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Joint estimation of states and parameters of two-layer

coastal aquifers based on ENKF

Xiaohua Huang, Guodong Liu, Yu Chen and Jun Li
ABSTRACT
Management of groundwater resources has become a source of heated discussion in coastal

hydrogeology. Thus, we introduced an Ensemble Kalman Filter (ENKF) into a two-layer confined

groundwater model based on the interactive operation between the MATLAB and GMS to investigate

the capability of ENKF under complex conditions and obtain a relatively new forecasting method.

ENKF was employed to assimilate and forecast groundwater levels, and invert the hydraulic

conductivity (K ) of the heterogeneous study area, where the initial values of K were obtained by

using trial-and-error based on the two-period groundwater levels. After comparing the efficiencies in

forecasting groundwater levels among ENKF, the modified model, and the initial model, four major

conclusions could be drawn. ENKF converged fast when forecasting groundwater levels and the

accuracy was high. Various convergent results would be represented by ENKF when K in different

layers was observed in the same error. ENKF performed better than the initial simulation when

monitored data subjected to a certain range of interferences. Forecasting accuracy in the middle of

the study area could be enhanced by the large improvement degree of K through ENKF. Therefore,

this analytical method could be a theoretical reference for groundwater resources management in

coastal areas.

Key words | coastal areas in Tianjin, data assimilation, Ensemble Kalman Filter (ENKF), groundwater

level forecasting, hydraulic conductivity identification
HIGHLIGHTS

• First employed ENKF into a two-layer confined coastal model.

• Modified groundwater model by ENKF.

• Provided the theoretical reference for groundwater resources management in coastal areas.
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INTRODUCTION
Groundwater resources are one of the most important

sources of urban water supply, especially for the northern

cities of China (Zheng et al. ; Chen et al. ). The

exploitation and utilization of groundwater resources are

increasing with the development of the economy in China,
which leads to the continuous decline of groundwater

levels and many other adverse environmental consequences,

such as land subsidence (Chen et al. ), water quality

deterioration (Purushotham et al. ), seawater intrusion

(Ma et al. ), etc. In the past few decades, climate

impacts, together with those of excessive human water use

have changed the country’s water availability structure

(Khaki et al. ). At the same time, the spatial and tem-

poral characterizations of groundwater were also altered
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(Chakraborty et al. ). Therefore, identifying the charac-

terizations of groundwater has become one of the key

points in scientifically evaluating and managing ground-

water resources. Many methods can be used to predicting

the dynamics of groundwater now, such as the evaluation

of water balance (Portoghese et al. ), numerical simu-

lation (finite-difference method (Ansarifar et al. ),

finite-element method (Huang et al. )), regression analy-

sis (Chenini & Msaddek ), and spectral analysis (Kim

et al. ). With the improvement of computing techniques,

some calculation methods, such as the artificial neural net-

work and wavelet transform (Rahman et al. ), have

been applied to forecast the groundwater level gradually.

At present, relatively traditional methods have been widely

used in the analyses of groundwater dynamics. However, it

was difficult to integrate real-time data into the model effi-

ciently. The method of sequential data assimilation could

utilize the monitored value in time, and update the par-

ameters and variables based on historical estimations and

the latest data (Tong et al. ). As one of the most popular

methods of sequential data assimilation, the Ensemble

Kalman Filter (ENKF) was first proposed in 1994 (Evensen

) and was refined by Burgers et al. (). ENKF

extended the traditional linear Kalman Filtering (KF)

(Zhou et al. ) to the non-linear field, and showed a

more stabilized calculation than the Extended Kalman

Filter (EKF) (Evensen ) in the non-linear field.

ENKF has previously been applied for large-scale non-

linear models in oceanography (Haugen & Evensen )

and hydrology (Margulis et al. ) successfully. The first

application of ENKF for flow in porous media was pet-

roleum engineering (Naevdal et al. ). Then, ENKF was

introduced into hydrogeology gradually to acquire the

hydraulic conductivity and the migration of pollutant

plumes in the synthetic models (Huang et al. ) under

different situations (Chen & Zhang ; Hendricks

Franssen & Kinzelbach ), under various boundary con-

ditions of the model (Tong et al. ). While some problems

have arisen when operating the ENKF, such as filter

inbreeding, unstable calculation processes, and the effect

of observation data, some scholars (Hendricks Franssen &

Kinzelbach ; Nan & Wu ; Schöniger et al. ;

Cui & Wu ) have put forward the solutions for these

deficiencies. Hendricks Franssen & Kinzelbach ()
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provided a solution for the filter inbreeding problem. Nan

& Wu () introduced distance-related weight to the

ENKF which could stabilize the assimilation process using

a small size ensemble. Schöniger et al. () applied non-

linear, monotonic transformations to the observations

rendering them Gaussian. Cui & Wu () reported that

the appropriate spatial and temporal distribution of obser-

vation wells with low density was superior to that of

observation wells with high density. In recent years, ENKF

was used to analyze pollutants in groundwater (Ross &

Andersen ), identify pollutants in surface water (Wang

et al. ), invert the parameters of unsaturated zones (Yu

et al. ), analyze the concentration data of the density-

dependent flow model in coastal areas (Yoon et al. ),

validate the model of surface water and groundwater

(Khaki et al. ), and recognize the relationship among

the atmosphere, surface water and groundwater (Gelsinari

et al. ).

However, the above-mentioned studies about ENKF

were usually based on virtually synthetic models and

rarely applied in the real world. The ENKF has not been

integrated into the two-layer confined model in the coastal

area so far. Thus, conducting a study on the complex

groundwater model in the real world is needed (e.g. the

groundwater model of the coastal area subjected to strong

tidal effects). This study aims to evaluate the capability of

ENKF in forecasting groundwater levels and inverting the

hydraulic conductivity of the heterogeneous field in the rela-

tively complex study area. The advantages and drawbacks of

ENKF were also comparatively analyzed. In this study, we

introduced ENKF into a petrochemical project in the

coastal area of Tianjin city, took the two-layer confined

flow model as a prediction function, assimilated the

measured groundwater levels into the model, forecast

groundwater levels, and inverted the hydraulic conductivity

to obtain better prediction results. This paper was structured

as follows. Firstly, the operation of ENKF, site description,

calculations schemes, and evaluating indexes about the

capability of ENKF were described. Then the results of fore-

casting groundwater levels and second inverse K by ENKF

were presented. To show the efficiency of ENKF in forecast-

ing aspects, comparative analyses were depicted as

discussions. Finally, conclusions and guidelines for future

work were given.
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MATERIALS AND METHODS

Ensemble Kalman Filter (ENKF)

The ENKF is a widely used sequential data-assimilation

method based on a Monte Carlo approximation that can

update model parameters as well as model variables

included in the state vector using various types of serially

dynamic observations. ENKF has a better performance

than the standard Kalman Filter (KF) as KF needs to com-

pute and propagate the error covariance matrix explicitly

in time, which may pose a significant computation burden

for large or nonlinear problems. In contrast, ENKF aban-

doned the forecasting of the error covariance matrix in the

model and directly carried out the multiple integrations

based on ensembles via the Monte Carlo method, which

means it can be calculated based on the continuously

updated ensemble of realizations (Chen & Zhang ).

Therefore, one of the reasons why ENKF widely used was

that the number of calculations was greatly reduced. The

main procedure for ENKF is as follows:

(1) Generation of the initial ensemble

X ¼ (x1, x2, x3 . . . . . . xm) (1)

where X is an ensemble which concluded some samples;

xi is a sample in the ensemble X;m is the size of samples;

(2) Forecasting the parameter and state vector

hf
k,j ¼ F(ha

k,j�1) (2)

where hf
k,j is the forecasting value of the sample k at time

step j, j stands for the time step, k stands for the number

of the sample; ha
k,j�1 is the analyzed value of the sample

k at time step j� 1, the superscripts f and a indicate the

forecast and assimilation procedure, respectively; F is a

forecast operator, representing the flow equations for

our study.

(3) Updating the parameter and state vector

ha
k,j ¼ hf

k,j þKk(dobs,j �Hkh
f
k,j) (3)

Kk ¼ Cxfk
HT

k (HkCxfk
HT

k þ Cdobs,k
)�1 (4)
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where ha
k,j is the analyzed value of the sample k at time

step j; Kk denotes the Kalman gain; dobs,j is the obser-

vation vector (monitored data) at the time step j; Hk is

the observation operator which represents the relation-

ship between the state vector and the observation

vector; Cxfk
denotes the state error covariance matrix;

Cdobs,k
is the error covariance matrix of the observations.

(4) The assimilated value of ENKF

Finally, averaged values 〈ha
j 〉 of all samples were set as

the assimilated value at time step j:

〈ha
j 〉 ≈

1
m

Xm
k¼1

ha
k,j (5)

The four calculated steps mentioned above were the

main procedure of ENKF at time step j, then the forecast

model will run until new observations become available.

so values at next time step jþ 1 could be forecast by

returning the 2nd calculated step, namely Equation (2)

and the forecasting values could fit the monitored data

at the next time step better by assimilating the monitored

data at the last time step into the ENKF model (Shen

). The above steps were realized by an interactive

operation between MATLAB and GMS in this study.

Site description

The study area located in the intertidal zone which was

reclaimed by the silty sand was about 15 km2. According

to the hydrogeological survey, the aquifer in the intertidal

zone was composed of two confined layers, and the depth

of groundwater level was relatively shallow due to the influ-

ence of overlying additional pressure and the surrounded

seawater. Figure 1 shows the location and the specific

environment of the study area. Q1, Q2, Q3, Q4, Q5, Q7,

Q8, W4, and W5 were observation wells. Figure 1(b) pres-

ents the partitioned blocks of K in layer 2, which was

divided into nine blocks. This was the first inversion of K.

The first inversion was obtained by using the method of

trial-and-error based on the two-period groundwater levels.

That is to say, the first inversion K was obtained through

changing the value of K and making the predicted ground-

water levels fit to monitored levels. The process of



Figure 1 | The location and the specific environment of the study area. (Note: (a) denoted the location of study area; (b) was the surrounded environment of study area.)
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changing the values and blocks of K of the groundwater

model was the implementation of trial-and-error method.

The K of nine blocks in layer 2 were named by observation

wells, i.e., Q1-K2, Q2-K2, Q3-K2, Q4-K2, and so on. In each

block, as shown in Figure 1(b), there was a notation like

‘W5-K2(2.8)’ which meant the first inverse value of the

hydraulic conductivity was 2.8 m�1 d through the method

of trial-and-error in the W5 block. Since the hydraulic con-

ductivity of layer 1 was not partitioned (not displayed in

the figure), there were 10 inverse blocks of the hydraulic

conductivity which would be inverted by ENKF. The first

inverse value of partitioned K was utilized as the initial

value in ENKF which means the 10 blocks values of K

would be inverted by ENKF secondly.
Calculations schemes

ENKF was applied to assimilate and forecast the ground-

water level of a two-layer confined model for a

petrochemical project in the coastal area in Tianjin. As men-

tioned before, the transient water flow equations were set as
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the forecast operator, according to the mass conservation of

fluid and Darcy’s Law, the governing equation for hetero-

geneous isotropic 2D confined aquifer was described by

(Xue & Wu ):

@

@x
K
@h
@x

� �
þ @

@y
K
@h
@y

� �
þW ¼ Ss

@h
@t

(6)

h(x, y, 0) ¼ h0(x, y) (7)

h(x, y, t)jτ1 ¼ hl(x, y, t) (8)

where K [LT�1] is the hydraulic conductivity; h [L] is the

groundwater level; W [LT�1] is the source or sink term,

which was set to zero because of the aquifer was confined

in this study; Ss [L�1] is the specific storage; h0(x, y) [L] is

the initial groundwater head on the 0th day, of which the

depth was about 1.51–5.19 m; τ1 is the boundary condition

of the first type, in this study, the prescribed head was

adopted for four sides of the model and the impervious

boundary was applied for the bottom of model. The
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thickness of aquifer was assigned according to the borehole

data of hydrogeological survey.

The study area was discretized into squares as shown in

Figure 2, the distance between two sides of an element was

10 m, and the observation points were refined, with a total

of 57,956 elements and 123,717 nodes. The model was

divided into two layers vertically, and the single-layer was

divided into 28,978 elements. A set of initial samples

conforming to Gaussian distribution was generated by

superimposing the water level value on the 0th day with

white noise (the mean value of 0 m and a standard deviation

of 0.05 m (Hu )), to assimilate and forecast groundwater

levels of 9 observation points for 29 days in this model. Then

the same white noise used in water level was superimposed

(i.e., the mean value was 0 and the standard deviation was

0.05) with logarithm value of the initial hydraulic conduc-

tivity (lgK) which was the first step before the second

inversion of K through ENKF. As the model was built

from a real field case, the intervals between the monitored

time were different, thus the assimilated time intervals of

ENKF were also different. According to the monitored

time in the local hydrogeological investigation, the assimi-

lated time intervals were set 1.75 d (two), 1.79 d (six),

1.83 d (three), 1.84 d (three), 1.87 d (one), and 1.88 d

(one), with a total of 16 intervals summarized 29 days.

The essence of ENKF was a calculation based on the stat-

istics of samples. In theory, the larger samples stand for the

higher efficiency of the calculation, but the relatively large

samples in the ensemble would increase the computing cost.

Some studies (Evensen ; Naevdal et al. ) have shown

100 samples used in ENKF could achieve good forecasting
Figure 2 | The discretized scheme of the study area.
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groundwater levels which fitted to the monitored data well,

the accuracy of the forecasting results could satisfy the need

for a general application in the real engineering project. For

example, the result of forecasting groundwater levels by

ENKF could be used for the groundwater environmental

impact assessment for some petroleum projects and the early

warning of the groundwater levels for some mining projects.

Combined with previous studies and considering the area of

this study, the 100 samples were adopted, that is, m¼ 100

(k¼ 1, 2, 3… 100).On theother hand, considering the accuracy

of water level probes and the location of study area is in the

intertidal zone, the observation error in the groundwater level

was set as 0.01 m and the groundwater level was monitored at

each assimilated step during the operation of ENKF (Hu

). The observation error of K was set as 5% of their value

and it was only observed in the first time step (i.e., 1.84 d).

The relative observation error of 5% was adopted to study the

soil moisture in some previous studies (Shi et al. ; Hu

). In this study, the relative observation error of 5% for K

was employed to study whether the same observation error

used in both layers could present the same convergent results

in ENKF. In reality, it is difficult to define the observation

error ofK, the value of relative error (5%)was just to test the per-

formance of ENKF in the two-layer confined aquifers.
Evaluating indexes of ENKF

To evaluate the efficiency of assimilation and forecast in

ENKF, the RMSE (root-mean-square error) (Naevdal et al.

; Cui & Wu ), SPREAD (ensemble Spread) (Chen

& Zhang ; Gelsinari et al. ), and E (efficiency of

calculation in ENKF) (Hu ) were used in this study:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

[E(hi)� dobs,i]
2

vuut (9)

SPREAD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

VAR(hi)

vuut (10)

E(%) ¼ 100 × 1�

Pn
i¼1

(ha
k � dob,i)

2

Pn
i¼1

(hb
k � dob,i)

2

8>><
>>:

9>>=
>>;

(11)



Figure 3 | The flow chart of this study.

1282 X. Huang et al. | Case study of Tianjin city coastal area Water Supply | 21.3 | 2021

Downloaded fr
by guest
on 23 April 202
where n is the observed item, in this study the n was 19,

including the groundwater levels at 9 observation points

and 10 inverse blocks of hydraulic conductivity; hi denotes

the groundwater level or hydraulic conductivity; E(hi) is the

mean value of samples after assimilated processes at obser-

vation point i or block i; dobs,i is the monitored data of a

real field at observation point i or block i; VAR(hi) is the var-

iance of samples at observation point i or block i; hk is the

simulated value, the superscript a and b represent after the

assimilated process and before the assimilated process,

respectively.

RMSE was used to evaluate the overall capability of

ENKF, the smaller RMSE often means the better perform-

ance of ENKF. SPREAD was used to evaluate the

convergence of ENKF, the rapidly decreased values of

SPREAD indicated the fast convergence of ENKF. When

E was more than 0 demonstrated the forecasting value by

ENKF fitted the monitored data better than the initial simu-

lation, vice versa.

In addition, comparative analyses among ENKF, the

initial model, and the modified model were done to see

whether ENKF, to some extent, could improve the accuracy

of forecasting groundwater levels. In terms of the comparative

analyses between the forecasting values by ENKF and the

initial simulation, the groundwater levels at some observation

points were chosen to compare directly in the following sec-

tions and the second inverse K by ENKF was introduced to

the initial model to get the modified model. The forecasting

error between the modified model and the initial model was

analyzed. The analytical method was a calculation of relative

errors that subtracted forecasting errors of the modified

model from the initial model. If the relative errors were calcu-

lated above 0, indicated that there was a certain improvement

in the accuracy of forecasting water level, otherwise, no

obvious improvement existed in terms of the modified

model. The logic diagram of this study can be seen in Figure 3.
Figure 4 | The efficiency of the ENKF forecast.
RESULTS

Results of forecasting groundwater levels

Results of forecasting groundwater levels through ENKF

presented a good fit for the real-field monitored values as
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shown in Figure 4. SPREAD dropped rapidly in an exponen-

tial form, demonstrated that the assimilation of ENKF

converged quickly. RMSE was small in the assimilated pro-

cess, it decreased to 0.16471 at the final time step (i.e., the

16th time step), and the relatively small value of RMSE indi-

cated that forecasting values were generally consistent with

the real-field monitored values. However, RMSE showed a
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fluctuated decline process, which suggested that ENKF did

not perform well at some assimilated time steps (mainly

the odd time steps of assimilation). This may be related to

the location of the study area, ENKF operated well at

some time steps (even time steps) because of the well-fluctu-

ated groundwater levels but performed worse at some time

steps due to the relatively weak fluctuations in monitored

values. This phenomenon showed consistency with the pre-

vious studies (Cui & Wu ; Song et al. ). The E

(efficiency of calculation in ENKF) at the final assimilated

time step was calculated using Equation (11), according to

forecasting values of ENKF and the initial simulation

which did not assimilate the real-field monitored values.

The result of E was 68.55%, which showed ENKF per-

formed better than the initial simulation in fitting the

monitored data to a certain extent.

The absolute errors at all observation points were calcu-

lated by subtracting real-field monitored values from

forecasting values, as shown in Figure 5. Among ground-

water levels of nine observation points forecast by ENKF,

seven observation points had relatively good results with

the absolute errors were less than 0.1 m. The absolute

error of Q8 was close to 0 m, presenting the best result of

seven observations, and ENKF just presented a relatively

good forecasting result at Q1, from Figure 5 the absolute

error of Q1 fluctuated in the process of ENKF. However,

the forecasting results of Q5 and W5 showed a poor per-

formance, which could be explained by the local

hydrogeological conditions and the intertidal zone. Q5,
Figure 5 | Absolute errors at each observation point by ENKF.
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located in the middle of the study area, was less affected

by tides and the hydraulic conductivity was small, these

two factors led to the weak fluctuations in the groundwater

level. Since the groundwater level at Q5 provided less infor-

mation, ENKF could not forecast the slight fluctuations in

groundwater level. Although the absolute error of the

groundwater level at Q5 was large (in Figure 5), the error

was decreased gradually with the operation of assimilation,

which indicated that ENKF needed more long time moni-

tored data at Q5 to forecast water level. The groundwater

level at W5 fluctuated strongly because it was located at

the tidal boundary (Figure 1). Although the fluctuations in

groundwater levels could make ENKF perform well (Song

et al. ), the inevitable phenomenon was that the moni-

tored data associated with much more noise from the real

field could make ENKF perform variously between different

assimilated steps. Thus ENKF could perform well when

monitored data of real field were subjected to a range of

interferences, while for the monitored data with relatively

strong or weak interferences i.e., the intensity of interferences

was out of the range accepted by ENKF, and ENKF would

produce a bad result.

Results of second inverse K

The 10 blocks values of hydraulic conductivity (K) in the

two-layer confined aquifer were inverted by ENKF secondly

of which the initial values were obtained by the first inver-

sion based on the two-period water levels. The second

inverse values of K at the final assimilated step, the initial

values of K, and the improvement degrees are shown in

Table 1. The improvement degrees were calculated by the

differences between the second inverse values and the initial

values dividing the initial values. It can be seen from Table 1

that the second inverse K of layer 2 smoothly converged to a

specific value within 16 assimilation steps, with little differ-

ence from initial values. That means when the relative

observation error of K was 5%, the assimilation process

was convergent for layer 2, while the second inverse K of

layer 1 was quite different from the initial value, and even

went beyond the initial scope of interferences. To further

explain the differences of inverse K between the two layers

in the same model when taking the same observation

error, the convergent details of 100 samples in the



Table 1 | The initial disturbance of K and inverse results

Name of
blocks

Initial value
(m�1 d)

Standard
deviation

Range of logarithmic
value

Range of true
value

Second inverse K
(m�1 d)

Improvement degree
(%)

K1 0.6 0.05 (�0.636, �0.389) (0.529, 0.677) 0.709 18.267

Q1-K2 3.395 0.05 (1.075, 1.401) (2.930, 4.060) 3.393 0.059

Q2-K2 2.2 0.05 (0.641, 0.967) (1.898, 2.631) 2.198 0.091

Q3-K2 0.95 0.05 (�0.198, 0.128) (0.819, 1.136) 0.949 0.105

Q4-K2 0.1 0.05 (�2.449, �2.124) (0.086, 0.119) 0.099 1.000

Q5-K2 0.01 0.05 (�4.752, �4.426) (0.012, 0.009) 0.009 10.000

Q7-K2 0.1 0.05 (�2.449, �2.124) (0.086, 0.119) 0.099 1.000

Q8-K2 0.1 0.05 (�2.449, �2.124) (0.086, 0.119) 0.099 1.000

W4-K2 13.0 0.05 (2.147, 2.744) (11.221, 15.547) 12.993 0.054

W5-K2 2.8 0.05 (0.882, 1.208) (2.416, 3.348) 2.798 0.071

Figure 6 | Convergence in K samples during the operation of ENKF. (Note: (a) samples convergences of K in layer 2 for the 5% relative observation error; (b), (c), and (d) samples con-

vergences of K in layer 1 for the relative observation error adopted 5%, 4%, 3%, respectively.)
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assimilation process are drawn in Figure 6. To avoid rep-

etition, the convergence of Q1-K2 (hydraulic conductivity

of Q1 block in layer 2) was selected to demonstrate the
om http://iwa.silverchair.com/ws/article-pdf/21/3/1277/887336/ws021031277.pdf
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capability of ENKF in layer 2. Figure 6(a) indicates that

Q1-K2 had a great convergence at time step 2, the values

of samples kept approaching the initial values with the
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process of assimilation. There was no obvious change in the

mean value of samples after the 8th assimilation step. While

the divergence appeared in the assimilated process of ENKF

for K1, values of samples could not converge as shown in

Figure 6(b). The reason why the divergence appeared was

that the noise of model was too large to make the model

inaccurate or the observation error was too big to make

the Kalman gain matrix Kk small, which made the inno-

vation account for a large proportion and lead to the

inability to fit the real-field monitored values (Evensen

; Dan et al. ). Because of the same numerical simu-

lation adopted in this paper, the system noise was

considered as zero, so we tried to make the assimilated pro-

cess of K1 converge by reducing the observation error and

increasing the proportion of the original value. When rela-

tive observation error 4% was adopted for the layer 1 in

ENKF, although the mean value of K1 did not converge to

a specific value within 16 assimilation steps, it was obvious

that the convergence of samples appeared as seen in

Figure 6(c). While for the relative observation error 3%,

ENKF performed better and converged to a specific value

in a short time as demonstrated by Figure 6(d). The obser-

vation error had a great influence on the assimilation

process as concluded from the above. K2 (the nine blocks

of K in layer 2) could converge with a larger observation

error in the ENKF system, while for K1 (the K in layer 1), a

smaller observation error should be applied to make the

assimilation converge. It is interesting that ENKF shows a

huge difference for the same parameter in the same model.

The reason may because the model is two-layer and the

location of study area is an intertidal zone. Anthropogenic

activities and tidal influences are two main factors that can

strongly affect the inversion of K, especially for layer 1 in

this study. As described above, the K of layer 1 was not parti-

tioned and the initial inversion based on the two-period

groundwater levels could have a larger error compared

with the K in layer 2. While for the operation of ENKF, the

same observation error of 5% was adopted in the two

layers, which led to the divergence of ENKF for K1.

The above analysis showed that even if the same error

was adopted in the same model for the same parameter,

the performance of ENKF could be different. Especially

for the real monitored data subjected to much more external

interferences, the inversion of K had a larger error based on
://iwa.silverchair.com/ws/article-pdf/21/3/1277/887336/ws021031277.pdf
the monitored data. If the inverse K with a large error and

the inverse K with a small error were inverted by ENKF sim-

ultaneously, the possibility of filter divergence was greater.

Thus, observation errors of the same parameter should be

considered different in the real-field model, especially for

the two or more layers of groundwater models.
DISCUSSION

Comparative analyses between the assimilation before

and after

The forecasting groundwater levels by ENKF that fitted the

real monitored levels have been analyzed in the above sec-

tions. To further demonstrate the positive and negative

effects of ENKF, forecasting levels by ENKF and the initial

simulation without any modification were compared as dis-

played in the following sections. The results showed that the

forecasting by ENKF performed worse than the initial simu-

lation at W5 and Q5, while performances of ENKF at the

other seven observation points were better. The comparative

analysis of the two methods is displayed in Figure 7, there

were analyses of W5, Q5, Q4, and Q8, other observation

points (Q1, Q2, Q3, Q7, and W4) were not reported here

as they were similar to Q4 and Q8. As detailed above,

since the intensities of the interferences at W5, Q5 were

out of the range which could be accepted by ENKF, the effi-

ciency of forecasting by ENKF was lower than the initial

simulation. By the initial simulation, W5 showed a well-fluc-

tuated curve which fitted the monitored data well due to its

special locations, while for the other observation points,

whether using ENKF or the initial simulation, all showed

weak fluctuations as indicated by Figure 7(b)–7(d). In

terms of the differences between values of forecasting and

real monitored, ENKF performed better at the other seven

observation points, which can be seen from Figure 7(c)

and 7(d), the forecasting groundwater levels by ENKF at

Q4 and Q8 were closer to the real monitored curves than

the initial simulation. Both ENKF and the initial simulation

have advantages and disadvantages in forecasting the

groundwater level, but they could be complementary to

improve the accuracy of the model. Thus, if the accuracy

of forecasting groundwater levels was required to be



Figure 7 | Comparative analyses in forecasting groundwater levels between ENKF and the initial simulation. (Note: here are forecasting results at W5, Q5, Q4, and Q8.)
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higher, the combination of two methods could be con-

sidered to increase the forecasting accuracy of the flow field.

Comparative analyses between the modified and the

initial simulation

As mentioned before, the modified model was obtained by

introducing the second inverse K presented in Table 1 into

the initial simulation. Relative errors of nine observation

points are displayed in Figure 8. Figure 8(a) shows that the

relative errors of Q3, Q4, Q5, W4, and W5 were more

than 0, which meant the modified model improved the accu-

racy in forecasting groundwater levels. Although the relative

error of W5 showed a fluctuation revealing there were some

unstable forecasting processes at some time steps in the

modified simulation, this was likely to be accounted for by

the special position of W5. From the values of relative

errors at W5, the modified model improved the accuracy

of forecasting distinctly compared with other observation

wells. Q5 was located in the middle of the study area, the

weak fluctuations made ENKF perform poorly, while the

improvement degree of hydraulic conductivity at Q5 block

(Q5-K2) was the highest among all inverse blocks from the

Table 1. The relative large improvement degree in the

hydraulic conductivity made Q5 present a large relative

error that meant that the modified model was greater than
om http://iwa.silverchair.com/ws/article-pdf/21/3/1277/887336/ws021031277.pdf
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the initial model. This means forecasting accuracy of

groundwater levels in the middle of the study area could

be enhanced by the large improvement degree of K through

ENKF. Figure 8(a) shows the higher the improvement

degree of hydraulic conductivity (mainly for the hydraulic

conductivity of layer 2,K2), the greater the accuracy of ground-

water level forecasting by the modified model. The relative

errors calculated at Q2, Q7, and Q8 showed fluctuations as

shown in Figure 8(b) which meant that the modified model

forecasted the groundwater level unstably at the three obser-

vation points. For Q1, the modified model showed a poor

performance within the 16-time steps. Although the perform-

ance of the modified model was not good at the four

observation points, the trend that the higher improvement

degree of K2 could enhance the accuracy of groundwater fore-

casting still appears in Figure 8(b). Figure 8 demonstrates that

not every observation point displayed the good result when

forecast by the modified model, which may be related to the

fluctuation of groundwater level and the improvement

degree of second inverse hydraulic conductivity. From

Table 1, the improvement degrees of the second inverse

hydraulic conductivity were small except for Q5-K2. Even if

the improvement degrees of W5-K2, W4-K2, Q4-K2, and Q3-

K2 were small, the modified model could also perform well

in forecasting water level due to the strong fluctuations existed

in the real-field monitored data. While Q1, Q2, Q7, and Q8



Figure 8 | Comparative analyses in forecasting groundwater levels between the modified model and the initial model. (Note: (a) the observation points with improved accuracy; (b) the

observation points with fluctuated accuracy. Q1-0.059% indicates that improvement degree of K2 was 0.059% in the Q1 block.)
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were located in the relatively middle of the model far away

from the tidal boundary, monitored groundwater levels at

these observation points showed a weaker fluctuation com-

pared with W5, W4, Q4, and Q3. Thus, under the

conditions of a small improvement degree of K2, the modified

model showed fluctuating results at Q1, Q2, Q7, and Q8.

From the comparative analysis between the modified

simulation and the initial simulation, if the observation

points had strongly fluctuating groundwater levels, even a

small improvement degree of K in the modified model

could perform better than the initial model. For the

weakly fluctuating groundwater levels, a large improvement

degree of K needed to enhance the efficiency of forecasting

by the modified model. This means that the modified model

with a large improvement degree of hydraulic conductivity

can compensate for the deficiency caused by weak fluctu-

ation in groundwater levels and then improve the accuracy

of forecasting waters.
://iwa.silverchair.com/ws/article-pdf/21/3/1277/887336/ws021031277.pdf
CONCLUSIONS

In this study, an assimilated system based on ENKF and 2D

confined flow models of two layers was constructed.

Groundwater levels in the study area were forecast gradually

with different time intervals by assimilating the real-field

monitored data and 10 blocks of hydraulic conductivity

were inverted by ENKF secondly. Comparative analyses

among ENKF, the modified model according to the

second inverse K, and the initial model were discussed in

this study. The key findings were as follows:

(1) ENKF could utilize all the real-field monitored data

efficiently, the performance was very acceptable when

assimilating and forecasting groundwater levels. How-

ever, when monitored data at some observation points

were beyond the intensity of interferences accepted by

ENKF, the performance was not good.
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(2) Results of the second inverse hydraulic conductivity

demonstrated that even if the same parameter was used

in the same model, the relative observation errors of

the same parameter could be different, especially

for the two or more layer groundwater model. To

improve the accuracy of forecasting, different relative

observation errors of the same parameter should be con-

sidered in ENKF for the complex groundwater model.

(3) The combination of ENKF and the initial model could

be a considered a method to improve the accuracy of

forecasting. For example, ENKF can be used at almost

all observation points, and the initial model could be a

supplementary method to improve the accuracy of

some observation points at which ENKF performed

poorly.

(4) The large improvement degree of hydraulic conductivity

could enhance the efficiency of forecasting especially for

the observation points located in the middle of the

model which could compensate for the deficiency

caused by weak fluctuation in groundwater levels

ENKF was successfully introduced into the real-field

confined flow model of two layers which was located in

the coastal area of Tianjin city and performed well on the

whole. This study demonstrated how to improve the accu-

racy of forecasting groundwater levels by combining

ENKF and initial model or using a modified model with

the second inverse K by ENKF. These methods could be

used to improve the accuracy of forecasting groundwater

levels, which could provide the relevant reference for

urban management of groundwater resources and give

early warning of water levels, especially for the coastal

areas subjected to seawater intrusion. While the range of

interferences accepted by ENKF was not analyzed quantitat-

ively in this study, this aspect represented the direction for

further studying the forecasting by ENKF.
ACKNOWLEDGEMENTS

The authors sincerely thank Dr Yang at the Laboratory of

Eco-hydrology and Water-soil Conservation for her help.

The authors acknowledge the valuable comments from

two anonymous reviewers and editors.
om http://iwa.silverchair.com/ws/article-pdf/21/3/1277/887336/ws021031277.pdf

4

DISCLOSURE STATEMENT

No potential conflict of interest was reported by the authors.
DATA AVAILABILITY STATEMENT

All relevant data are included in the paper or its Supplemen-

tary Information.
REFERENCES
Ansarifar, M., Salarijazi, M., Ghorbani, K. & Kaboli, A. 
Simulation of groundwater level in a coastal aquifer. Marine
Georesources & Geotechnology 38 (3), 257–265. doi:10.1080/
1064119X.2019.1639226.

Burgers, G., van Leeuwen, P. J. & Evensen, G.  Analysis
scheme in the ensemble Kalman filter. Monthly Weather
Review 126 (6), 1719–1724. doi:10.1175/1520-0493(1998)
126%3C1719:ASITEK%3E2.0.CO;2.

Chakraborty, S., Maity, P. K. & Das, S.  Investigation,
simulation, identification and prediction of groundwater
levels in coastal areas of Purba Midnapur, India, using
MODFLOW. Environment Development and Sustainability
22 (4), 3805–3837. doi:10.1007/s10668-019-00344-1.

Chen, B., Gong, H., Chen, Y., Li, X., Zhou, C., Lei, K., Zhu, L.,
Duan, L. & Zhao, X.  Land subsidence and its relation
with groundwater aquifers in Beijing Plain of China. Science
of the Total Environment 735 (2020), 139111. doi:10.1016/j.
scitotenv.2020.139111.

Chen, Y. & Zhang, D.  Data assimilation for transient flow in
geologic formations via ensemble Kalman filter. Advances in
Water Resources 29 (8), 1107–1122. doi:10.1016/j.advwatres.
2005.09.007.

Chenini, I. & Msaddek, M. H.  Groundwater recharge
susceptibility mapping using logistic regression model and
bivariate statistical analysis. Quarterly Journal of Engineering
Geology and Hydrogeology 53 (2), 167–175. doi:10.1144/
qjegh2019-047.

Cui, K. & Wu, J.  Effect of observation data time/spatial
density on Ensemble Kalman Filter. Shuili Xuebao 44 (08),
915–923 (in Chinese with English Abstract).

Dan, Y., Zeng, Y., Li, C., Wei, R. & Aanonsen, S.  Research
advance of suppressing Kalman filtering divergence.
Computer Engineering and Applications 52 (4), 13–18, 23.
doi:10.3778/j.issn.1002-8331.1403-0037 (in Chinese with
English Abstract).

Evensen, G.  Using the extended Kalman Filter with a
multilayer quasi-geostrophic ocean model. Journal of
Geophysical Research-Oceans 97 (C11), 17905–17924.
doi:10.1029/92JC01972.

http://dx.doi.org/10.1080/1064119X.2019.1639226
http://dx.doi.org/10.1175/1520-0493(1998)126%3C1719:ASITEK%3E2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(1998)126%3C1719:ASITEK%3E2.0.CO;2
http://dx.doi.org/10.1007/s10668-019-00344-1
http://dx.doi.org/10.1007/s10668-019-00344-1
http://dx.doi.org/10.1007/s10668-019-00344-1
http://dx.doi.org/10.1007/s10668-019-00344-1
http://dx.doi.org/10.1016/j.scitotenv.2020.139111
http://dx.doi.org/10.1016/j.scitotenv.2020.139111
http://dx.doi.org/10.1016/j.advwatres.2005.09.007
http://dx.doi.org/10.1016/j.advwatres.2005.09.007
http://dx.doi.org/10.1144/qjegh2019-047
http://dx.doi.org/10.1144/qjegh2019-047
http://dx.doi.org/10.1144/qjegh2019-047
http://dx.doi.org/10.3778/j.issn.1002-8331.1403-0037
http://dx.doi.org/10.3778/j.issn.1002-8331.1403-0037
http://dx.doi.org/10.1029/92JC01972
http://dx.doi.org/10.1029/92JC01972


1289 X. Huang et al. | Case study of Tianjin city coastal area Water Supply | 21.3 | 2021

Downloaded from http
by guest
on 23 April 2024
Evensen, G.  Sequential data assimilation with a nonlinear
quasi-geostrophic model using Monte Carlo methods to
forecast error statistics. Journal of Geophysical Research:
Oceans 99 (C5), 10143–10162. doi:10.1029/94JC00572.

Evensen, G.  The ensemble Kalman filter for combined state
and parameter estimation. IEEE Control Systems Magazine 3
(29), 83–104. doi:10.1109/MCS.2009.932223.

Gelsinari, S., Doble, R., Daly, E. & Pauwels, V. R. N. 
Feasibility of improving groundwater modeling by
assimilating evapotranspiration rates. Water Resources
Research 56 (2). doi:10.1029/2019WR025983.

Haugen, V. E. & Evensen, G.  Assimilation of SLA
and SST data into an OGCM for the Indian Ocean.
Ocean Dynamics 52 (3), 133–151. doi:10.1007/s10236-002-
0014-7.

Hendricks Franssen, H. J. & Kinzelbach, W.  Real-time
groundwater flow modeling with the Ensemble Kalman
Filter: joint estimation of states and parameters and the filter
inbreeding problem. Water Resources Research 44 (9),
W09408. doi:10.1029/2007WR006505.

Hu, D.  Simulation of Regional-Scale Water Movement in
Saturated and Unsaturated Zone Based on Ensemble
Kalman Filter. Master, Wuhan University, Wuhan, pp. 59–61
(in Chinese with English Abstract).

Huang, C., Hu, B. X., Li, X. & Ye, M.  Using data assimilation
method to calibrate a heterogeneous conductivity field and
improve solute transport prediction with an unknown
contamination source. Stochastic Environmental Research
and Risk Assessment 23 (8), 1155–1167. doi:10.1007/s00477-
008-0289-4.

Huang, X., Liu, G., Xia, C. & Yang, M.  Simulated
groundwater dynamics and solute transport in a coastal
phreatic aquifer subjected to different tides. Marine
Georesources & Geotechnology. doi:10.1080/1064119X.
2020.1754975 (accessed May 2020).

Khaki, M., Forootan, E., Kuhn, M., Awange, J., Papa, F. & Shum,
C. K.  A study of Bangladesh’s sub-surface water storages
using satellite products and data assimilation scheme.
Science of the Total Environment 625, 963–977. doi:10.1016/
j.scitotenv.2017.12.289.

Kim, J., Lee, J., Cheong, T., Kim, R., Koh, D., Ryu, J. & Chang, H.
 Use of time series analysis for the identification of tidal
effect on groundwater in the coastal area of Kimje, Korea.
Journal of Hydrology 300 (1–4), 188–198. doi:10.1016/j.
jhydrol.2004.06.004.

Ma, C., Li, Y., Li, X. & Gao, L.  Evaluation of
groundwater sustainable development considering seawater
intrusion in Beihai City, China. Environmental Science and
Pollution Research 27 (5), 4927–4943. doi:10.1007/s11356-
019-07311-3.

Margulis, S., McLaughlin, D., Entekhabi, D. & Dunne, S. 
Land data assimilation and estimation of soil moisture using
measurements from the Southern Great Plains 1997 Field
Experiment. Water Resources Research 38 (12), 1299. doi:10.
1029/2001WR001114.
://iwa.silverchair.com/ws/article-pdf/21/3/1277/887336/ws021031277.pdf
Naevdal, G., Johnsen, L., Aanonsen, S. & Vefring, E. 
Reservoir monitoring and continuous model updating using
Ensemble Kalman Filter. SPE Journal 10 (1), 66–74. doi:10.
2118/84372-PA.

Nan, T. &Wu, J. Groundwater parameter estimation using the
ensemble Kalman filter with localization. Hydrogeology
Journal 19 (3), 547–561. doi:10.1007/s10040-010-0679-9.

Portoghese, I., Uricchio, V. & Vurro, M.  A GIS tool for
hydrogeological water balance evaluation on a regional scale
in semi-arid environments. Computers & Geosciences 31 (1),
15–27. doi:10.1016/j.cageo.2004.09.001.

Purushotham, D., Prakash, M. R. & Rao, A. N.  Groundwater
depletion and quality deterioration due to environmental
impacts in Maheshwaram watershed of R.R. district, AP
(India). Environmental Earth Sciences 62 (8), 1707–1721.
doi:10.1007/s12665-010-0666-4.

Rahman, A. T. M. S., Hosono, T., Quilty, J. M., Das, J. & Basak, A.
 Multiscale groundwater level forecasting: coupling new
machine learning approaches with wavelet transforms.
Advances in Water Resources 141 (2020), 103595. doi:10.
1016/j.advwatres.2020.103595.

Ross, J. L. & Andersen, P. F.  The ensemble Kalman filter for
groundwater plume characterization: a case study.
Groundwater 56 (4), 571–579. doi:10.1111/gwat.12786.

Schöniger, A., Nowak, W. & Hendricks Franssen, H. J. 
Parameter estimation by ensemble Kalman filters with
transformed data: approach and application to hydraulic
tomography. Water Resources Research 48 (4), W04502.
doi:10.1029/2011WR010462.

Shen, Y.  Research on Hydrogeological Parameter Test by
Distributed Temperature Sensor and Forecast of Groundwater
Level by Ensemble Kalman Filter. Doctor, China University
of Geosciences, Beijing, pp. 51–68 (in Chinese with English
Abstract).

Shi, L., Zhang, Q., Song, X. & Fang, X.  Application of
groundwater level data to data assimilation for unsaturated
flow. Advances in Water Science 26 (03), 404–412 (in
Chinese with English Abstract).

Song, X., Shi, L. & Yang, J.  Forecasting of dynamics phreatic
aquifer based on the Ensemble Kalman Filter. Engineering
Journal of Wuhan University 47 (03), 324–331 (in Chinese
with English Abstract)).

Tong, J., Hu, B. X. & Yang, J.  Using data assimilation method
to calibrate a heterogeneous conductivity field conditioning
on transient flow test data. Stochastic Environmental
Research and Risk Assessment 24 (8), 1211–1223. doi:10.
1007/s00477-010-0392-1.

Wang, J., Zhao, J., Lei, X. & Wang, H.  An effective method for
point pollution source identification in rivers with performance-
improved ensemble Kalman filter. Journal of Hydrology 577
(2019), 123991. doi:10.1016/j.jhydrol.2019.123991.

Xue, Y. & Wu, J.  Dixiashui Donglixue, 3rd edn. Geological
Publishing House, Beijing, pp. 32–33.

Yoon, S., Lee, S., Williams, J. R. & Kang, P. K.  Effects of
variable-density flow on the value-of-information of pressure

http://dx.doi.org/10.1029/94JC00572
http://dx.doi.org/10.1029/94JC00572
http://dx.doi.org/10.1029/94JC00572
http://dx.doi.org/10.1109/MCS.2009.932223
http://dx.doi.org/10.1109/MCS.2009.932223
http://dx.doi.org/10.1029/2019WR025983
http://dx.doi.org/10.1029/2019WR025983
http://dx.doi.org/10.1007/s10236-002-0014-7
http://dx.doi.org/10.1007/s10236-002-0014-7
http://dx.doi.org/10.1029/2007WR006505
http://dx.doi.org/10.1029/2007WR006505
http://dx.doi.org/10.1029/2007WR006505
http://dx.doi.org/10.1029/2007WR006505
http://dx.doi.org/10.1007/s00477-008-0289-4
http://dx.doi.org/10.1007/s00477-008-0289-4
http://dx.doi.org/10.1007/s00477-008-0289-4
http://dx.doi.org/10.1007/s00477-008-0289-4
http://dx.doi.org/10.1080/1064119X.2020.1754975
http://dx.doi.org/10.1080/1064119X.2020.1754975
http://dx.doi.org/10.1080/1064119X.2020.1754975
http://dx.doi.org/10.1016/j.scitotenv.2017.12.289
http://dx.doi.org/10.1016/j.scitotenv.2017.12.289
http://dx.doi.org/10.1016/j.jhydrol.2004.06.004
http://dx.doi.org/10.1016/j.jhydrol.2004.06.004
http://dx.doi.org/10.1007/s11356-019-07311-3
http://dx.doi.org/10.1007/s11356-019-07311-3
http://dx.doi.org/10.1007/s11356-019-07311-3
http://dx.doi.org/10.1029/2001WR001114
http://dx.doi.org/10.1029/2001WR001114
http://dx.doi.org/10.1029/2001WR001114
http://dx.doi.org/10.2118/84372-PA
http://dx.doi.org/10.2118/84372-PA
http://dx.doi.org/10.1007/s10040-010-0679-9
http://dx.doi.org/10.1007/s10040-010-0679-9
http://dx.doi.org/10.1016/j.cageo.2004.09.001
http://dx.doi.org/10.1016/j.cageo.2004.09.001
http://dx.doi.org/10.1016/j.cageo.2004.09.001
http://dx.doi.org/10.1007/s12665-010-0666-4
http://dx.doi.org/10.1007/s12665-010-0666-4
http://dx.doi.org/10.1007/s12665-010-0666-4
http://dx.doi.org/10.1007/s12665-010-0666-4
http://dx.doi.org/10.1016/j.advwatres.2020.103595
http://dx.doi.org/10.1016/j.advwatres.2020.103595
http://dx.doi.org/10.1111/gwat.12786
http://dx.doi.org/10.1111/gwat.12786
http://dx.doi.org/10.1029/2011WR010462
http://dx.doi.org/10.1029/2011WR010462
http://dx.doi.org/10.1029/2011WR010462
http://dx.doi.org/10.1007/s00477-010-0392-1
http://dx.doi.org/10.1007/s00477-010-0392-1
http://dx.doi.org/10.1007/s00477-010-0392-1
http://dx.doi.org/10.1016/j.jhydrol.2019.123991
http://dx.doi.org/10.1016/j.jhydrol.2019.123991
http://dx.doi.org/10.1016/j.jhydrol.2019.123991
http://dx.doi.org/10.1016/j.advwatres.2019.103468
http://dx.doi.org/10.1016/j.advwatres.2019.103468


1290 X. Huang et al. | Case study of Tianjin city coastal area Water Supply | 21.3 | 2021

Downloaded fr
by guest
on 23 April 202
and concentration data for aquifer characterization.
Advances in Water Resources 135 (2020), 103468. doi:10.
1016/j.advwatres.2019.103468.

Yu, D., Yang, J., Shi, L., Zhang, Q., Huang, K., Fang, Y. & Zha, Y.
 On the uncertainty of initial condition and initialization
approaches in variably saturated flow modeling. Hydrology
and Earth System Sciences 23 (7), 2897–2914. doi:10.5194/
hess-23-2897-2019.
om http://iwa.silverchair.com/ws/article-pdf/21/3/1277/887336/ws021031277.pdf

4

Zheng, Y., Wang, Z., Fang, B., He, C., Li, L. & Li, C.  Variation
of groundwater level in Ordos, Inner Mongolia, China from
2005 to 2014. Journal of Desert Research 35 (4), 1036–1040
(in Chinese with English Abstract).

Zhou, Y. X., Testroet, C. & Vangeer, F. C.  Using KALMAN
FILTERING to improve and quantify the uncertainty of
numerical groundwater simulations. 2.Application tomonitoring
network design. Water Resources Research 27 (8), 1995–2006.
First received 1 September 2020; accepted in revised form 14 December 2020. Available online 28 December 2020

http://dx.doi.org/10.1016/j.advwatres.2019.103468
http://dx.doi.org/10.5194/hess-23-2897-2019
http://dx.doi.org/10.5194/hess-23-2897-2019
http://dx.doi.org/10.1029/91WR00510
http://dx.doi.org/10.1029/91WR00510
http://dx.doi.org/10.1029/91WR00510
http://dx.doi.org/10.1029/91WR00510

	Joint estimation of states and parameters of two-layer coastal aquifers based on ENKF
	INTRODUCTION
	MATERIALS AND METHODS
	Ensemble Kalman Filter (ENKF)
	Site description
	Calculations schemes
	Evaluating indexes of ENKF

	RESULTS
	Results of forecasting groundwater levels
	Results of second inverse K

	DISCUSSION
	Comparative analyses between the assimilation before and after
	Comparative analyses between the modified and the initial simulation

	CONCLUSIONS
	The authors sincerely thank Dr Yang at the Laboratory of Eco-hydrology and Water-soil Conservation for her help. The authors acknowledge the valuable comments from two anonymous reviewers and editors.
	DISCLOSURE STATEMENT
	DATA AVAILABILITY STATEMENT
	REFERENCES


