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A two-layer improved invasive weed optimization

algorithm for optimal operation of cascade reservoirs

Guo-hua Fang, Cheng-jun Wu, Tao Liao, Xian-feng Huang and Bo Qu
ABSTRACT
This paper proposes a two-layer improved invasive weed optimization (TIIWO) algorithm to overcome

the disadvantages of the low quality of its initial population and the low optimization performance of

IWO. The TIIWO algorithm includes dynamic corridor constraints (in its outer layer) and iterative

reciprocating optimization (in its inner layer). The convergence of the TIIWO algorithm is achieved by

minimizing the Schaffer function, which is characterized by its strong oscillatory behavior.

In addition, the sensitivity of the main TIIWO parameters is analyzed using two methods, namely the

revised Morris scheme and the Sobol index method. For experimental assessment, the TIIWO

algorithm is firstly applied to a single reservoir. We investigate how the algorithm convergence is

affected by four algorithm variants and parameter values. Then, the TIIWO algorithm is used to solve

the problem of the optimal operation of cascade reservoirs. The results show that the TIIWO

algorithm quickly and efficiently reaches the optimal operation of cascade reservoirs. In addition, this

algorithm exhibits superior performance for high-dimensional, nonlinear and multi-constraint

problems.
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INTRODUCTION
Reservoir optimal operation is a high-dimensional, non-

linear and multi-constraint problem. Solutions to this

problem are of great significance since they help alleviate

water resource shortage and increase water usage efficiency.

Also, the optimal operation of reservoirs for power gener-

ation is an extremely effective measure to fulfill the

commitments of the Paris Agreement, adjust the energy

structure, produce clean and renewable energy, and reduce

greenhouse gas emissions (Bodansky et al. ).

Classical and intelligent optimization techniques have

been proposed for achieving optimal reservoir operation (Ji

et al. ). Classical optimization methods include those of

large-scale system analysis (Tian&Xie ), linear program-

ming (LP) (Needham et al. ), and non-linear

programming (NLP) (Peng & Buras ). A prominent

method of classical optimization is the dynamic
programming (DP) algorithm, which was applied by Little

in 1955 to optimize reservoir operation (Little ). Sub-

sequently, improved DP algorithms were extensively

applied in the optimization of reservoir operation. Those

algorithms include the discrete differential dynamic program-

ming (DDDP) (Heidari et al. ), dynamic programming

with successive approximation (DPSA) (Recep et al. )

and progressive optimality algorithm (POA) (Howson &

Sancho ). However, classical optimization methods for

reservoir operation suffer from low efficiency and can only

converge to local rather than global minima. Moreover, the

utility of these methods diminishes with the increase in the

number of state variables, as these methods become prone

to the curse of dimensionality (Guo et al. ).

With the rapid development of computer technology,

intelligent optimization algorithms have been developed to
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overcome the shortcomings of classical optimization

methods in solving various reservoir operation problems.

Some of the widely used intelligent algorithms are particle

swarm optimization (PSO) (Kennedy & Eberhart ), gen-

etic algorithms (GA) (Chen & Chang ), and ant colony

algorithm (ACO) (Moeini & Afshar ). Although these

intelligent algorithms have high rates of convergence, they

still can get trapped in local optima. So, it is necessary to

explore new intelligent algorithms or improve existing algor-

ithms for the optimization of reservoir operation.

The invasive weed optimization (IWO) algorithm is a

new population-based numerical heuristic search algorithm

(Mehrabian & Lucas ). This algorithm is inspired by the

reproduction process of weeds in nature. In recent years, the

IWO algorithm has been applied in many fields due to its

simplicity and good performance. These fields include

design of antenna arrays (Roy et al. ), large-scale econ-

omic problems (Barisal & Prusty ), digital terrain

model extraction problems (Bigdeli et al. ), and robot

motion planning problems (Panda et al. ). Unfortu-

nately, there are only few studies on the application of the

IWO algorithm in water resource management. Asgari

et al. () were the first to apply the IWO algorithm to

water supply operation in reservoirs. They compared the

results of the IWO algorithm with those obtained by

the LP, NLP and GA algorithms, and concluded that the

IWO algorithm efficiently optimizes the reservoir water

supply operation. Later, the IWO algorithm was applied to

reservoir hydropower stations by Azizipour et al. ().

The results of the IWO algorithm were compared with

those of the PSO and GA algorithms. The comparison

indicated that IWO is more effective in solving large-scale

problems.

Invasive weed optimization has been applied in many

fields, and can be used in global and local optimization.

However, depending on the IWO variance selection

method, the IWO algorithm might still easily get stuck in a

local optimum while solving large multi-constraint optimiz-

ation problems (Manoharan et al. ). To overcome this

problem, this paper proposes a two-layer improved invasive

weed optimization (TIIWO) algorithm. The TIIWO algor-

ithm includes dynamic corridor constraints (in the outer

layer) and iterative reciprocating optimization (in the inner

layer). The Schaffer function with strong oscillations is
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used to analyze the convergence of the TIIWO algorithm.

The sensitivity of the main TIIWO parameters is analyzed

using two sensitivity analysis methods, namely the revised

Morris scheme and the Sobol index method. Based on the

single-reservoir optimal operation model, we also analyze

the influence of the TIIWO parameter values and implemen-

tation variants on the optimization results. Based on the

TIIWO results for single-reservoir optimal operation, the

application of TIIWO in cascade reservoir joint optimal

operation is studied.

The remainder of this paper is organized as follows. The

next section outlines the cascade reservoir optimal oper-

ation model firstly, and then introduces the two-layer

improved invasive weed optimization (TIIWO) algorithm,

explores the convergence of the TIIWO thirdly, utilizes the

TIIWO algorithm to optimize the reservoir operation

model fourthly. Subsequently, TIIWO sensitivity and opti-

mal parameter set are analyzed. Case studies are presented

next, followed by is the presentation and discussion of

results, and conclusion of the paper.
CASCADE RESERVOIR OPTIMAL OPERATION
METHOD

In cascade reservoir systems, each reservoir may have

specific tasks and storage capacity. Also, the water

demand of each system unit should be met. Based on

these considerations, the power generation and the flood

control benefit are generally formulated as single-objective

or multi-objective functions. The control of such objective

functions is realized by changing the cascade reservoir oper-

ation rules.
Cascade reservoir optimal operation model

In this paper, the mathematical optimization model of the

cascade reservoir operation is based on the maximization

of the generated power, which serves as the objective func-

tion, mathematically defined as

Ec ¼
XNum

i¼1

XT
t¼1

ki �Qe,i,t � hi,t � Δt (1)
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where Ec is the power generated by the cascade reservoir

hydroelectric plants (kW·h), Num is the number of cascade

reservoirs in the system, T is the number of periods, ki
is the efficiency coefficient of the i-th hydroelectric plant,

Qe,i,t and hi,t are the power generation flow (m3/s) and

the effective head (m) of the i-th hydroelectric plant

at period t, respectively, Δt is the number of hours at

period t (h).

Subject to the following constraints

Qi
in,t ¼ Qi�1

r,t þQi∼i�1
itv,t t ¼ 1, 2, � � � , T (2)

Vi
tþ1

¼ Vi
t
þ (Qi

in,t
�Qi

r,t
) � Δt t ¼ 1, 2, � � � , T (3)

Qmin
r,i,t � Qi

r,t � Qmax
r,i,t t ¼ 1, 2, � � � , T (4)

Zmin
i,t � Zi

t � Zmax
i,t t ¼ 1, 2, � � � , T þ 1 (5)

Nmin
i,t � Ni

t � Nmax
i,t t ¼ 1, 2, � � � , T (6)

where Qi
in,t and Qi

r,t are, respectively, the inflow and water

release of the i-th reservoir at period t (m3/s), Qi�1
r,t is the

water release of the (i� 1)-st reservoir at period t (m3/s),

Qi∼i�1
itv,t is the interval inflow between the i-th reservoir

and the (i� 1)-th reservoir (m3/s), Vi
tþ1 and Vi

t are,

respectively, the water storage of the i-th reservoir at

period tþ 1 and period t (m3), Qmin
r,i,t and Qmax

r,i,t are, respect-

ively, the minimum and the maximum water release of the

i-th reservoir at period t (m3/s), Zmin
i,t and Zmax

i,t (m) are,

respectively, the minimum and the maximum water

levels of the i-th reservoir at period t, Nmin
i,t and Nmax

i,t

(MW) are, respectively, the minimum power output and

the installed capacity of the i-th hydroelectric plant at

period t.
Two-layer improved invasive weed optimization (TIIWO)

algorithm

According to the rule of the s-shaped curve (Rogers )

for biological populations under environmental resistance,

the IWO algorithm realizes evolution using an initial

population, reproduction, spatial dispersal and competi-

tive exclusion (Azizipour et al. ). The reproduction

and spatial dispersal are calculated in Equations (7) and
://iwa.silverchair.com/ws/article-pdf/20/6/2311/766932/ws020062311.pdf
(8) as

Seed(i) ¼ int
F(i)� Fmin

Fmax � Fmin
� (Seedmax � Seedmin)þ Seedmin

� �

(7)

σiter ¼ σ fin þ
itermax � iter

itermax

� �w

(σini � σ fin) (8)

where Seed(i) is the number of seeds reproduced by the

i-th parent weed, int(X) is the integer function expressing

the integer part of the real number X (i.e. the largest inte-

ger smaller than X), F(i) is the individual fitness value of

the i-th parent weed, Fmax and Fmin are, respectively, the

maximum and the minimum fitness values of the parent

population, Seedmax and Seedmi are the maximum and

minimum number of seeds that can be reproduced by

weed, respectively, σiter is the standard deviation of the

current iteration, σfin and σini are the final and initial stan-

dard deviation, respectively, itermax is the maximum

number of iterations, iter is the current iteration, and w

is the predetermined nonlinear modulation index.

When the IWO algorithm is used to solve the reservoir

optimal operation problem, the initial population is typically

poor in quality and easily falls into a local optimum. There-

fore, the TIIWO algorithm is proposed in this paper to find

the optimal cascade reservoir operation model.

In order to increase the quality of the IWO initial popu-

lation, we propose a method by which we make a step-by-

step reduction of the dimensionality and the stochastic cor-

ridor of the initial range. By analyzing the reservoir inflow

and water release constraints in each period, we make a

step-by-step dynamic adjustment of the initial random corri-

dor range in the IWO algorithm to improve the quality of the

initial population (Outer Layer). Taking the first and second

periods as example, these constraints can be represented as

shown in Figure 1.

Figure 1 presents a schematic diagram of the dynamic

corridor constraints. Here, R1 and R2 are, respectively, the

theoretical water level ranges that can be initialized ran-

domly at time 2 and time 3, Z1, Z2 and Z3, Z4 are,

respectively, the maximum and minimum water levels corre-

sponding to the minimum and maximum water release at

time 2 and time 3, Zup
t is the maximum water level of the



Figure 1 | Schematic diagram of the dynamic corridor constraints; (a) and (b) are the change process of corridor during the first and second periods, respectively.
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reservoir under normal operation at period t (this is set to

the flood control level in the flood season, and the normal

water level in the non-flood season), Zlow
t is the dead-water

level, ZR1 and ZR2 are, respectively, the water level after

random initialization at time 2 and time 3.

Based on Figure 1, the formulas of the dynamic corridor

constraints are given as

Zup(t) ¼ min {Zup
t , Z1(t) ¼ f[V1(t)]} (9)

Zlow(t) ¼ max {Zlow
t , Z2(t) ¼ f[V2(t)]} (10)

V1(t) ¼ V̂(t� 1)þ q(t) × Δt�Q1(t) × Δt (11)

V2(t) ¼ V̂(t� 1)þ q(t) × Δt�Q2(t) × Δt (12)

Ẑ(t) ¼ Rnd × [Zup(t)� Zlow(t)]þ Zlow(t) (13)

V̂(t) ¼ f�1[Ẑ(t)] (14)

where Z1(t) and Z2(t) are, respectively, the water levels of

the reservoir at the end of period t under the conditions of

Q1(t) and Q2(t), V1(t) and V2(t) are, respectively, the water

storage values of the reservoir at the end of period t under

the conditions of Q1(t) and Q2(t), Q1(t) and Q2(t) are,

respectively, the minimum and maximum water release

values of the reservoir at period t on the premise of ensuring

the downstream water demand, q(t) is the inflow at period t,

Zup(t) and Zlow(t) are, respectively, the upper and lower
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bounds of the corridor water levels at the end of period t,

Ẑ(t) and V̂(t) are, respectively, the real vectors of the water

level and water storage of the initial population at the end

of period t, ƒ is the water level of the reservoir as a function

of the water storage, Rnd is a continuous random variable

that follows a uniform distribution on the interval [0, 1],

and Z1(0)¼Z2(0), Z1(T)¼Z2(T) are the starting and

ending water levels, respectively.

To reduce the possibility of the IWO getting stuck in into

local optima, Equation (8) is modified into a periodic cosine-

based relation (Inner Layer), namely

σiter ¼σ finþcos2
iter

itermax
� (2nþ1)π

2

� �
(σini�σ fin) n¼1, 2, � �� :

(15)

The standard IWO algorithm employing Equation (8)

has a ‘global-local’ optimization mechanism. By compari-

son, the modified IWO algorithm employing Equation (15)

is characterized by the repetitive ‘global–local’ behavior.

This modified IWO algorithm produces iterative

reciprocating optimization rather than the standard

optimization. The modified algorithm should have better

performance, since it breaks through the constraint of

local optimization, and achieves global optimization

more easily.
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TIIWO convergence analysis

We examine the convergence of TIIWO by using the Schaf-

fer function (shown as Equation (16)). This function is a two-

dimensional complex function with numerous minimum

points. Its minimum value of 0 is obtained at (0, 0). The

function has a strong oscillatory behavior, and it is difficult

to find its global optimal value. The TIIWO is used to find

the minima of the Schaffer function.

min f(x1, x2) ¼ 0:5þ
(sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22

q
)
2
� 0:5

(1þ 0:001(x21 þ x22))
2 ,

x1, x2 ∈ [�200, 200]

: (16)

The TIIWO parameter values are as follows: the initial

population (represented by Mini) is 30, the maximum popu-

lation (represented by Mfin) is 50, Seedmax¼ 5, Seedmin¼ 2,

itermax¼ 100, σini¼ 10 and σfin¼ 0.0001, and the parameter

n in Equation (15) is 1. The optimization results are shown

in Figure 2.

This figure shows that, in the early stage of the optimiz-

ation process, the algorithm can quickly converge to a value
Figure 2 | Three-dimensional diagram of the Schaffer function optimization process: (a) the ove

the objective function value over the iterations 21–100.
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close to the optimal value. In the middle and late optimization

stages, although the algorithm converges to a certain local

optimal solution repeatedly in different iteration periods, it

can escape the local optima and gradually reach the global

optimum in the subsequent iterations based on Equation (15).

TIIWO-based optimization of the reservoir operation

model

According to the established mathematical model of the cas-

cade reservoir operation and the TIIWO algorithm, the

optimal reservoir operation model can be obtained as

follows.

Step 1, Initialize a population: Each TIIWO parameter

is set to a specific initial value. Each weed in the population

represents a reservoir scheduling process line. The water

levels at the beginning and end of each period constitute

the feature vector of each weed. The weed positions in the

initial population are randomly initialized with dynamic cor-

ridor constraints. The fitness of each weed in the population

is evaluated with the maximum power generation as the

objective function.
rall change of the objective function value over the iterations 1–100; (b) the local change of
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Step 2, Reproduction: The maximum and minimum fit-

ness values of the parent population are compared and

determined. The number of seeds reproduced by each

parent weed is calculated according to Equation (7) and

the fitness value of the parent weed.

Step 3, Spatial dispersal: The standard deviation of the

current iteration σiter is calculated according to Equation

(15). Seeds are randomly distributed around the parent

value according to a Gaussian distribution. The seed pos-

itions are given by

Xi,s ¼ Xi þN(0, σ2
iter) (17)

where Xi is the position of the i-th parent weed, Xi,s is the

position of the s-th seed reproduced by the i-th parent

weed, and N(0, 2iter) is a normal distribution with a zero

mean and a standard deviation of σiter.

Suppose ξ represents the corresponding Gaussian

random variable in an iteration, that is, ξ¼ N(0, 2iter).

Then, ξ can be taken as a Gaussian scalar or a Gaussian

diagonal matrix, respectively, representing two different var-

iants of the TIIWO algorithm. If ξ is a Gaussian scalar, each

dimension of the seeds will use the same random variables
Figure 3 | The pseudo-codes of the Gaussian scalar and Gaussian diagonal matrix variants of
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in the process of spatial dispersal. This is an isotropic realiz-

ation of the TIIWO algorithm. Under this isotropy

condition, the TIIWO algorithm implementation includes

the cases of Gaussian scalars based on iterations (denoted

by I in Figure 3), Gaussian scalars based on parent weeds

(denoted by II in Figure 3) and Gaussian scalars based on

a single seed (denoted by III in Figure 3). If ξ is Gaussian

diagonal matrix (a case denoted by IV in Figure 3), that is,

ξ¼ diag{ξ1,ξ2,···,ξD}(D is the dimension, D¼ T), then the

seeds use independent random variables in each dimension,

leading to an anisotropic TIIWO realization. In theory, ani-

sotropy can increase the population diversity and lead to

better convergence. The pseudo-codes of the Gaussian

scalar and Gaussian diagonal matrix TIIWO variants are

shown in Figure 3.

Step 4, Competitive exclusion: When the population

reaches or exceeds Mfin after reproduction, weeds should

be ordered by the individual fitness values from the largest

to the smallest. The Mfin weeds with the largest fitness

values shall be retained for subsequent evolution. The

remaining individuals with smaller fitness values are

eliminated.

Step 5, Program termination: Judge whether the cur-

rent iteration number reaches the maximum iteration
the TIIWO algorithm.



2317 G.-h. Fang et al. | A new method for cascade reservoirs optimal operation Water Supply | 20.6 | 2020

Downloaded from http
by guest
on 10 April 2024
number. If iter� itermax, terminate the iterative procedure

and output the optimal result. Otherwise, return to Step 2

and continue the iterative evolution.
TIIWO SENSITIVITY ANALYSIS AND OPTIMAL
PARAMETER SET

TIIWO sensitivity analysis

In order to assess the sensitivity of each TIIWO parameter

and provide reference parameter values in practical appli-

cations, this paper uses the modified Morris method

(Bailey & Ahmadi ) and the Sobol method (Baroni

et al. ) to perform, respectively, local and global sensi-

tivity analyses of the TIIWO parameters.

For global sensitivity analysis of the TIIWO parameters

with the Sobol method, 100 samples are randomly

generated, the total effect index (ST) is taken as the main

basis, and the first-order effect index (S) is used as a refer-

ence. When using the modified Morris local sensitivity

analysis method, the nominal values of the TIIWO parameters,

refer to other relevant literatures (Mehrabian & Lucas ;

Naidu & Ojha ), are set as follows: Mini¼ 30, Mfin¼ 80,

Seedmax¼ 8, Seedmin¼ 4, σini¼ 10 and σfin¼ 0.001, the great-

est range, refer to (Yuan et al. ), is 30%, and the fixed

step size is 5%, itermax¼ 100.
Table 1 | Sensitivity analysis results of the modified Morris and Sobol methods

Number of runs
Sensitivity
analysis method Mini

① Modified Morris �3.02

② 1.72

③ �2.16

Average of absolute values 2.30

① Sobol S 0.15
ST 0.60

② S 0.02
ST 0.65

③ S 0.05
ST 0.90

Average S 0.07
ST 0.72
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In order to reduce the error caused by the change of the

independent variables of the Schaffer function, the TIIWO

algorithm is used to calculate each parameter value 30

times, and the average value of the resulting 30 objective

function values is taken as the optimized objective function

value. The modified Morris method and the Sobol method

were run three times, respectively, and the results are

shown in Table 1.

In the modified Morris method, the greater the absolute

value of each parameter, the higher the sensitivity. In the

Sobol method, the greater the calculation result of each par-

ameter, the higher the parameter sensitivity. As shown in

Table 1, according to the three calculation results and its

average of absolute values of the modified Morris method,

each TIIWO parameter exhibits some appreciable amount

of sensitivity, and the parameters are sorted from large to

small in order of sensitivity: σfin> σini>Mini> Seedmax>

Mfin> Seedmin. According to the three-time calculation

results and its average results of the Sobol method, the sen-

sitivity of each parameter is shown as σfin> σini>Mini>

Seedmax> Seedmin>Mfin.

By comparing and analyzing the results of the modified

Morris and Sobol methods, the conclusions drawn from the

two sensitivity analysis methods are basically the same. This

observation provides a certain theoretical basis for the

TIIWO parameter values in the reservoir optimal operation

problem. Specifically speaking, in analyzing the effect of
Mfin Seedmax Seedmin σini σfin

�1.75 �2.71 0.31 �2.71 �3.07

0.49 �0.29 �2.74 2.05 4.69

�2.24 �2.98 �1.19 �2.98 �2.63

1.49 1.99 1.41 2.58 3.46

0.03 0.17 0.04 0.25 0.58
0.57 0.92 0.42 1.05 2.52

0.02 0.09 �0.06 0.04 0.17
0.58 0.52 0.57 0.79 0.68

0.02 0.01 0.01 0.07 0.26
0.46 0.45 0.72 1.97 1.22

0.02 0.09 0.00 0.12 0.34
0.54 0.63 0.57 1.27 1.47



2318 G.-h. Fang et al. | A new method for cascade reservoirs optimal operation Water Supply | 20.6 | 2020

Downloaded fr
by guest
on 10 April 202
parameter setting in TIIWO on the efficiency of the reservoir

optimal operation model, the parameters with high sensitivity

are transformed by a large margin, and the parameters with

low sensitivity are transformed by a small margin. And then

the best parameter set of TIIWO in reservoir optimal oper-

ation application is determined according to the solution

efficiency (including calculation result and time cost).
TIIWO optimal parameter set for reservoir operation

We consider here a case study of a single-reservoir operation

with hydropower utilization (Huang ). Its characteristic

parameters are shown in Table 2.

For the reservoir operation model, the generated power

is used as the objective function (to be maximized).

Based on the aforementioned TIIWO algorithmic steps

for optimizing the reservoir operation model, this single-

reservoir example is solved separately for each TIIWO var-

iant. The simulations are run in a Visual Basic 6.0

programming platform on an Intel(R) Xeon(R) machine

with a E5620 CPU @2.40 GHz, RAM of 4.00GB, and a

64-bit operating system.
Table 2 | Characteristic parameters of the single reservoir

Name Value Name Value

Normal water level (m) 704 Flood control level (m) 695

Dead water level (m) 685 Guaranteed output (MW) 78

Installed capacity (MW) 300 Efficiency coefficient 8.5

Flood season 6–8

Note: (m) in this paper represents the elevation above sea level.

Table 3 | Comparison of the key TIIWO parameters

Parameter set

Parameters a b c

Mini 30 50 30

Mfin 100 200 100

Seedmax 5 5 10

Seedmin 2 2 5

σini 2 2 2

σfin 0.001 0.001 0.001
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According to the abovementioned sensitivity analysis of

the TIIWO parameters, in order to get the best TIIWO par-

ameter values for optimal reservoir operation, the operation

model is obtained respectively by transforming the key

TIIWO parameters. The value of the parameter n in

Equation (15) is 1 and itermax,¼ 200. The values of the

remaining parameters constitute eight kinds of parameter

sets and are numbered from a to h respectively in Table 3.

For four different TIIWO variants and eight parameter

settings, we repeated the calculations 30 times. The mean

value, variance and running time of each calculated power

generation result are shown in Table 4, where the time

is the total time of the program running 30 times. The

maximum operating results in each case are shown in

Figure 4.

Table 4 shows the following. (1) From the columns of

the average power generation, compared with the TIIWO

variants II, III and IV, the power generation calculated by

the variant I is lower, that is, the results based on the

parent Gaussian scalar, the single-seed Gaussian scalar,

and the Gaussian diagonal matrix are better than those

results based on the iterations of the Gaussian scalar. (2)

The variances of III and IV are generally smaller than

those of I and II, that is, the operation results of III and

IV are more stable than I and II, and the TIIWO variants

III and IV can generally converge to a better solution. (3)

The program running times increase from I to IV. Mean-

while, most program running times of I are under 1 s,

while the running times of IV exceed 1 s and the highest

time is 58 s. The reason for this is that in I, ξ (i.e. Gaussian

random variable) calculates itermax times, while II is ΣXi

times of I, III is ΣSeed(i) times of II, and IV is T times of
d e f g h

30 30 30 30 30

100 100 100 100 100

5 5 10 10 5

2 2 5 5 2

5 10 5 10 10

0.001 0.01 0.01 0.001 0.001



Table 4 | Operating results for different TIIWO algorithmic variants

Parameter set

I II

E_ave(108kw·h) Variance Time(s) E_ave(108kw·h) Variance Time(s)

a 14.87 0.0887 11.18 15.42 0.0315 47.02

b 15.08 0.1107 34.20 15.50 0.0061 187.19

c 14.90 0.0930 14.63 15.42 0.0292 149.01

d 15.21 0.1718 10.80 15.49 0.0132 42.14

e 15.28 0.1226 10.44 15.48 0.0129 24.18

f 15.27 0.0729 19.36 15.48 0.0206 105.74

g 15.19 0.1343 22.95 15.46 0.0214 89.00

h 14.69 0.0714 8.34 15.26 0.0639 82.93

Parameter set

III IV

E_ave(108kw·h) Variance Time(s) E_ave(108kw·h) Variance Time(s)

a 15.41 0.0329 67.04 15.49 0.0094 325.42

b 15.53 0.0001 292.48 15.49 0.0224 1411.41

c 15.49 0.0131 217.53 15.50 0.0118 921.19

d 15.54 0.0001 49.80 15.29 0.0084 95.63

e 15.53 0.0024 23.99 15.25 0.0078 25.32

f 15.54 0.0001 210.37 15.43 0.0046 367.96

g 15.54 0.0000 187.48 15.33 0.0027 191.09

h 15.38 0.0414 102.33 15.48 0.0156 1,726.90

Figure 4 | The maximum operating results for each parameter set and each TIIWO algorithmic variant.
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Table 5 | Characteristic parameters of the cascade reservoirs of the WuJiang river basin

Name
Hong Jia
Du

Dong
Feng

Suo Feng
Ying

Wu Jiang
Du

Normal water level (m) 1,140 970 837 760

Flood control level (m) 1,138 970 837 760

Dead water level (m) 1,076 936 822 720

Guaranteed output
(MW)

159.1 100 166.9 254

Installed capacity (MW) 600 695 600 1,250

Efficiency coefficient 8.4 8.35 8.4 8.17

Annual electricity
production (108kw·h)

15.6 23.21 20.11 41.4
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III. Here, ΣXi and ΣSeed(i) are the total number of weeds

and seeds, respectively. (4) According to the operating

results of the a and b parameter selections, with the increase

of the initial population and the maximum population, the

results of power generation increase slightly, but the pro-

gram running times increase significantly. That is,

increasing the population simply is not conducive to the

operation of the algorithm. (5) According to the operating

results of the a and c parameter selections, with the increase

of the seed population, the results of power generation have

no significant differences. Meanwhile, the running time of

the program is greatly affected and the solution efficiency

of the algorithm is reduced seriously. That is, simply increas-

ing the number of reproduced seeds will reduce

computational efficiency. (6) According to the operating

results of a, d, e and h, and results of f and g, the operating

results of the variants I, II and III increase with the increase

of the initial standard deviation value and the decrease of

the final standard deviation value. The operating results of

the variant IV show the opposite.

Analyzing the results of Figure 4, we note that the operat-

ing results of the variants II and III have no significant

differences, that is, parameter selections have small influence

on the power generation produced for the variants II and III.

The operating results of I with different parameter selections

are quite different and the variant I doesn’t converge easily

to the global optimal solution. The operating results of IV

with different parameter selections also show some differ-

ences, but if the parameter selection is appropriate (like

parameter set h), the variant IV converges more easily to the
om http://iwa.silverchair.com/ws/article-pdf/20/6/2311/766932/ws020062311.pdf
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global optimal solution. Although parameter set hwith variant

IV takes a long time to run, the variance of the 30 calculation

results is small, and the average value is large. In addition,

compared with other parameter sets, parameter set h can con-

verge to the maximum power generation. Therefore,

parameter set h with variant IV will be applied to the cascade

reservoir operation problem in this paper.
CASE STUDIES

As the dimension of single reservoir is lower than that of cas-

cade reservoirs, the general intelligent algorithm can find an

excellent solution. It is not significant to compare the appli-

cation of TIIWO and IWO in a single reservoir. Therefore,

the following is a comparative analysis of the efficiency of

TIIWO and IWO in cascade reservoir optimal operation.

We analyze the operation of a cascade reservoir in the

Wu Jiang river basin, located in the Guizhou province,

China. The Wu Jiang river is a tributary of the Yangtze

river, with a basin area of 87,900 km2. We consider here

four cascade reservoirs in the upper reaches of the Wu

Jiang river. These reservoirs are Hong Jia Du, Dong Feng,

Suo Feng Ying and Wu Jiang Du. The TIIWO algorithm

was used to optimize the joint operation model of the four

cascade reservoirs based on the runoff data of the Wu

Jiang river basin from 1954 to 1993.

The Hong Jia Du and the Suo Feng Ying reservoirs rep-

resent, respectively, a carry-over storage and a daily storage,

while the other two are incomplete annual regulation reser-

voirs. The flood season for each reservoir is from June to

September every year. The characteristic parameters of

each reservoir are shown in Table 5.

The starting water levels of the Hong Jia Du, Dong Feng,

Suo Feng Ying and Wu Jiang Du reservoirs are set at

1,084 m, 960 m, 829.5 m, and 750 m, respectively. Mean-

while, for each reservoir, the starting and ending water

levels are the same. The key parameters of TIIWO are set

as parameter set h and variant IV is chosen here. In

Equation (15), the parameter n¼ 3. The termination criteria

is either itermax¼ 200 or abs{[Ec(tþ 1)�Ec(t)]/ Ec(t)}<

0.001. The program is run with the aforementioned compu-

ter settings.



Figure 5 | Simulation results of cascade reservoir optimal operation: (a) monthly water level changes of the cascade reservoirs; (b) annual power generation of the cascade reservoirs.
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In order to verify the feasibility and reliability of the

TIIWO algorithm in obtaining the optimal joint operation

of the cascade reservoirs, the standard IWO algorithm is

used to simulate the optimal operation of the cascade

reservoir of the WuJiang river basin. The IWO parameter

w of Equation (8) is 3. Other parameters and termination

criteria are the same as those used with the TIIWO

algorithm.
RESULTS AND DISCUSSION

The simulation running time for the cascade reservoir oper-

ation is 66.19 s. For the optimal joint operation model, the

monthly water level changes and the annual power gener-

ation of the cascade reservoirs are shown in Figure 5.

The annual average generating capacity of each reser-

voir has been calculated and shown in Table 5 based on

the joint optimal operating results of the cascade reservoirs.

The IWO running time is 82.26 s.

Table 6 shows that the annual average generating

capacities of the cascade reservoir calculated by IWO

are less than those calculated by TIIWO and conventional

operation. This indicates that IWO has been stuck into
Table 6 | Annual average generating capacity of the cascade reservoirs (108kw·h)

Name Hong Jia Du Dong Feng

TIIWO 17.13 28.36

IWO 15.84 20.31

Conventional operation 15.60 23.21

://iwa.silverchair.com/ws/article-pdf/20/6/2311/766932/ws020062311.pdf
local optima and failed to obtain global optimal solutions.

Although the annual average generating capacities of Suo

Feng Ying obtained by TIIWO is 6.96% lower than those

of the conventional operation, the annual average power

generation of Hong Jia Du, Dong Feng and Wu Jiang

Du reservoirs is respectively 9.81%, 22.19%, and 2.49%

higher than the conventional operation results of the cor-

responding reservoirs. Meanwhile, the total annual

average power generation of the cascade reservoir calcu-

lated by TIIWO is 6.28% higher than that of the

conventional operation. This shows that TIIWO has a

good capability in optimizing the joint operation of cas-

cade reservoirs. Indeed, the TIIWO algorithm is more

reliable than the IWO algorithm in solving high-dimen-

sional complex problems. Furthermore, the TIIWO

algorithm has faster convergence compared to the stan-

dard IWO algorithm according to the running times of

the two algorithms.
CONCLUSIONS

The standard IWO algorithm has the drawbacks of the low

initial population quality and inferior optimization
Suo Feng Ying Wu Jiang Du Total generation

18.71 42.43 106.62

15.94 35.70 87.79

20.11 41.40 100.32
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capability. To alleviate these problems, a modified IWO

algorithm, named TIIWO, has been proposed in this

paper. Dynamic corridor constraints and iterative recipro-

cating optimization are the two key IWO improvements

that led to TIIWO. After analyzing the convergence and par-

ameter sensitivity of the TIIWO algorithm, this paper

applies the TIIWO algorithm to both single-reservoir oper-

ation and cascade reservoir operation, discusses four

different variants of the TIIWO algorithm, and draws the fol-

lowing conclusions.

When solving the optimization problem, the TIIWO

algorithm avoids the problem of getting stuck in local

optima and reaches a better solution than IWO.

The initial population, maximum population, initial

standard deviation and final standard deviation of the

TIIWO algorithm are highly sensitive. Besides, the values

of these four parameters have a significant impact on the

convergence performance and efficiency of the TIIWO

algorithm. And a general recommendation of parameter

set for reservoir optimal operation has been proposed.

The TIIWO variants based on a single-seed Gaussian

scalar and a Gaussian diagonal matrix are better than the

variants based on Gaussian scalar and a parent weed Gaus-

sian scalar in terms of converging to the global optimal

solution. However, the solution speed of the algorithm var-

iants show opposite behavior.

The TIIWO algorithm can optimize the joint operation

model of cascade reservoirs quickly and efficiently. More-

over, the TIIWO algorithm has good optimization

performance when solving high-dimensional, nonlinear

and multi-constraint problems.
ACKNOWLEDGEMENTS

This research was funded by the Fundamental Research

Funds for the Central Universities, grant number

2019B71214; Postgraduate Research & Practice

Innovation Program of Jiangsu Province, grant number

SJKY19_0485, and Water Conservancy Science and

Technology Projects of Hunan Province, grant number

[2015]245–13.
om http://iwa.silverchair.com/ws/article-pdf/20/6/2311/766932/ws020062311.pdf

4

COMPETING FINANCIAL INTERESTS

The authors declare no competing financial interests.
REFERENCES
Asgari, H. R., Bozorg, H. O., Pazoki, M. & Loáiciga, H. A. 
Weed optimization algorithm for optimal reservoir
operation. Journal of Irrigation and Drainage Engineering
142, 04015055. doi: 10.1061/(ASCE)IR.1943-4774.0000963.

Azizipour, M., Ghalenoei, V., Afshar, M. H. & Solis, S. S. 
Optimal operation of hydropower reservoir systems using
weed optimization algorithm. Water Resources Management
30, 3995–4009.

Bailey, R. T. & Ahmadi, M.  Spatial and temporal variability of
in-stream water quality parameter influence on dissolved
oxygen and nitrate within a regional stream network.
Ecological Modelling 277, 87–96. doi:10.1016/j.ecolmodel.
2014.01.015.

Barisal, A. K. & Prusty, R. C.  Large scale economic dispatch
of power systems using oppositional invasive weed
optimization. Applied Soft Computing 29, 122–137.

Baroni, G., Scheiffele, L. M., Schron, M., Ingwersen, J. & Oswald,
S. E.  Uncertainty, sensitivity and improvements in soil
moisture estimation with cosmic-ray neutron sensing. Journal
of Hydrology 564, 873–887. doi:10.1016/j.jhydrol.2018.07.
053.

Bigdeli, B., Amirkolaee, H. A. & Pahlavani, P.  DTM
extraction under forest canopy using LiDAR data and a
modified invasive weed optimization algorithm. Remote
Sensing of Environment 216, 289–300. https://doi.org/10.
1016/j.rse.2018.06.045.

Bodansky, D. M., Hoedl, S. A., Metcalf, G. E. & Stavins, R. N. 
Facilitating linkage of climate policies through the Paris
outcome. Climate Policy 16 (8), 956–972. http://dx.doi.org/
10.1080/14693062.2015.1069175.

Chen, L. & Chang, F. J.  Applying a real-coded multi-
population genetic algorithm to multi-reservoir operation.
Hydrological Processes 21 (5), 688–698. https://doi.org/10.
1002/hyp.6259.

Guo, S. L., Chen, J. H., Liu, P. & Li, Y.  State-of -the-art review
of joint operation for multi-reservoir systems. Advances in
Water Science 21 (4), 496–503. doi:10.14042/j.cnki.32.1309.
2010.04.013.

Heidari, M., Chow, V. T., Kokotovi, P. V. & Meredith, D. D. 
Discrete differential dynamic programing approach to water
resources systems optimization. Water Resources Research
7 (2), 273–282. https://doi.org/10.1029/WR007i002p00273.

Howson, H. R. & Sancho, N. G. F.  A new algorithm for the
solution of multi-state dynamic programming problems.
Mathematical Programming 8 (1), 104–116. https://doi.org/
10.1007/BF01580431.

http://dx.doi.org/10.1061/(ASCE)IR.1943-4774.0000963
http://dx.doi.org/10.1061/(ASCE)IR.1943-4774.0000963
http://dx.doi.org/10.1007/s11269-016-1407-6
http://dx.doi.org/10.1007/s11269-016-1407-6
http://dx.doi.org/10.1016/j.ecolmodel.2014.01.015
http://dx.doi.org/10.1016/j.ecolmodel.2014.01.015
http://dx.doi.org/10.1016/j.ecolmodel.2014.01.015
http://dx.doi.org/10.1016/j.asoc.2014.12.014
http://dx.doi.org/10.1016/j.asoc.2014.12.014
http://dx.doi.org/10.1016/j.asoc.2014.12.014
http://dx.doi.org/10.1016/j.jhydrol.2018.07.053
http://dx.doi.org/10.1016/j.jhydrol.2018.07.053
http://dx.doi.org/10.1016/j.rse.2018.06.045
http://dx.doi.org/10.1016/j.rse.2018.06.045
http://dx.doi.org/10.1016/j.rse.2018.06.045
http://dx.doi.org/10.1080/14693062.2015.1069175
http://dx.doi.org/10.1080/14693062.2015.1069175
http://dx.doi.org/10.1002/hyp.6259
http://dx.doi.org/10.1002/hyp.6259
http://dx.doi.org/10.14042/j.cnki.32.1309.2010.04.013
http://dx.doi.org/10.14042/j.cnki.32.1309.2010.04.013
http://dx.doi.org/10.1029/WR007i002p00273
http://dx.doi.org/10.1029/WR007i002p00273
http://dx.doi.org/10.1007/BF01580431
http://dx.doi.org/10.1007/BF01580431


2323 G.-h. Fang et al. | A new method for cascade reservoirs optimal operation Water Supply | 20.6 | 2020

Downloaded from http
by guest
on 10 April 2024
Huang, Q.  Hydropower Utilization, 4th edn. China Water
Power Press, Beijing, China, pp. 219–220.

Ji, C. M., Zhou, T., Wang, L. P. & Qin, Y. Y.  A review on
implicit stochastic optimization for medium-long term
operation of reservoirs and hydropower stations. Automation
of Electric Power Systems 37 (16), 129–135. http://dx.doi.org/
10.7500/AEPS201211144.

Kennedy, J. & Eberhart, R.  Particle swarm optimization. In:
Proceedings of ICNN‘95 - International Conference on
Neural Networks. IEEE 1–6, 1942–1948. https://doi.org/10.
1109/ICNN.1995.488968.

Little, J. D. C.  The use of storage water in a hydroelectric
system. Operation Research 3 (2), 187–197. http://or.journal.
informs.org/cgi/doi/10.1287/opre.3.2.187.

Manoharan, N., Dash, S. S., Rajesh, K. S. & Panda, S. 
Automatic generation control by hybrid invasive weed
optimization and pattern search tuned 2-DOF PID controller.
International Journal of Computers Communications &
Control 12 (4), 533–549.

Mehrabian, A. R. & Lucas, C.  A novel numerical
optimization algorithm inspired from weed colonization.
Ecological Informatics 1 (4), 355–366. http://dx.doi.org/10.
1016/j.ecoinf.2006.07.003.

Moeini, R. & Afshar, M. H.  Application of an ant colony
optimization algorithm for optimal operation of reservoirs: a
comparative study of three proposed formulations. Scientia
Iranica Transaction A-Civil Engineering 16 (4), 273–285.
http://orcid.org/0000-0002-8270-2086.

Naidu, Y. R. & Ojha, A. K.  Solving multiobjective
optimization problems using hybrid cooperative invasive
weed optimization with multiple populations. IEEE
Transactions on Systems, Man, and Cybernetics: Systems
48 (6), 821–832. doi:10.1109/TSMC.2016.2631479.
://iwa.silverchair.com/ws/article-pdf/20/6/2311/766932/ws020062311.pdf
Needham, J. T., Watkins, D. W., Lund, J. R. & Nanda, S. K. 
Linear programming for flood control in the Iowa and Des
Moines rivers. Journal of Water Resources Planning and
Management 126 (3), 118–127. https://doi.org/10.1061/
(ASCE)0733-9496(2000)126:3(118).

Panda, M. R., Dutta, S. & Pradhan, S.  Hybridizing invasive
weed optimization with firefly algorithm for multi-robot
motion planning. Computer Engineering and Computer
Science 43, 4029–4039. https://doi.org/10.1007/s13369-017-
2794-6.

Peng, C. S. & Buras, N.  Practical estimation of inflows into
multi-reservoir system. Journal of Water Resources Planning
and Management 126 (5), 178–188. https://doi.org/10.1061/
(ASCE)0733-9496(2000)126:5(331).

Recep, Y., Gaplin, S. & Mehmet, A.  Hydropower
optimization for the lower Seyhan basin system in Turkey
using dynamic programming. Water International 31 (4),
528–540. https://doi.org/10.1080/02508060608691955.

Rogers, E.  Diffusion of Innovations. Free Press, New York.
Roy, G. G., Das, S., Chakraborty, P. & Suganthan, P. N. 

Design of non-uniform circular antenna arrays using a
modified invasive weed optimization algorithm. IEEE Trans
Antennas Propag 59 (1), 110–118.

Tian, F. W. & Xie, J. C.  A new way to solve cascade
hydropower reservoirs operation with large scale system
analysis. System Engineering Theory and Practice 18 (5),
112–117. DOI:10.12011/1000-6788(1998)5-112.

Yuan, W. L., Gao, Q. Y., Wan, F., Zhang, X. L. & Wang, F. Q. 
A morris-sobol two-layer progressive model for sensitivity
analysis of parameters in rainfall threshold calculation of
flash flood. Revista Internacional de Contaminacion
Ambiental 35, 133–147. doi:10.20937/RICA.2019.35.
esp01.13.
First received 10 October 2019; accepted in revised form 17 June 2020. Available online 30 June 2020

http://dx.doi.org/10.7500/AEPS201211144
http://dx.doi.org/10.7500/AEPS201211144
http://dx.doi.org/10.7500/AEPS201211144
http://dx.doi.org/10.1109/ICNN.1995.488968.
http://dx.doi.org/10.1287/opre.3.2.187
http://dx.doi.org/10.1287/opre.3.2.187
http://dx.doi.org/10.15837/ijccc.2017.4.2751
http://dx.doi.org/10.15837/ijccc.2017.4.2751
http://dx.doi.org/10.1016/j.ecoinf.2006.07.003
http://dx.doi.org/10.1016/j.ecoinf.2006.07.003
http://dx.doi.org/0000-0002-8270-2086
http://dx.doi.org/0000-0002-8270-2086
http://dx.doi.org/0000-0002-8270-2086
http://dx.doi.org/10.1109/TSMC.2016.2631479
http://dx.doi.org/10.1109/TSMC.2016.2631479
http://dx.doi.org/10.1109/TSMC.2016.2631479
http://dx.doi.org/10.1061/(ASCE)0733-9496(2000)126:3(118)
http://dx.doi.org/10.1061/(ASCE)0733-9496(2000)126:3(118)
http://dx.doi.org/10.1007/s13369-017-2794-6
http://dx.doi.org/10.1007/s13369-017-2794-6
http://dx.doi.org/10.1007/s13369-017-2794-6
http://dx.doi.org/10.1061/(ASCE)0733-9496(2000)126:5(331)
http://dx.doi.org/10.1061/(ASCE)0733-9496(2000)126:5(331)
http://dx.doi.org/10.1080/02508060608691955
http://dx.doi.org/10.1080/02508060608691955
http://dx.doi.org/10.1080/02508060608691955
http://dx.doi.org/10.1109/TAP.2010.2090477
http://dx.doi.org/10.1109/TAP.2010.2090477
http://dx.doi.org/10.12011/1000-6788(1998)5-112
http://dx.doi.org/10.12011/1000-6788(1998)5-112
http://dx.doi.org/10.12011/1000-6788(1998)5-112
http://dx.doi.org/10.20937/RICA.2019.35.esp01.13
http://dx.doi.org/10.20937/RICA.2019.35.esp01.13
http://dx.doi.org/10.20937/RICA.2019.35.esp01.13

	A two-layer improved invasive weed optimization algorithm for optimal operation of cascade reservoirs
	INTRODUCTION
	CASCADE RESERVOIR OPTIMAL OPERATION METHOD
	Cascade reservoir optimal operation model
	Two-layer improved invasive weed optimization (TIIWO) algorithm
	TIIWO convergence analysis
	TIIWO-based optimization of the reservoir operation model

	TIIWO SENSITIVITY ANALYSIS AND OPTIMAL PARAMETER SET
	TIIWO sensitivity analysis
	TIIWO optimal parameter set for reservoir operation

	CASE STUDIES
	RESULTS AND DISCUSSION
	CONCLUSIONS
	This research was funded by the Fundamental Research Funds for the Central Universities, grant number 2019B71214; Postgraduate Research &amp; Practice Innovation Program of Jiangsu Province, grant number SJKY19_0485, and Water Conservancy Science and Technology Projects of Hunan Province, grant number [2015]245&ndash;13.
	COMPETING FINANCIAL INTERESTS
	REFERENCES


