efficiency and ability to find the global optimal solution. Kumar & Reddy (2006) studied multi-purpose

reservoir operation using ACO. The results were compared with GA, and it was found that ACO was superior. López-
Ibáñez et al. (2008) studied water distribution networks for the optimal control of pumps using ACO. It was found that
ACO yielded better results than GA for small as well as large water network problems.

Hou et al. (2014) presented Pareto ACO for the optimal allocation of water resources in Henan Province, China. Com-

mendable results were obtained from the Pareto ACO than ordinary ACO, MOGA. Afshar et al. (2015) presented the
application of ACO in water resources and environmental management problems for both continuous and discrete domains.
The paper presented the major advantages, disadvantages and opportunities related to different water resource problems. Tu

et al. (2015) studied small-scale irrigation systems by using ACO. The results were compared with GA and it was found that
ACO possessed greater reliability and efficiency. Nguyen et al. (2016) developed an improved version of ACO to derive opti-
mal solutions to water and crop allocation problems and secured better results than with other ACO variants. Table 4

provides the summary of the application of ACO to water resource planning and management.

Particle swarm optimization (PSO)

PSO is a swarm intelligence based optimization technique proposed by Eberhart & Kennedy (1995), which depends on natu-

ral grouping and resembles bird flocking. It is a population-based algorithm and provides the optimal solution according to
individual and social behaviour (Baltar & Fontane 2008). The initialization is similar to GA, and the population is generated
using random solutions; however, the difference is that each potential solution is assigned with a randomly generated vel-

ocity. The potential solutions are called particles, which flow in the hyperspace for the best solution, and each particle
maintains its track in the search space. The best solution progresses to better positions and helps other swarm particles to
update their velocity and position towards the best solution. Once the termination criteria are satisfied, the optimal solution
Figure 4 | Pseudo-code of ant colony optimization.
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Table 4 | Application of the ant colony optimization (ACO) to water resource planning and management

Case study
reference Algorithm Applications Catchment/study area Contribution

Maier et al.
(2003)

ACO Application of ACO for the
design of systems for water
distribution

Test problems The finding showed that the ACO is better able to
find global solutions in the terms of
computational efficiency and capability.

Kumar &
Reddy
(2006)

ACO Application of ACO for
reservoir operation

Hirakud reservoir ACO has performed better for annual power
generation while satisfying irrigation
requirements.

López-Ibáñez
et al. (2008)

ACO Application of ACO for water
distribution network

Test problems The overhead computational effort of the ACO
algorithm operation is very small.

Hou et al.
(2014)

Pareto
ACO

Application of Pareto ACO for
the allocation of water
resources

Henan Province,
China

The algorithm is appropriate for optimizing the
complex spatial distribution of water resources at
a large scale.

Tu et al.
(2015)

ACO Use of ACO to develop small-
scale irrigation systems

Jiangsu University,
Zhenjiang, China

The ACO developed could be a useful tool for
optimizing irrigation systems.

Nguyen et al.
(2016)

Improved
ACO

Developed improved ACO for
crop and irrigation water
allocation

Loxton, South
Australia

The improved ACO makes it possible to reduce the
size of the search space and to investigate better
regions of the search area.

Water Supply Vol 22 No 4, 3711

Downloaded from http
by guest
on 11 April 2024
is reached. Figure 5 shows the pseudo-code of particle swarm optimization. The details about the algorithm can be obtained
from Eberhart & Kennedy (1995).

Application of PSO in water resources was attempted in the mid-2000s and various water resource problems were solved
using this technique, such as the design of water distribution networks (Suribabu & Neelakantan 2006), stage predictions

(Chau 2007), water resources management and planning (Zarghami & Hajykazemian 2013), groundwater management
(Gaur et al. 2011), irrigation water allocation and planning (Morankar et al. 2016), rainfall-runoff (Taormina & Chau
2015) and reservoir operation (Kumar & Yadav 2021).

Reddy & Kumar (2007a) proposed an elitist mutation (EM) EMPSO optimal solution for reservoir operation, which was
discerned to be efficient and served as an alternative method to arrive at the optimal solution. Ostadrahimi et al. (2012) pre-
sented an optimal rule cure for the operation of a multi-reservoir system using a multi-swarm version of PSO merged with the

well-known HEC-ResPRM model. The result indicated that multi-swarm PSO outperformed the implicit stochastic
Figure 5 | Pseudo-code of particle swarm optimization.
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optimization method. Afshar (2012) proposed two different models, namely partial and fully constrained PSO to solve two

different problems in water supply and hydropower operation. The results were compared with GA and PSO. The models
were found superior to GA and PSO. Noory et al. (2012) compared LP and continuous PSO for optimizing water allocation
and solving multi-crop planning problems. Moreover, a mixed-integer linear (MIL) model and discrete (D) PSO were devel-

oped. DPSO algorithm revealed that it was a more feasible tool for solving water allocation and multi-crop planning
problems.

Zarghami & Hajykazemian (2013) developed a modified PSO by coupling the mutation process. The results of the model
were better when compared with those derived from other models for urban water reservoir planning. Sudheer et al. (2013)
predicted streamflow using hybrid model support vector machine–quantum behaved PSO (SVM-QPSO). PSO was used to
minimize the normalized mean square error. Later, the model was compared with other forecasting models. The result
from SVM-QPSO was more acceptable in terms of monthly streamflow prediction. Rezaei et al. (2017) tried to improve sur-

face and groundwater management using a hybrid algorithm, namely fuzzy MOPSO, and the latter outperformed MOPSO.
Bai et al. (2017) optimized cascade reservoir operation by fusing the feasible search space (FSS) with PSO and compared the
results with classical and chaos PSO. The results indicated that the proposed algorithm was more effective and easier to

implement. Table 5 provides the summary of the application of PSO to water resource planning and management.

Bee metaheuristics

Bees are insects that produce honey and wax. There are approximately 20,000 species of bees. Some of the common types are
honey bees, bumblebees, and sweat bees. Each bee executes only a specific task in the hive. The entire colony performs the

complex tasks of building the hives, searching for food and harvesting (Karaboga & Basturk 2007b). The colony survives
based on the two principles of foraging and mating.
Table 5 | Application of the particle swarm optimization (PSO) to water resource planning and management

Case study reference Algorithm Applications Catchment/study area Contribution

Reddy & Kumar
(2007a)

EMPSO Application of EMPSO for
the optimal reservoir
operation

Malaprabha
Reservoir system
Krishna Basin

The proposed model can be used efficiently to
make optimal use of the water resources
available in a multi-crop irrigation reservoir.

Ostadrahimi et al.
(2012)

Multi-swarm
PSO

Application of reservoir
operation using multi-
swarm PSO

Columbia River
Basin

The result indicated that multi-swarm PSO
outperformed the implicit stochastic
optimization method.

Afshar (2012) Adapted
versions
PSO

Adapted versions PSO is
used for the reservoir
operation

Dez reservoir in
Iran

The algorithm proposed is insensitive to the
swarming dimension and the initial swarm,
and can be extended further to multi-
reservoir systems.

Noory et al. (2012) Discrete
PSO

Use of discrete PSO for
water allocation and crop
planning

Case Study Central
Iran

The results show that the algorithm is
promising for a real-world irrigation system
and could be used for multiple purposes.

Zarghami &
Hajykazemian
(2013)

Modified
PSO

Used for urban water
management

Tabriz, Iran The results were improved and suggested to
solve the problem of multi-objective and
non-linear urban water problems.

Ch et al. (2013) SVM-QPSO SVM-QPSO application for
streamflow prediction

Krishna and
Godavari Rivers

The results showed that the SVM-QPSO
offers a high degree of precision and
reliability and can be used for the analysis
of time series.

Rezaei et al. (2017) Fuzzy
MOPSO

Used for the management of
conjunctive water

Najafabad Plain in
Iran

The algorithm proposed is in a position to
find the single optimal solution on the
Pareto front to facilitate decisions to
address major optimization problems.

Bai et al. (2017) FSS-PSO PSO application for multi-
objective optimization of
the cascade reservoir

Yellow River basin The results indicate that the FSS-PSO is a
promising tool for managing water
resources problems.
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Bee foraging: Two groups of bees in the colony are involved in the harvesting of food; the first is the employed foragers and

the second is the unemployed foragers. The latter includes both the onlookers and the scouts. Employed bees exploit a food
source and after returning to the hive, share the information with a certain probability. Onlookers search for a better food
source based on the information shared by the employed bee and make a choice. The scout bee randomly searches for

new food sources (Du & Swamy 2016).
Bee mating: A bee colony consists of the queen, workers (female workers) and drones (male bees). Queen is only capable of

laying the eggs (Haddad et al. 2006). Inspired by the behaviour of bees, several optimization techniques have been developed,
such as bee colony optimization (Teodorovic & Dell’ Orco 2005), honey bee mating optimization (Haddad et al. 2006), bee
algorithm (Pham et al. 2007), and artificial bee colony (Karaboga & Basturk 2007a).

Artificial Bee colony (ABC)

ABC is a swarm-based optimization technique proposed by Karaboga in 2005 (Karaboga 2005). Karaboga & Basturk (2007a)

employed an extended version of ABC for solving constrained optimization problems. ABC works on the same principle as
the behaviour of the bee and utilizes the food sources as the solution. The algorithm simulates the foraging process of the
bees. The colony contains the onlooker, employed and scout bees. The food source is a symbol of a possible solution to
the problem. The quality of a food source represents the fitness of the solution. Figure 6 shows the pseudo-code of an artificial

bee colony. The details of the algorithm can be found in Karaboga & Basturk (2007a). Application of ABC in water resources
was attempted in the late 2010s. Liao et al. (2012) introduced an adaptive artificial bee colony (AABC) and implemented the
algorithm for the hydropower reservoir system of the Three Gorges river of China. AABC performed better than a discrete

differential dynamic program (DDDP) and PSO. Hossain & El-shafie (2014) applied ABC to optimize the reservoir release
Figure 6 | Pseudo-code of an artificial bee colony.
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policy and it was found ABC performed better than GA. Ahmad et al. (2016) used ABC and gravitational search algorithm

(GSA) to optimize the reservoir operation. The results showed the ABC’s superiority to GSA in the quicker rates of conver-
gence, stability, greater efficiency and reduced vulnerability, while the GSA’s resilience measurement was much better.
Choong et al. (2017) used an ABC algorithm for the optimization of multiple hydropower reservoirs operation. The tests

showed that the weekly ABC optimization was superior to reliability and vulnerability, leading to a better release policy
for optimal operation. Huo et al. (2018) proposed a parallel multi-core (MPABC algorithm and utilized it to optimize the sol-
ution for four benchmark problems in the Heihe River Basin. Table 6(a) provides the summary of the application of ABC to
water resource planning and management.

Honey Bee mating optimization (HBMO)

Abbass (2001) proposed the mating process of the honey bees as an optimization approach and Haddad et al. (2006) pre-
sented HBMO inspired by the bee mating process. Honeybee colonies mostly start in two ways: The first one is a ‘solitary
colony’; that is, a colony begins with one or more queens without family (Du & Swamy 2016). The second method is ‘swarm-

ing’, in which one or more queens form a new colony encompassing the workers of the original colony. The working process
and details of the algorithm can be found in Afshar et al. (2007). Numerous researchers have successfully studied and applied
HBMO in various water resource problems such as reservoir operation (Haddad et al. 2006) the water distribution system
(Sabbaghpour et al. 2012), and optimal operation rules for the reservoir (Haddad et al. 2008). Table 6(b) provides the sum-

mary of the application of HBMO to water resource planning and management.

Other Bee algorithms

Other methods derived from bee metaheuristics are available. Bee colony optimization (BCO) proposed by Teodorovic &
Dell’ Orco (2005) is a metaheuristic technique inspired by the foraging behaviour of bees. BCO is good at exploration but

weak at exploitation. To overcome this drawback, Moayedikia et al. (2015) proposed weighted bee colony optimization
Table 6 | Application of the (a) artificial Bee colony (ABC) and (b) honey Bee mating optimization (HBMO) to water resource planning and
management

Case study
reference Algorithm Applications

Catchment/study
area Contribution

a) Artificial Bee Colony (ABC)

Liao et al. (2012) AABC Application of AABC to the
hydropower system

Three Gorges
River of China

AABC was performing better than a DDDP and
PSO program.

Hossain & El-
shafie (2014)

ABC Application of ABC for the
optimizing release policy of
Aswan High Dam

Aswan High
Dam of Egypt

The algorithm was able to achieve a total time
period of 98 per cent of the release policy
demands.

Ahmad et al.
(2016)

ABC Application for optimization of
the reservoir operation

Imah Tasoh Dam Results indicated quicker rates of convergence,
stability, greater efficiency and reduced
vulnerability for ABC

Choong et al.
(2017)

ABC Optimization of the reservoir
operation

Chenderoh
reservoir
operation

Optimization for ABC was superior and a better
release policy.

Huo et al. (2018) MPABC Application of MPABC for the
hydrological models

Heihe River
Basin

The MPABC algorithm is an effective and feasible
way to solve the problem of hydrological models.

b) Honey Bee Mating Optimization (HBMO)

Haddad et al.
(2006)

HBMO Proposed HBMO for the
reservoir operation

Dez reservoir in
southern Iran

The model performance is promising in a real-
world reservoir operating problem.

Sabbaghpour
et al. (2012)

HBMO Application for the water
distribution network

Langarud city The HBMO results are promising.

Haddad et al.
(2008)

HBMO To obtain optimal rules of the
reservoir

Dez reservoir in
southern Iran

The proposal and rules are very promising and
show that the HBMO algorithm proposed can
solve the reservoir operation problem.
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(wBCO) to improve the exploitation aspects. The bee algorithm proposed by Pham et al. (2007) mimics the foraging nature of

the bees. Here, the bees search for food in the neighbourhood using random search. Bee swarm optimization (BSO) proposed
by Akbari et al. (2010) is also similar to BA; however, the difference is that the bees can adjust their flying trajectory.

A harmony search (HS)

Geem et al. (2001) developed an HS algorithm to solve water distribution network problems. It is a heuristic optimization
technique that tries to mimic the musical process related to searching for a better polish tone. It works on the principle of
a musician trying to identify a state of pleasing harmony and continuing to play the pitches to seek better harmony (Lee

& Geem 2004). The algorithm is fit to solve both discrete and continuous problems. The HS has three compulsory control
parameters and two optional ones (Du & Swamy 2016). Figure 7 shows the pseudo-code of harmony search. The details of
the algorithm can be referred from (Geem et al. 2001).

Many variants and improved versions of HS are available. Omran & Mahdavi (2008) proposed the global-best harmony
search (GBHS) based on the concept of swarm intelligence. The performance of the GBHS was compared with HS, and
it was inferred that GBHS was superior in dealing with ten different benchmark problems. Wang & Huang (2010) proposed

self-adaptive HS to overcome the problem of tuning parameters since it is difficult to select the control parameter. Zou et al.
(2011) introduced a global harmony search (GHS) consisting of two operations, namely genetic mutation and position
updates with a small probability. Khalili et al. (2014) proposed the global dynamic HS by enhancing the key tuning par-

ameters into a dynamic mode so that they need not be predefined. Numerous researchers have successfully studied and
applied HS in various water resource problems. Geem et al. (2001) proposed HS and used the algorithm to solve benchmark
problems in the water distribution network. Later, Geem et al. (2002) applied HS to solve the pipe network design problem
and Geem (2006) to come up with an optimal design for the water distribution network. Bashiri-Atrabi et al. (2015) used HS

to optimize the reservoir operation, compared the results with HBMO and ascertained the algorithm’s effectiveness.
Table 7(a) provides the summary of the application of HS to water resource planning and management.

Firefly algorithm (FA)

FA is a swarm-based metaheuristic algorithm introduced by Yang (2009), and it is inspired by the fireflies. The insects have
the ability to emit light through the biochemical process called bioluminescence. Nonetheless, its purpose is still not ascer-

tained (Fister et al. 2013). The two fundamental functions are to attract potential prey and mating partners. In addition, the
flashing light also protects the fireflies from other predators. Three basic assumptions or rules were idealized while developing
the firefly algorithm (Yang 2009). First, all the fireflies are unisex. Second, the brightness of the flash is directly proportional to

the attractiveness of the fly. Third, the brightness diminishes as the distance increases (Du & Swamy 2016). Figure 8 shows
the pseudo-code of the firefly algorithm. The details of the algorithm can be found in Yang (2009). Many variations and
improvements of FA have been observed in the past. The application of FA in water resources engineering is quite new. Taher-
shamsi et al. (2014) used hybrid FA and HS to solve problems in water distribution systems. Kazemzadeh-Parsi et al. (2015b)
Figure 7 | Pseudo-code of harmony search.
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Table 7 | Application of the (a) harmony search (HS); (b) firefly algorithm (FA) and (c) cuckoo search (CS) to water resource planning and
management

Case study reference Algorithm Applications
Catchment/study
area Contribution

a) Harmony Search (HS)

Geem et al. (2001) HS The HS algorithm for the
pipeline network design
problem

Test problem &
pipeline
network

HS has exceeded existing mathematical
and heuristic approaches.

Geem et al. (2002) HS Application of pipe network
design

Test problem The results of HS were almost optimal.

Geem (2006) HS Design of the water distribution
network for the optimal
design of costs

Test problem The results demonstrate that the HS
model is suitable for the design of a
water network.

Bashiri-Atrabi et al.
(2015)

HS Application of HS for the
reservoir operation

Narmab Reservoir For the operation of the reservoir for
flood management, the HS algorithm
can effectively be used.

b) Firefly Algorithm (FA)

Tahershamsi et al. (2014) Hybrid FS
& HS

For the design of a water
distribution network

Benchmark
problem

The suggested algorithm shows good
solution quality performance.

Kazemzadeh-Parsi et al.
(2015a)

Modified
FS

For the design of unconfined
contaminated aquifers

Example problem For effective management of
contaminated aquifers, the proposed
method can be used.

Garousi-Nejad et al.
(2016)

FS FS application for the reservoir
operation

Aydoghmoush
Reservoir

FA has achieved better solutions with
faster convergence.

c) Cuckoo Search (CS)

Wang et al. (2012) CS CS was used for the
optimization of the water
distribution network

Benchmark
problems

Compared to NSGA-II, multi-objective
CS showed overall excellence in
achieving a wide range of solutions.

Chaowanawatee &
Heednacram (2012)

CS CS application to train the
neural network to forecast
floods

Little Wabash
River

This problem is better suited to the
Polyharmonic function than to the
Gaussian function.

Shamshirband et al.
(2016)

CS CS application to train the
neural network to estimate
reference evapotranspiration

Serbia The optimized ANFIS version with
CSA delivers better results in training
and testing stages than the ANFIS
model.

Mohammadrezapour
et al. (2017)

COA To optimize the allocation of
water and crop planning

Qazvin plain, Iran COA’s simple structure, excellent
search efficiency and strong
robustness make it very promising in
the field of crop optimization.
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combined FA with the finite element simulation method (FEM) to optimize the pump design and groundwater treatment
remediation systems. Garousi-Nejad et al. (2016) applied FA for the optimization of reservoir operation for irrigation and
power generation. Table 7(b) provides the summary of the application of FS to water resource planning and management.

Cuckoo search (CS)

CS is a swarm-based metaheuristic search algorithm proposed by Yang & Deb (2009) for global optimization following the

behaviour of cuckoos. The bird lays its eggs in the nest of others and also removes the eggs of the host bird. If the Cuckoo egg
resembles that of the host bird and the latter is unable to differentiate between the two, the egg will be well taken care of
(Arsenault et al. 2014). However, if the host bird discovers that the eggs are not its own, it pushes them out or abandons

the nest. The probability of being discovered by the host bird is between 0 and 1 (Yang & Deb 2009). Yang & Deb (2010)
studied the design of spring and welded bean, and compared the results with GA and PSO. CS was discerned to be better
than the other two algorithms. Figure 9 shows the pseudo-code of cuckoo search. The detailed methodology can be found
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Figure 8 | Pseudo-code of firefly algorithm.

Figure 9 | Pseudo-code of cuckoo search.

Water Supply Vol 22 No 4, 3717

Downloaded from http
by guest
on 11 April 2024
in Yang & Deb (2009, 2010). Li & Yin (2015) modified CS by considering the self-adaptive parameters to control the popu-
lation diversity. The cuckoo optimization algorithm (COA) proposed by Rajabioun (2011) is another metaheuristic

population-based algorithm inspired by the bird.
Numerous researchers have successfully studied and applied CS as well as its variants in various water resource problems.

Wang et al. (2012) used MOCS to obtain an optimal water distribution network. The findings indicate that MOCS are

superior to NSGA-II in terms of convergence and diversity, providing more alternatives for high quality. Chaowanawatee
& Heednacram (2012) combined CS with a radial basis function neural network for determining the flood water level.
Shamshirband et al. (2016) studied the ability of CS to optimize the weights from ANN and the adoptive neuro-fuzzy interface
system (ANFIS) to estimate the reference evapotranspiration. Mohammadrezapour et al. (2017) made use of COA for the

optimization of water allocation and crop planning. Table 7(c) provides the summary of the application of CS to water
resource planning and management.

Bat algorithm (BA)

BA is a swarm-based metaheuristic algorithm developed by Yang (2010) which is inspired by the echolocation of bats and is
capable of obtaining a global optimum solution. Among the mammals, other than bats, only a few communities of squirrels
://iwa.silverchair.com/ws/article-pdf/22/4/3702/1040716/ws022043702.pdf
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can fly. It is estimated that nearly 996 species of bats exist. Different species have varied echolocation capabilities through

which they can emit a very short and loud sound pulse of up to 100 dB in the ultrasonic region and receive the sound in
the form of an echo reflected from the surrounding objects. The bat analyzes the echo, discriminates the pathway, and cat-
egorizes the obstacles and prey (Yang & Hossein Gandomi 2012). This phenomenon is formulated into an optimization

technique for engineering problems. The echolocation of micro-bats is characterized by three rules based on which the bat
algorithm has been developed. First, bats use the process to sense the distance and differentiate between the food and obstruc-
tions in their pathway. Second, bats fly at a random speed vi at position xi with a fixed frequency fmin, varying wavelength l

and loudness a0 to hunt for the prey. To target the prey, the bat can adjust the frequency or wavelength depending on its proxi-

mity. Third, the loudness echo can be changed from a constant minimum value to a large one (Wang & Guo 2013). BA was
designed based on these rules. Figure 10 shows the pseudo-code of the bat algorithm. The detailed methodology can be
checked in Gandomi et al. (2013); Yang (2010; 2012).

The application of BA in water resources is quite new. Bozorg-Haddad et al. (2015) used the BA for the optimization of
reservoir operation. In comparison with conventional optimization techniques, the BA was able to achieve the best alterna-
tives. Ahmadianfar et al. (2016) presented a hybrid of BA and DE to solve multi-reservoir operational problems. The results

obtained were 99.9% close to the global optimum solution. Kuok et al. (2018) combined BAwith ANN to forecast the rainfall,
and the results indicated that BANN was capable of avoiding the local trap. Ethteram et al. (2018) used BA for the Aydogh-
mush dam and Karun 4 dam reservoir operation. It has been found that the bat algorithm with the third-order rule curve is

better than the other order rules curves. Table 8(a) provides the summary of the application of BA to water resource planning
and management.
Shuffled frog leaping algorithm (SFLA)

SFLA is a memetic metaheuristic swarm intelligence-based algorithm proposed by Eusuff & Lansey (2003), which is inspired

by the social behaviour of frogs. Frogs search for their food in a group. The swamp has many stones and at each one a differ-
ent quantity of food is present. Frogs try to locate the stone with maximum food sources. To reduce the time spent searching
for food, frogs develop their memes by exchanging information. The frogs change their leaping based on the previous memes’

conversation. Thus, they are directed towards the position with more food sources. Based on this concept, the SFLA was
developed, and the algorithm has three stages, namely partitioning, local search and shuffling. The algorithm combines
the deterministic and random approaches and is capable of solving continuous and discrete optimization problems (Du &

Swamy 2016). Figure 11 shows the pseudo-code of the Shuffled Frog Leaping Algorithm. The details of the algorithm are
given in Eusuff et al. (2006); Eusuff & Lansey (2003).

Eusuff & Lansey (2003) proposed SFLA, applied the algorithm in the water distribution network and obtained promising
results. Eusuff et al. (2006) used the SFLA for discrete groundwater and water distribution network problems. Upon
Figure 10 | Pseudo-code of bat algorithm.
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Table 8 | Application of the (a) Bat algorithm (BA) and (b) shuffled frog leaping algorithm (SFLA) to water resource planning and management

Case study
reference Algorithm Applications Catchment/study area Contribution

a) Bat Algorithm (BA)

Bozorg-Haddad
et al. (2015)

BA Use of BA on operation of
the reservoir

Benchmark problem In comparison to conventional optimization
methods, the BA was able to reach better
solutions in reservoir operations.

Ahmadianfar
et al. (2016)

Hybrid BA
& DE

Hybrid BA & DE application
for a multi-reservoir
operation

Benchmark problem The proposed method provides very
promising solutions and significantly
improves performance with the best
known global results.

Kuok et al.
(2018)

BatNN Application of BatNN for the
forecast of rainfall

Kuching city The results indicated that BatNN can
optimize and accurately predict long-term
rainfall.

Ethteram et al.
(2018)

BA BA was used for reservoir
operation

Aydoughmoush dam
and Karoun 4 dam in
Iran

The bat algorithm can be seen as a suitable
optimization model for operation in the
reservoir.

b) Shuffled Frog Leaping Algorithm (SFLA)

Eusuff & Lansey
(2003)

SFLA Applied to the water
distribution network

Benchmark problem SFLA has found optimal solutions in fewer
iterations than GA and simulated
annealing.

Eusuff et al.
(2006)

SFLA Applied to the problem of
groundwater model and the
water distribution system

Test problem SFLA is very suitable for parallelization and
can be investigated for other water
resources problems.

Sun et al. (2016) SFLA Used for the reservoir
operation

Cascade reservoirs The model has been discovered to have
better search capabilities and quicker
convergence, and parallel calculation can
efficiently cut down the time required.

Fang et al. (2018) MODE
Chaos
SFLA

Used for optimizing the
allocation of water
resources

Northern China MODE Chaos SFLA possesses the capacity
to solve complex water resources
optimization problems.

Li et al. (2018a) Improved
SFLA

Used for reservoir operation Cascade reservoirs Improved SFLA has been discovered to be
better than SFLA, PSO, immune SFLA
and cloud SFLA.

Yang et al.
(2019)

CNSFLA For the multi-objective
reservoir operation

Cascade reservoirs CNSFLA’s performance analysis checks its
efficient search capability for high quality
and stability.
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comparing the results with GA, it was discerned that SFLA is a reliable tool for solving optimization problems. Sun et al.
(2016) altered the SFLA by mixing the cloud model algorithm for the optimization of reservoir operation. The model has
been discovered to have better search capabilities and quicker convergence, and parallel calculation can efficiently cut

down the time required. Fang et al. (2018) studied MODE combined with chaos SFLA for the optimization of water allo-
cation problems. The findings show that MODE-CSFLA is more efficient than NSGA-II and MOPSO. Li et al. (2018a)
improved the SFLA through the chaos catfish effect and used it to operate a cascade reservoir. Improved SFLA has been dis-

covered to be better than SFLA, PSO, immune SFLA and cloud SFLA. Yang et al. (2019) used an improved chaotic normal
cloud shuffling frog leaping algorithm (CNSFLA) for an ecological planning model with multiple objectives. Finally,
CNSFLA’s performance analysis checks its efficient search capability for high quality and stability. Table 8(b) provides the

summary of the application of SFLA to water resource planning and management.

NEW ALGORITHMS USED IN THE OPTIMIZATION OF WATER RESOURCES ENGINEERING

The complexity of the problems has escalated owing to increased demands, climatic conditions, global warming, and deplet-
ing resources. Hence, researchers have developed various new and advanced techniques to optimize the problems related to
://iwa.silverchair.com/ws/article-pdf/22/4/3702/1040716/ws022043702.pdf



Figure 11 | Pseudo-code of Shuffled Frog Leaping Algorithm.
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the planning and management of water resources. Asgari et al. (2016) applied a weed optimization algorithm (WOA) for the

optimization of multi-reservoir system problems. WOA is a metaheuristic optimization technique inspired by the weed’s life
cycle. The result suggests a faster convergence rate and a solution quite close to the global optimum. Ehteram et al. (2017)
used the shark algorithm (SA) for the optimization of reservoir operation and inferred that the results were superior to those

of GA and PSO. Karami et al. (2018) proposed the improved krill algorithm (IKA) for the optimization of reservoir operation
by augmenting the speed of convergence and decreasing the possibility of a local trap. The results obtained from IKA were
promising. Ehteram et al. (2018a) used a new metaheuristic algorithm known as the spider monkey algorithm (SMA) to
reduce the irrigation deficiencies in Iran’s multi-reservoir system. It was found that SMA is an appropriate method for reser-

voir operation policies. Bozorg-Haddad et al. (2018) used an anarchic society algorithm (ASO) for the optimization of the
water distribution network and identified that ASO outperformed. Li et al. (2018b) used a moth flame optimization algorithm
(MFOA) for the multi-reservoir system and observed it to be superior to NSGA-II, MOPSO, MODE, and MOBA in terms of

improved uniformity and diversity distribution. Bahrami et al. (2018) used cat swarm optimization (CSO) for the reservoir
operation. It was found that CSO was efficient in finding the global solution. Feng et al. (2018) used an orthogonal progressive
optimality algorithm (OPOA) to optimize hydropower generation, and the results indicated its feasibility for the multi-reser-

voir system. Yan et al. (2018) employed an ameliorative whale optimization algorithm (AWOA) for the multi-objective water
allocation problem. Kumar & Yadav (2018) used teaching learning-based optimization (TLBO) and Jaya algorithms (JA) for
the multi-reservoir operation. It was found that JA performed better than TLBO and other algorithms available in the litera-
ture. Ehteram et al. (2018b) used a kidney algorithm (KA) to generate an optimal solution for reservoir operation and

discerned that it performed better than GA, BA, WOA, SA, and PSO.

DISCUSSIONS AND CONCLUSIONS

The literature review has revealed that with the advancements in computing power, researchers have developed various

methods to solve real-world problems. Meta-heuristic and heuristic are emerging study areas for handling a variety of
water resources problems, as seen by the vast range of applications listed above. The main advantage of the heuristic and
metaheuristic algorithms is the use of search populations that are simultaneously exploring in the search space for the poss-

ible solutions, sharing information among the systems, to obtain a better solution. Different evolutionary algorithms such as
GA, GP and DE, and swarm intelligence-based algorithms such as ACO, PSO, ABC, HBMO, HS, FA, CS, BA, and SFLAwere
covered in the review. Future management approaches will have to deal with a variety of challenges that may occur as a result
om http://iwa.silverchair.com/ws/article-pdf/22/4/3702/1040716/ws022043702.pdf
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Table 9 | Comparison of strengths and weaknesses of different algorithms

Algorithms Strengths Weaknesses

Genetic algorithm (GA) • It is capable of solving any optimization problem that
can be represented using chromosomal encoding.

• It can provide multiple solutions to a problem.

• Proper tuning of algorithm-specific parameters such as
mutation, crossover and reproduction are required.

• There’s no guarantee that a genetic algorithm will find a
global optimum.

Genetic Programming
(GP)

• It is a simple, robust, flexible, and effective algorithm
which requires less computational time and provides
accurate results.

• It necessitates internal parameters such as crossover and
mutation probability.

Differential Evolution
(DE)

• DE can handle non-differentiable, non-linear and
multimodal functions.

• It keeps the multiplicity of population.
• It enhances the capacity of local search.

• Selection of algorithm-specific parameters is needed; for
instance, the scaling factor and crossover rate.

• Convergence is unstable
• Easy to drop into the local optimal solution.

Ant Colony
Optimization (ACO)

• It is robust enough to solve non-uniform, complex
and non-linear problems.

• It is capable of achieving quick convergence.

• Its computation gets affected when the problem is of the
explicit or implicit stochastic type.

• It needs tuning parameters such as relative pheromone trail,
heuristic information, and evaporation.

Particle Swarm
Optimization (PSO)

• It provides fast convergence and involves low
computational costs.

• It has the character of memory.

• Tuning of parameters such as inertia weight, social, and
cognitive parameters are required.

• The multiplicity of the population is not enough.

Artificial Bee Colony
(ABC)

• It is flexible, simple, robust, easy to implement and
capable of performing a global search.

• It is able to explore the local search

• It is quite slow in sequential processing.
• It requires tuning parameters such as scout, onlooker and
employed bees.

Harmony Search (HS) • HS has less mathematical necessities and does not
need the initial value to set the decision variables

• It requires many parameters, such as memory size and pitch
adjustment.

• Moreover, the rate of choosing the memory and
neighbouring values is important.

Firefly Algorithm (FA) • It is useful in finding both global and local solutions
synchronically and effectively.

• FA is useful for parallel implementation as different
fireflies can work independently.

• It requires tuning of randomization parameter, attractiveness
and absorption coefficient is needed.

Cuckoo Search (CS) • It uses Levy flights, a process that helps the search
space to explore more effectively.

• CS provides an efficient and global convergence
solution.

• It requires lesser tuning parameters, such as probability
factor, and the results are not very sensitive to these
parameters.

Bat Algorithm (BA) • BA is flexible, simple, and easy to implement.
• It yields the best solution in less time, has fast
convergence at the early state, and later the
convergence rate decreases.

• The convergence is affected if the proper tuning of
parameters such as wavelength and emission coefficient is
not done.

Shuffled Frog Leaping
Algorithm (SFLA)

• It is faster in searching the space. • However, too many internal parameters need to be set,
including the number of memeplexes, frogs in each
memeplex and submemeplex, and the step size.

Honey Bee Mating
Optimization
(HBMO)

• It is robust, adaptive, simple, and scalable. • The limitations include the necessity for tuning mating
flights, size of the hive, number of accepted solutions and
trial solutions, and constant parameters such as queen’s
energy and initial speed.
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of high nonlinearities, a larger range of uncertainties, real-life challenges, continuous, discrete, complex, stochastic, multi-

reservoir, multi-objective problems and the integration of huge system components. For better decision making in water
resource management, meta-heuristics-based optimization frameworks are becoming increasingly important. The main ques-
tion arises about which algorithm to use. EAs have a wide range of applications since they may be used to solve any problem

that can be represented as a function optimization problem. For real-world challenges involving multi-modal functions, EAs
provide significant benefits. Any form of objectives and constraints can be directly incorporated into EAs. Each of the algor-
ithms of meta-heuristics has its advantages and limitations. GA is one of the oldest and most common techniques in the field
of water management, with many applications. The major advantages occur in its ability to manage non-linear, non-convex,

and diversity positions as well as in its multimodal strategies and ability to solve the given problems to optimal or near-opti-
mal solutions. However, it also requires the right tuning of the algorithm-specific parameters, such as mutation, crossover and
reproduction. GP is a comprehensive, continuous, highly scalable, and efficient algorithm that needs less time to compute and

provides good performance. However, it necessitates internal parameters such as crossover and mutation probability. Like-
wise, DE had advantages similar to that of the GA, but the selection of algorithm-specific parameters is needed; for instance,
the scaling factor and crossover rate.

SI techniques are based on the swarm’s co-operative group intelligence principles and have proven to be other classes of
alternative meta-heuristic methodologies for handling various types of water resource optimization problems. SI algorithms,
like EA population-based random search techniques, with heuristic guidance that can cover a variety of problem complexities

such as non-linear, non-convex, multi-modal solutions, and so on. SI applicability and convergence properties, however, may
differ from one problem to the next. For example, to solve non-uniform, complex and non-linear problems, the ACO is power-
ful enough, and it is capable of accomplishing rapid convergence. But, tuning parameters such as the relative pheromone trail,
heuristic information, and evaporation are required. Similarly, PSO needs tuning of parameters such as inertia weight, social,

and cognitive parameters are required. If the parameters are set correctly, the algorithm can achieve a global solution. Other
SI algorithms like ABC, HS, FA, CS, BA, SFLA, and HBMO also have similar comparable capabilities and weaknesses, like
ACO and PSO. Table 9 compares the strengths and weaknesses of different algorithms. It should be noted that numerous

studies have proposed different algorithms for different water resources problems and suggested that certain algorithms
are comparatively better than others. However, the results may be applied to those problems that may not be generalized
into one or not covered by either of the various types of problems, as each problem may have different complexities according

to the problem dimension and existing interactions for the problem. Consequently, the right algorithm option and use for this
problem must be based on the form and characteristics of the problem. There are various studies wherein hybridizations of
one or more algorithms have been performed. Similarly, modifications of existing algorithms have been done by incorporat-
ing elitist, self-adoptive, binary, non-dominated, and chaotic concepts, to get more acceptable results. Finally, no single

optimization algorithm is universally declared as a winner that can successfully address all types of problems. Besides, an
algorithm is neither extraordinary nor completely inferior; it depends on the problem type. One might be good at solving
a particular type of problem but not others. Hence, before judging, many algorithms and their variants need to be compared.
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