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Monitoring point optimization in lake waters

Gaoxuan Liu, Jiaoyan Ai, Jun Xu, Jianwu Zheng and Dongyi Yao
ABSTRACT
In order to grasp the distribution of water quality index in lake water, taking Jinghu Lake of Guangxi

University as the experimental object, an radial basis function (RBF) neural network was combined

with a genetic algorithm on the basis of an unmanned ship to study the optimal selection of

monitoring points. The single-objective and multi-objective optimization of water quality parameters

were tested respectively and used to make the fitting distribution map. The results show that the

genetic neural network has obvious advantages over the traditional isometric monitoring in the

distribution error of water quality parameters, and the data reflected by the results are still accurate

and effective at least six weeks after optimization. The results show that a genetic neural network

can significantly improve the efficiency of water quality monitoring.
This is an Open Access article distributed under the terms of the Creative

Commons Attribution Licence (CC BY 4.0), which permits copying,

adaptation and redistribution, provided the original work is properly cited

(http://creativecommons.org/licenses/by/4.0/).
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INTRODUCTION
With the increase in outdoor recreational activities, the degree

of human activity and changes to the natural environment,

such as lakes, have become a problem (Li ). Therefore,

water quality monitoring is particularly important for master-

ing the changing and the trend of water quality. In water

qualitymonitoring, the layout of themonitoring points directly

affects the efficiency and accuracy of the monitoring work.

The optimal selection of monitoring points will improve the

working efficiency of the measurement staff and save econ-

omic expenditure (Wang et al. ). Long-term effective

data collection and analysis of lake waters can help meet

laws outlined for lake environmental changes, the distribution

of various parameters, and thus prevent and control water pol-

lution in a timely and effective manner (Bai et al. ).

In recent years, as people pay more attention to water

resources, better management of water resources is being

explored. For lakes, monitoring stations to monitor water

quality are used, but construction costs are high and main-

tenance is difficult (Liu et al. ). Mobile water quality
monitoring is a feasible method, but the existing mobile

monitoring equipment has the disadvantages of large

volume, inconvenient carrying, high energy consumption

and secondary pollution. Therefore, we designed an auton-

omous mobile water quality monitoring system. It mainly

consists of a monitoring platform (water quality monitoring

unmanned ship), ground control terminal, remote client and

hand-hold terminal (Figure 1). The system can realize auton-

omous movement through path editing and realize on-line

monitoring of temperature, pH, dissolved oxygen, conduc-

tivity and chlorophyll a.

At present, for the optimization of lake water monitoring

points, common methods include cluster analysis, dynamic

closeness method, corresponding analysis, matter element

analysis and other mathematical statistics methods. Among

them, the cluster analysis method is simple in the case of

small sample data, but ignores the interconnection of data

space distribution (Mahbub et al. ). The dynamic close-

ness method can reflect the dynamic changes of water

quality parameters at different times and perform cluster

analysis but does not reflect the overall spatial distribution

(Cui et al. ). The correspondence analysis method can

intuitively put many sample variables on the same graph at
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Figure 1 | Monitoring platform (water quality monitoring unmanned ship) and water quality control system.
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the same time, but the results differ greatly for different evalu-

ation environments (Zheng et al. ). The concept of

matter-element analysis is clear and the calculation is

simple, but the actual geographical location and environment

of the monitoring point are not considered (Wang et al. ).

Based on the above situation, this experiment uses a water

qualitymonitoring unmanned ship, relying on its fast and effi-

cient data monitoring characteristics, and adopts the method

of combining a genetic algorithm with an radial basis func-

tion (RBF) neural network. The genetic algorithm utilizes

the rule ‘survival of the fittest’ and has a good global search

ability. RBF neural network has good generalization ability

for spatial fitting of data, and a quick learning convergence

speed, can complement each other, a combination which

meets the experimental requirements of robustness and accu-

racy, and keeps the fast convergence certain, reflecting the

parameter distribution of waters (Simon ).
METHODS

Data sources

Jinghu Lake is located at Guangxi University, with an area

of about 3,000 m2. It is a typical small landscape lake. The

previous management and maintenance of Jinghu Lake

was generally determined by random sampling analysis or

by visual experience. This method cannot fully grasp the

water quality of Jinghu Lake, and it is difficult to judge

and predict its change rule. A comprehensive understanding

of the water quality requires adequate water quality testing,
://iwa.silverchair.com/ws/article-pdf/20/6/2348/767017/ws020062348.pdf
but a large amount of water quality testing requires a lot of

manpower and financial resources. Therefore, we use the

developed water quality monitoring system to obtain water

quality information more efficiently and economically.

The extraction of water quality parameters will be

extracted by an unmanned ship. It can detect temperature

(T), pH, dissolved oxygen (DO), conductivity (COND) and

chlorophyll a (Chl-a) by carrying a water quality monitoring

sensor. Total phosphorus (TP) and total nitrogen (TN) are

monitored in the laboratory through water collected in

sampling bottles in unmanned ships. From October 2018,

we conducted an eight-week water quality test on Jinghu

Lake, choosing Tuesday mornings each week to test the

water quality. The Jinghu lakes were roughly divided into

50 grid areas according to their size and numbered, with the

center of each grid area selected as the monitoring point

(Figure 2), in order to simplify subsequent operations in the

algorithmic model, the coordinates in Figure 2 have been

designed to match the individual monitoring points). When

using the developed water quality monitoring system for

water quality monitoring, the longitude and latitude of each

monitoring point are calibrated through the electronic map

in the ground control terminal, and then the unmanned ship

is navigated to each monitoring point through GPS technology

for water quality detection andwater sampling. Thewater qual-

ity parameters for the first week are shown in Table 1.

RBF neural network

In this study, the geographical coordinates of the monitoring

points are used as the input of the RBF neural network



Table 1 | Water quality parameters of the monitoring site in the Jinghu Lake

Monitoring point water quality parameter table

Monitor point number T (�C) pH DO (mg/L) COND (µS/cm) Chl-a (µg/L) TP (mg/L) TN (mg/L)

1 30.49 6.84 4.53 106 6.1128 0.073 1.276

2 30.4 6.78 5.60 110 5.8300 0.042 1.395

3 30.29 6.96 5.27 98 6.9616 0.048 0.893

… … … … … … … …

50 34.91 7.10 9.78 92 9.2842 0.085 0.853

Figure 2 | Distribution of monitoring points in Jinghu Lake.
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fitting, and the water quality parameter values are used as

the output. The RBF neural network was used to establish

the relationship between the geographic coordinates of the

monitoring points and the water quality parameter value

(Chen et al. ). The function expression is as follows:

Z ¼ f(x, y) (1)

where (x, y) is the geographic coordinate of the sampling

point, and Z is the water quality parameter value. According

to the information of the existing samples, use the neural

network to train the training samples, and converge the

relationship between the coordinates of the monitoring

points and the water quality parameter values into the net-

work. Then random geographic coordinates are entered

and simulations are performed using the network to

obtain a more optimal neural network parameter setting

(Broomhead & David ; Hanbay et al. ).
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Water temperature spatial distribution fitting

We take the temperature index of the first week as an

example to carry out the experiment. The spatial distribution

fitting of water temperature was completed by MATLAB.

Firstly, the monitoring points are marked with coordinates,

where x and y coordinates are defined as geographical

location coordinates, and Z is the corresponding tempera-

ture value. Then, the real number is encoded according to

the monitoring serial number, and the corresponding data

table is made to facilitate the decoding operation of the

information. The temperature data table is as shown in

Table 2. Then, we use the ‘meshgrid’ function to perform

an interpolation on the data. After processing, a total of

1,021 points of information were obtained, and we ran-

domly selected 21 points as the test set and another 1,000

points as the training set used as RBF neural network train-

ing. The experiment used a trial and error method to adjust

the parameters to achieve the ideal fitting effect. Finally, we



Table 2 | Temperature data

Monitor point number x y Z (�C)

1 1 1 30.49

2 2 1 30.40

3 3 1 30.29

… … … …

50 9 7 34.91
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obtained the temperature spatial distribution data of Jinghu

Lake in the first week (Figure 3).
Genetic algorithm optimization

A genetic algorithm is a kind of evolutionary algorithm. It

searches for the optimal solution based on the principle of

‘survival of the fittest’ to simulate the natural genetic mech-

anism (Kaya ). It has good global optimization and

robustness (Chen ). This paper uses the data collected

from the original water quality monitoring points as a refer-

ence standard, and then uses the spatial distribution of water

quality indicators fitted by the RBF neural network as the fit-

ness selection function, and uses genetic algorithms to

optimize the number and spatial layout of the monitoring

points. The following is an example of a single target optim-

ization to describe the flow of a genetic algorithm; the

principle flow chart is shown in Figure 4.

First, the sample points are numbered (from 1 to n)

using real number coding, and randomly generate an initial

set of individuals to form the initial population; each

chromosome is an array of real numbers encoded and the

initial population is a matrix array.
Figure 3 | Spatial distribution data of Jinghu Lake: (a) temperature 3D temperature distributio
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Then, the fitness value of each group of chromosomes

was calculated. The fitness function is the error mean

square error between the numerical distribution and the

standard distribution of each set of chromosomes. The

expression is:

MSE ¼ 1
N

XN

i¼1

(Ẑi � Zi)
2 (2)

whereMSE is the error-average variance, N is the number of

contrast points, Ẑi is the standard value of the water quality

parameter, and Zi is the corresponding fitting value. The

smaller the error mean square error, the greater the fitness

and the greater the probability of being selected.

After setting a certain probability, the population is

crossed, mutated, and selected to obtain the next generation

group. The better group is selected by comparing it to the

previous generation. The selection strategy adopted is to

keep the best individuals from the parents directly involved

in the selection competition of the offspring, thus avoiding

the loss of good individuals from the parents and improving

the overall level of the population (Manojkumar et al. ).

The objective function is set to the final selection cri-

terion, and the objective function is set to the average

absolute error. Its expression is:

R ¼ 1
N

(jẐ1 � Z1j þ jẐ2 � Z2j þ � � � þ jẐn � Znj) (3)

where R is the mean absolute error of the objective function.

Finally, determine whether the last selected individual

meets the conditions of the target function, and if less than
n map; (b) pseudo-color image of temperature distribution.



Figure 4 | Flow chart of genetic algorithm.
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the setting error, directly output the selected chromosome; if

not, return to step 2 and recalculate until the result meets the

requirements of the target function. One iteration is the pro-

cess by which an individual moves from calculating fitness

to detecting whether the target selection condition is met.
Multi-objective optimization

The individual fitness of the single-objective optimization

algorithm is measured by the objective function, while the

multi-objective optimization algorithm may have multiple

conflicting optimization objectives at the same time. It is

necessary to take the appropriate selection mechanism

and fitness evaluation to quantify the objective function
om http://iwa.silverchair.com/ws/article-pdf/20/6/2348/767017/ws020062348.pdf
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(Ducheyne et al. ; Madeira et al. ; Yamachi et al.

).

Since various evaluation indicators have different

dimensions, and the values are quite different, it is difficult

to directly compare them. Therefore, it is necessary to nor-

malize them. There are many standardized methods, and

different normalized formulas may lead to different evalu-

ation results (Liu ). This paper uses the min–max

normalization for data processing, as shown in Equation (4).

ẑ ¼ z� zmin

zmax � zmin
(4)

where ẑ is the standard value of the water quality parameter,

Z is the water quality parameter value, zmin is the minimum

value, and zmax is the maximum value.



Table 3 | Temperature iteration optimization

Initial population
size

Number of
iterations

Average
error

Optimal
solution

20 30 0.2449 27
50 0.2403 27
100 0.2412 26

40 30 0.2438 27
50 0.2468 26
100 0.2402 26
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According to the seven water quality indexes that need

to be considered, the seven sub-objective functions are set

up as FT (z), FpH(z), Fchl�a(z), FDO(z), FCOND(z), FTN(z) and

FTP(z). The main function is set to F(z), and then

the weight is set according to the importance of the data.

The main function of the experiment is as follows in

Equation (5).

F(z) ¼ aFT (z)þ bFpH(z)þ cFchl�a(z)þ dFDO(z)

þ eFCOND(z)þ fFTN(z)þ gFTP(z) (5)

(a, b, c, d, e, f, g� 0 and aþ bþ cþ dþ eþ fþ g¼ 1)

Then, the single objective optimization method is used

for multi-objective optimization. The difference is that the

selection function becomes the error of the seven sub-func-

tions, but not the single index optimization.
RESULTS AND DISCUSSION

Single target monitoring point optimization

When studying the single-objective optimization problem,

the layout optimization of water quality monitoring points

was performed using the water body temperature indicator

as an example. When the genetic algorithm is used to opti-

mize the selection of monitoring points in the experiment,

the initial population is first established. In this paper, the

initial population size is set to 20 and 40, respectively, and

the chromlength is 20 to constitute the initial population.

The number of iterations is set to 30, 50 and 100 for the com-

parative optimization experiments, and the average error of

0.255 �C is selected as the threshold value of the target selec-

tion function. The number of the initial population size and

number of iterations is chosen by analyzing the number of

monitoring points, as well as the results obtained through

the final optimization after extensive testing. The results

obtained by the experiment are shown in Table 3.

From the analysis of the experimental results, it can be

concluded that for the same initial population size, the

higher the number of iterations corresponds to the better sol-

ution obtained, and secondly, for the same number of

iterations, the larger the initial population, the better the

result obtained. Of these, at an initial population of 20,
://iwa.silverchair.com/ws/article-pdf/20/6/2348/767017/ws020062348.pdf
100 iterations is one less in the selection of monitoring

sites than 30 and 50 iterations. And with a population size

of 40, the selection of one fewer monitoring points for iter-

ations 50 and 100 than for the optimal solution obtained

by iterations 30, and the average error for iterations 100

versus 50 was somewhat reduced.

Since the initial population is larger, the more iterations,

the smaller the average error and the smaller the number of

monitoring points. Therefore, the initial population size is

chosen to be 40, and the iteration is 100 times the exper-

imental optimal solution. The results of optimization of

single target monitoring points on temperature are shown

in Figure 5.

It can be seen from the figure that 92.8% of the fitting

errors of the optimized temperature distribution are below

0.2�C, while only 0.29% are above 0.6�C (Figure 5(b)). It is

ideal to fit the temperature distribution of Jinghu Lake at

that time. From the comparison of the figures, we can see

that the fitting error is relatively large in some places where

the temperature fluctuates greatly and in the edge zone, but

the whole can well reflect the real situation (Figure 5(a)). It

is believed that the experiment has successfully completed

the selection of temperature monitoring points in Jinghu

Lake. Aiming at the initial 50 monitoring points, 26 optimal

monitoring points are obtained through genetic neural net-

work optimization (Figure 5(c)). Similarly, the optimization

of single water quality parameter of pH, Chl-a, DO, COND,

TN and TP is similar to that of temperature optimization.

Multi-objective optimization

In the actual water quality monitoring process, it is often

necessary to monitor a variety of water quality indicators,

so the optimization of monitoring points cannot be



Figure 5 | The results of optimization of single target monitoring points on temperature:

(a) temperature distribution optimization diagram; (b) temperature distribution

error diagram; (c) the selection of monitoring points.
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single-objective optimization, but multi-objective optimiz-

ation is required. If single-objective optimization is used,

the results are different water quality parameters need to

select different monitoring points for water quality testing,

which is not feasible in real monitoring operations. There-

fore, this paper introduces complex multi-objective

optimization through single-objective optimization, which

can complete the optimization of monitoring points suitable

for multiple water quality parameters and monitoring.

For the multi-objective optimization experiment, the

initial population size setting is set to 40 and the number

of iterations in sequence is set to 50 for the optimization
om http://iwa.silverchair.com/ws/article-pdf/20/6/2348/767017/ws020062348.pdf
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operation, which is compared with the traditional isometric

sampling method (Figure 6(a)), and the experimental results

are shown in Table 4.

From the experimental results, it can be seen that the fit-

ting error of multi-objective genetic algorithm is better than

that of traditional equidistant monitoring method on the

whole when the same number of monitoring points are set,

and the error of is reduced by 15.7%. The error of COND

and TP is slightly higher than that of equidistant monitoring,

which indicates that COND and TP are contradictory with

other parameters in the optimization selection. The corre-

sponding monitoring point selection after optimization is

shown in Figure 6(a). The experiment shows that for the tra-

ditional equidistant sampling, multi-objective optimization

can better represent the distribution of water quality change.

Among them, the selection of monitoring points in the central

area of lakes is less and more around, which indicates that the

variation of water quality parameters in the central area is

smaller and the variation of surrounding areas is larger. This

may be due to the impact of lakeside trees and soil on water

quality. The optimized monitoring selection avoids the short-

comings of excessive monitoring in the center and

insufficient monitoring in other locations, and can reflect

the water quality distributionmore reasonably and accurately.

Spatial fitting of water quality parameters is shown in

Figure 6(b). From the analysis of the optimization effect of

single index, multi-objective optimization is not as effective

as single-objective optimization. This is due to the contradic-

tion of monitoring point selection in multi-objective

optimization, and the optimal combination of monitoring

points in single-objective optimization of each parameter is

different, which makes the final multi-objective optimization

results slightly different in the optimization of single index,

but there are obvious advantages in the overall optimization

of water quality parameters. Moreover, compared with the

traditional equidistant monitoring, the monitoring fitting dis-

tribution optimized by multi-objective genetic neural

network can reflect the actual situation more accurately in

the overall water quality distribution and change trend.

Optimization prediction and verification

Based on the optimization analysis of the first week of Octo-

ber, we get the monitoring points corresponding to single



Figure 6 | The results of multi-target monitoring point optimization: (a) the selection of experimental monitoring point; (b) optimizing comparative maps.
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Table 4 | Comparison of multi-objective optimization experiments

Experimental method Monitoring points Sum of errors

Average error

T pH Chl-a DO COND TN TP

Multi-objective optimization 15 1.0038 0.0304 0.039 0.1559 0.1935 0.1646 0.1944 0.2260

Isometric monitoring 15 1.1261 0.0944 0.041 0.1945 0.2038 0.1574 0.2214 0.2136
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target and multi-objective optimization. In the following few

weeks, we continue to monitor the water quality of Jinghu

Lake to verify whether the first optimization of the monitor-

ing site is effective for subsequent water quality monitoring.

Because TN and TP data cannot be detected directly by

sensors, it is necessary to collect water samples for chemical

detection, which will consume a lot of time and money.

Therefore, we established a BP neural network for training

multiple indicators, using temperature, pH, DO, COND

and Chl-a as input variables, TN and TP as output variables.

The training and prediction results of BP neural network are

shown in Figure 7.

The experiment still uses the combination of sampling

points obtained from the first week’s multi-objective

optimization for water quality monitoring. Prediction
Figure 7 | BP neural network training and prediction.
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comparisons were made one week, three weeks and five

weeks later, respectively. Their average error variations are

shown in Table 5. The experimental results show that the

error of TN and TP increases with time, ranging from

5.4% and 3.1% after one week to 15.3% and 18.1% after

five weeks. On the one hand, the increase of errors is due

to less training data; on the other hand, it is due to the influ-

ence of weather and human factors.

For the overall water quality of Jinghu Lake, the overall

average error varies with the time of the week as shown in

Figure 8. It can be seen from the figure that the overall

error of multi-objective optimization monitoring shows an

upward trend in the first four weeks, and then stabilizes to

float at a certain value, while the traditional equidistant

monitoring is random fluctuation in a relatively large error



Figure 8 | Comparison of the overall mean error of water quality.

Table 5 | Average error of BP neural network prediction

Water quality
parameters

Number of
monitoring
points

Average error (mg/L)

A week
later

Three
weeks
later

Five
weeks
later

TN 15 0.1174 0.1534 0.1813

TP 15 0.0090 0.0103 0.0111
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range. Although the fitting error of multi-objective optimiz-

ation is lower than that of equidistant sampling on the

whole. In at least 6 weeks, the optimization effect of moni-

toring points is ideal.
CONCLUSION

Experiments show that relative to the selection of traditional

water quality monitoring points, genetic neural network in

the accuracy of water quality parameters has been signifi-

cantly improved, and the optimization effect over time is

slightly reduced, but the overall error after its fitting is still

less than the traditional isometric monitoring methods,

greatly reducing the time and effort required to improve

the efficiency and accuracy of water quality monitoring.

The model used in this paper is not only applicable to the

water quality parameters selected in this paper, for other

different quantities and different kinds of water quality par-

ameters monitoring is also applicable, only the application

of genetic algorithms need to adjust the corresponding
://iwa.silverchair.com/ws/article-pdf/20/6/2348/767017/ws020062348.pdf
parameters. In this paper, in order to reduce the significant

interference of seasonal weather on the water quality par-

ameter data when monitoring water quality data, each

time the monitoring of water quality data to avoid high

winds, rain and other influences on the climate, the sub-

sequent study will add data under different climates to see

if the algorithm can be adjusted according to the data,

making the monitoring point optimization model more

generalizable.
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