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A nonparametric statistical framework using a kernel

density estimator to approximate flood marginal

distributions – a case study for the Kelantan River Basin

in Malaysia

Shahid Latif and Firuza Mustafa
ABSTRACT
Floods are becoming the most challenging hydrologic issue in the Kelantan River basin in Malaysia.

All three flood characteristics, i.e. peak flow, flood volume and flood duration, are important when

formulating actions and measures to manage flood risk. Therefore, estimating the multivariate

designs and their associated return periods is an essential element of making informed risk-based

decisions in this river basin. In this paper, the efficacy of a kernel density estimator is tested by

assessing the adequacy of kernel functions for capturing flood marginal density of 50 years (from

1961 to 2016) of daily streamflow data collected at Gulliemard Bridge gauge station in the Kelantan

River basin. Tests for stationarity or the existence of serial correlation within the flood series is often

a pre-requisite before introducing the random samples into a univariate or a multivariate framework.

It was found that homogeneity existed within the flood vector series. It was concluded therefore that

time series of the flood vectors do not exhibit any significant trend. Based on analytically based

fitness measures, it was concluded that it is likely that Triweight kernel function is the best-fitted

distribution for defining the marginal distribution of peak flows, flood volumes and flood durations in

the Kelantan River basin.
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INTRODUCTION
From the perspective of water resources operational plan-

ning in a river basin, the design and operation of flood

management infrastructure often demands an accurate esti-

mate of the flow exceedance probability for assessing

hydrologic risk (i.e. Salvadori ; Xu et al. ). Flood fre-

quency analysis (FFA) establishes an association between

extreme event quantiles and their non-exceedance probabil-

ities by fitting a univariate or multivariate probability

distribution function (Cunnane ; Rao & Hameed ;

Zhang ). A flood can be defined through three inter-cor-

related random vectors; that is, peak flow, flood volume and

flood duration, which can lead univariate distribution analy-

sis of return periods to underestimate or overestimate floods
(Yue et al. ; Zhang & Singh ; Reddy & Ganguli

). This has led researchers to explore multivariate distri-

bution analysis for the estimation of flood design quantiles

under different notations of return periods based on joint

distribution, conditional joint distribution or Kendall’s distri-

bution and the establishment of joint probability density

functions (or PDFs) and joint cumulative distribution func-

tions (or CDFs) for various possible combinations of the

flood vectors (Yue ; Zhang & Singh ;

Daneshkhan et al. ). Most of the earlier research applied

traditional multivariate functions such as bivariate normal,

gamma and lognormal distributions (i.e. Yue , ,

). However, several modelling constraints and
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limitations have prompted the incorporation of multivariate

copulas distribution analysis (i.e. De Michele & Salvadori

; Favre et al. ) which is frequently undertaken via

a parametric framework, where both the marginal distri-

bution of each targeted flood vector and their joint

dependence structure are modeled under univariate para-

metric functions or copulas distribution (i.e. Favre et al.

; Zhang ; Veronika & Halmova ; Fan &

Zheng  and references therein). While some researchers

have implemented copulas under semiparametric settings

where marginal functions are approximated via nonpara-

metric; that is, kernel density functions (KDE) or

orthonormal series, their joint structures are still modelled

under parametric settings (i.e. Karmakar & Simonovic

, ; Reddy & Ganguli ).

Selecting the most parsimonious univariate functions

for defining flood marginal distributions is often a manda-

tory pre-requisite before establishing their joint

dependence structure. Parametric functions have always

imposed an assumption that the random samples are

coming from known populations whose PDFs are pre-

defined; that is, marginal distributions are assumed to

follow a specific family of parametric probability functions.

In reality, however, the best fitted marginal distributions

may not be from the same probability distribution family

(Adamowski ; Silverman ; Kim & Heo ;

Botev et al. ). Dooge () has already pointed out

that no amount of statistical refinement can overcome the

consequences of a lack of prior probability distribution

information of the observed random samples. More

especially, in the case of multimodal or skewed distri-

butions, parametric distributions might be incompatible

and lead to inconsistencies in the estimated quantiles.

According to Bardsley () and Bardsley & Manly

(), the approximation of any distribution tail beyond

the largest value under a parameter distribution can be a dif-

ficult task. In the last few decades, in the field of hydrologic

or flood frequency analysis an attempt has been made to

define bona fide density functions via kernel density estima-

tors, or KDE, which are recognized as a flexible and very

stable nonparametric data smoothing procedure for approxi-

mating or inferencing populations based on finite

observational (Adamowski , ; Guo ; Lall et al.

; Bowman & Azzalini ; Efromovich ; Kim
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et al. ; Ghosh & Mujumdar ). Alternate theoretical

overviews for nonparametric setting have been described in

the earlier literature such as Rosenblatt (), Parzen ()

and Bartlett (). Nonparametric distributions do not

require any prior distribution assumptions and have a

higher level of flexibility in their univariate function in com-

parison with parametric density estimators (Adamowski

; Moon & Lall ).

Adamowski () retrieved the flood frequencies curve

using nonparametric kernel estimators while Adamowski &

Labatiuk () compared the difference between real and

synthetic data (derived from a Monte Carlo procedure)

and identified the modelling efficiency of nonparametric

density simulations. Similarly, Adamowski () performed

comparative assessments between parametric functions (i.e.

Weibull and log-Pearson type III) and nonparametric den-

sity functions based on the Monte Carlo simulation

statistics and found nonparametric density functions demon-

strations performed better than the parametric functions.

Adamowski & Feluch () were the first to identify the

efficiency of kernel estimators through selecting an appro-

priate kernel function for the extrapolation of distribution

samples beyond the available record. Adamowski ()

applied the nonparametric procedure to drought modelling

while Kim & Heo () compared nonparametric distri-

butions from parametric functions for annual maximum

flood samples. Lall et al. () postulated the different

orientations required to select an appropriate shape rep-

resentation for kernel functions and their bandwidth for

different distribution scenarios such as symmetrical, asym-

metrical or skewed and mixed data structures. Kim et al.

() estimated the return periods of low-flow or drought

characteristics using a nonparametric distribution frame-

work. Kim et al. () established bivariate drought

characteristics using the Palmer drought index in a nonpara-

metric procedure. Karmakar & Simonovic ()

approximated the flood marginal densities by introducing

both parametric and nonparametric functions. In this exper-

iment, nonparametric based kernel density functions as well

as orthonormal series functions, which are demonstrated

earlier in the literature; for example, Bowman & Azzalini

() and Efromovich (), were used to establish univari-

ate density functions. Santhosh & Srinivas ()

demonstrated a flood frequency relationship by employing
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a bivariate diffusion process based on the adaptive kernel

functions; that is, D-kernel function, and compared this

against parametric copulas functions. This demonstration

revealed that the nonparametric methodology is a data-

driven approach that poses the higher degree of flexibility

when establishing probability density functions. Lall et al.

(), Zhang & Karunamuni (), Kim et al. (), Kar-

makar & Simonovic () and Santhosh & Srinivas ()

all pointed out the flexibility of an interactive sets of kernel

functions for modelling extreme hydrological episodes such

as Gaussian or Normal, Epanechnikov, Triangular and

Quadratic functions.

Floods are becoming the most challenging hydrologic

issue in the Kelantan River basin in Malaysia, and particu-

larly during the period of wet monsoons (DID ; MMD

). Recent extreme weather across the basin includes

the intense and prolonged precipitation in the year 2002,

which caused flooding and affected a total area of

1,640 km2 with a total population of 714,287, while in the

year 2014 the worst flood ever recorded in history affected

more than 200,000 people in the several parts of the east

coast of the Kelantan River basin. The river is about

248 km long and drains a catchment area of 13,100 km2

The catchment is 150 km long and 140 km wide. During

the wet season, between mid-October and mid-January,

this basin receives a rainfall of about 2,500 mm. According

to the studies of Hussain & Ismail (), the Gulliemard

Bridge, Lebir and Galas gauge stations have higher flood fre-

quency than the Nenggiri gauge station. In 2018, Alamgir

et al. () performed a multivariate analysis of floods

under a parametric copulas distribution framework for the

different gauge stations of the river basin, while Nashwan

et al. () performed flood susceptibility assessments at

the different gauge stations, which revealed that the down-

stream area is under the highest risk of devastating floods.

A number of studies have also identified the negative conse-

quences of land use changes on the catchment’s response

(i.e. Wan ; Jamaliah ).

All three flood characteristics; that is, peak flow, flood

volume and flood duration, are important when formulating

actions and measures to manage flood risk. For example,

when designing retention basins or the spillways for reser-

voirs or any other infrastructures designs where flood

storage is involved, the estimation of flood volume is
://iwa.silverchair.com/ws/article-pdf/20/4/1509/705551/ws020041509.pdf
required as well as the peak discharge in order to calculate

the impact of inflow on the storage (Gaál et al. ). Simi-

larly, estimating the joint behaviour of peak flow-flood

volume and flood volume-flood duration when assessing

flood control or diversion options (i.e. Xu et al. ). There-

fore, estimating the multivariate designs and their associated

return periods is an essential element of making informed

risk-based decisions in this river basin.

The case study is divided into two parts, with each part

covered in a full paper. The objective of this part of the

case study is to identify the best marginal distribution of

the flood characteristics. In this paper, the efficacy of a

kernel density estimator is tested by assessing the adequacy

of an interactive set of kernel functions for capturing the

flood marginal density. Demonstration of the efficacy of

copulas functions for establishing joint distribution func-

tions whose marginal distributions are approximated

with nonparametric distribution or kernel density func-

tions (which are also called semiparametric copulas

distribution settings) is introduced separately in the com-

panion paper. An at-site event-based or block (annual)

maxima methodology based on 50 years (from 1961 to

2016) of daily stream flow data collected at Gulliemard

Bridge gauge station in the Kelantan River basin is

described. A brief mathematical overview of the nonpara-

metric procedure in estimating univariate margins via

kernel density function is provided below. The sampling

procedure for estimating multivariate flood characteristics,

estimating marginal distribution functions by employing a

variety of univariate kernel functions and also via para-

metric functions are discussed in the third section of this

paper.
NONPARAMETRIC PROCEDURE FOR MARGINAL
DISTRIBUTIONS

Univariate kernel density estimators, or KDE

Rosenblatt () introduced the concept of kernel estima-

tors through smoothing kernel weights on each of the

random observations. The univariate kernel density esti-

mation (or KDE) is a nonparametric approach to

approximate the PDFs, say f(x), of a given random



Table 1 | Some standard univariate kernel functions

SI. no. Kernel function K(x)

1 Epanechnikov ¼ 0:75(1� x2), jxj � 1

¼ 0, otherwise

2 Triangular
¼ 1� jxj, jxj � 1

¼ 0, otherwise

3 Bi-weight or Quartic
¼ 0:9375(1� x2)2, jxj � 1

¼ 0, otherwise

4 Tri-weight ¼ 1:09375(1� x2)3, jxj � 1

¼ 0, otherwise

5 Cosine ¼ π

4
cos(πx=2), jxj � 1

¼ 0, otherwise
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observations of 0x0 or flood characteristics such as peak flow,

flood volume or flood duration, where inference about the

flood populations is made based on finite samples. There-

fore, univariate kernel functions are used to estimate the

probability density of the random observations having the

following statistical property.

Mathematically,

ðþ∞

�∞

K(x)dx ¼ 1 (1)

where K(x) defines the univariate kernel function and can

be used as a PDF (Karmakar & Simonovic ). According

to Hardle (), the kernel functions can be approximated

through a general equation as:

Kh(x) ¼ 1
h
K

x
h

� �
(2)

where ‘h’ is the smoothing parameter known as the ‘band-

width of the kernel function’ for regulating the level of

smoothness and roughness of the shape of the estimated

PDF (Moon & Lall ). According to Miladinovic ()

and Kim & Heo (), if X1, X2, X3, . . . :Xn, are indepen-

dent and identically distributed (or i.i.d) random

observations having the PDF f(x), then the univariate

kernel density estimates of f(x) are obtained by averaging

Equation (2) in the given random observations, as given

below:

bfh(x) ¼ 1
nh

Xn
i¼1

Kh
x� Xi

h

� �
(3)

where ‘n’ is the number of random observations; Xi is the ith

observation and bfh(x) is the kernel density estimate. Table 1

lists five standard univariate kernel functions, which have

been reported previously when determining the PDFs and

CDFs of hydrologic or flood vectors (i.e. Moon & Lall

; Adamowski ; Miladinovic ; Karmakar &

Simonovic ).

The efficiency of the estimated kernel density depends

upon two factors: (1) an appropriate choice of the kernel
om http://iwa.silverchair.com/ws/article-pdf/20/4/1509/705551/ws020041509.pdf
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bandwidth and (2) selection of the kernel function. Band-

width estimation procedures are discussed below. The

kernel functions listed in Table 1 are ideally suited to

unbounded observations but in actuality most hydrologic

data including rainfall, streamflow or humidity and so on,

are either upper or lower bounded. This can lead to bound-

ary leakage problems when applying standard kernel

functions in the hydrological data domain. This issue has

been tackled in a number of ways including using a

Method of reflection (Silverman ), Methods of trans-

formations (Marron & Ruppert ), Beta kernels (Chen

) and Adaptive kernels (Botev et al. ). Such bound-

ary leakage issues during kernel estimation are beyond the

scope of this paper.

The appropriate choice of the kernel smoothing par-

ameter or bandwidth ‘h’ is often a critical concern in KDE

because the shape of kernel density estimates can be affected

by the estimated bandwidth (Moon & Lall ; Efromovich

; Shabri ; Kim & Heo ). Insufficient smoothing

can result in a rough density while over-smoothing can lead

to bypass or smoothing of important features (Santhosh & Sri-

nivas ). Table 2 summaries eight different bandwidth

selection algorithms. Jones et al. () and Sharma et al.

() provide an extended overview of these algorithms

and their approaches. Several bandwidth estimation pro-

cedures are solely based on minimizing the estimates of the

Mean square error or MSE (Shabri ). According to

Miladinovic (), the asymptotic mean integrated square



Table 2 | Kernel bandwidth selection algorithms

Algorithms Literature

Rule of Thumb (ROT) Silverman () &
Azzalini ()

Least-squares cross-validation (LSCV) Tarboton et al., ()

Bandwidth factorized cross-validation Kim & Heo ()

Smoothed cross-validation Hall ()

Biased cross-validation Scott & Terrell ()

Maximum likelihood cross-validation
(MLCV)

Duin ()

Plug-in estimates Wand & Jones ()

Asymptotic mean integrated squared
error (AMISE)

Ghosh & Huang ()
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error or AMISE depends on four factors; that is, the kernel

bandwidth, the sample size, the kernel function and targeted

density function. Therefore, it could be possible to minimize

the AMISE value by selecting justifiable kernel functions

and their smoothing parameters ‘h’. According to Bowman

& Azzalini () and Kim et al. (), the optimal band-

width is typically estimated based on estimates of the

integrated square error or ISE (Kim & Heo ). In other

words, mean integrated square error or MISE, which is

the expected value of ISE, determines the overall effective-

ness of the estimated kernel density estimators during the

asymptotically optimal choice of kernel bandwidth ‘h’ and

can be derived as:

ISE ¼
ð
[ bfh(x)� f(x)]2 dx (4)

MISE ¼ E
ð
[ bfh(x)� f(x)]

2
� �

dx

¼
ð
Var bfh(x)dxþ ð

bias2 bfh(x)dx (5)

where the terms
Ð
Var bfh(x)dx and

Ð
bias2 bfh(x)dx represent

the integrated variance and integrated squared bias (Kim

& Heo ). From Equation (4), it is clear that the

second order derivatives of the density functions are

required to estimate MISE, and are not defined or unknown.

According to Silverman (), the rule of thumb or ROT

was proposed to minimize the asymptotic MISE value.

Therefore, Azzalini () and Silverman () estimated

the optimal bandwidth h0 based on a final distribution
://iwa.silverchair.com/ws/article-pdf/20/4/1509/705551/ws020041509.pdf
being Gaussian or symmetrical and can be formulated as:

optimal bandwidth ¼ h0 ¼ (1:587)σn�1=3 (6)

where σ¼minimum {Sample standard deviation, (Interquar-

tile range or IQR/1.349)}. Thus, in this paper, the kernel

bandwidth is estimated by minimizing the mean integrated

square error (MISE) via the optimal bandwidth (h0) algor-

ithm. Plug-in bandwidth estimators that target the AMISE

as the distance to be minimized are also very simple and

promising (Wand & Jones ). Similarly, the performance

of smoothed cross-validation becomes superior only for

large sample size (Hall ). Beside this, readers are

advised to follow the respective papers for visualizing the

statistical significance of different bandwidth estimators, as

listed in Table 2.
APPLICATION TO ANNUAL MAXIMUM FLOOD
SERIES: A CASE STUDY

Data pre-processing stages: extraction of flood

characteristics

Monsoonal floods seem to have increased in the Kelantan

River basin in Malaysia in the last few decades in terms of

both frequency and magnitude (DID ; MMD ). It

is the longest river of Kelantan state, which rises in the

Tahan mountain range and flows to the South China Sea

in the north-eastern part of Peninsular Malaysia between

the geographical location of Lat 4� 300 N to 6� 150 N and

Long 101�E to 102� 450 E. The Galas River and the Lebir

River are the two major tributaries of the Kelantan River.

The land use in the upper catchment is forest while agricul-

ture including paddy farms, rubber and oil-palm plantations

are the major land-use activities in the middle and lower

areas of the catchment. The precipitation for this region typi-

cally varies between 0 mm (in the dry period) to 1,750 mm

(in the wet or north-eastern monsoonal period) (DID ).

For data analysis, a partial data series (block (annual)

maxima-based flood sampling procedure) was adopted to

characterise the streamflow at the Gulliemard bridge

gauge station in the Kelantan River basin in Malaysia.
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Flood probability distributions based on partial data series

only focus on the extreme portion of the hydrograph; that

is, either high flow (for floods) or low flow (for droughts)

instead of visualizing the entire hydrograph (Hosking et al.

). Daily streamflows were recorded by the Drainage

and Irrigation Department, Malaysia, for the period 1961–

2016. Peak flows were selected for each year based on the

maximum flow record using Equation (7), while the flood

volume and flood duration corresponding to each peak

flow were estimated using the methodology described by

Yue & Rasmussen (), Eckhardt (), Gonzales et al.

(), Xu et al. () and given in Equations (8) and (9)

and illustrated in Figure 1.

Pi ¼ max {Qij, j ¼ SDi þ SDi þ 1, . . . . . . ::, EDi}

¼ Annual flood peak series for the ith year (7)

Vi ¼ Vtotal
i �VBaseflow

i ¼
XED
j¼SDi

Qij �
(1þDi)(Qis þQie)

2

¼ hydrograph volume series (8)

Di ¼ EDi � SDi

¼ Hydrograph durations for ith year (9)
Figure 1 | A typical hydrograph characteristic for the ith flood event.
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where ‘Qij’ is the jth day streamflow magnitude in the ith year;

‘Qis’ and ‘Qie’ are the streamflow magnitude at the start date

‘SDi’ and end date ‘ED0
i of the flood. The flood volume were

determined after separating the base flow (i.e. low frequency

component) from the direct runoff (i.e. high frequency com-

ponent). The flood duration extraction was based on the time

difference between the rising (SDi) and recession (EDi) limb of

the target flood peak flow. A recursive digital filtering procedure

in the formof eithera singleparameter digitalfilter (i.e.Eckhardt

) or a recursive filtering algorithm (Eckhardt ) are the

two different ways of extracting low-frequency components or

base flow separation. In this demonstration, we adopted the

Eckhardt () algorithm, which usually provides an effective

way to discriminate base flow from direct-surface runoff and is

significant for thewider verificationof catchments to reveal con-

sistent measures (i.e. Zhang et al. ). Flood peak flow often

attains the maximum value but it is not necessary for flood

volume and duration observations (Xu et al. ). Figure 2 illus-

trates the time series of annual flood characteristics for the

period 1961–2016. The descriptive statistics of the flood charac-

teristics are given in Table 3 and reveal that each flood vector

exhibits a positively skewed distribution; that is, asymmetrical

behaviour, which is also indicated from the histogram plots

given in Figure 3. Figure 4(a) and 4(b) provide the normal



Figure 2 | Time series distribution of block (annual) maxima based flood characteristics between 1961–2016 at the Gulliemard bridge gauge station for Kelantan River basin in Malaysia.

Table 3 | Basic descriptive statistics of annual flood characteristics

Descriptive measure P(m3/sec) V(m3) D(days) Percentile P(m3/sec) V(m3) D(days)

Sample size 50 50 50 Min 916.3 3,182.3 7

Range 19,670 71,558 57 5% 1,209.1 4,334.7 8

Mean 6,078 19,122 19.04 10% 1,647.1 4,811.7 9.1

Variance 2.15Eþ 07 2.14Eþ 08 117.75 25% (Q1) 2,671.8 8,668.5 12

Standard deviation 4,639 14,623 10.851 50% (Median) 4,961 15,959 16

Coefficient of variation 0.76324 0.76473 0.56993 75% (Q3) 7,711.7 24,476 25

Standard error 656.05 2,068.1 1.5346 90% 11,584 43,077 28.9

Skewness (Fisher) 1.5532 1.6392 2.2793 95% 18,581 47,790 43.35

Skewness (Pearson) 1.506 1.590 2.210 Max 20,586 74,740 64

Kurtosis (Pearson) 1.883 2.864 6.252

Excess Kurtosis (Fisher) 2.2158 3.3029 7.0557

Standard error of the mean 656.050 2,068.071 1.535

Lower bound on mean (95%) 4,759.628 14,966.495 15.956

Upper bound on mean (95%) 7,396.392 23,278.381 22.124

Standard error of the variance 4,347,713.616 43,203,375.975 23.790
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Figure 3 | Histogram plot of flood characteristics.
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quantile-quantile (or q-q) plot andbox-whiskerplot of the annual

flood characteristics.

Testing for stationarity within the flood characteristics

Tests for stationarity or the existence of serial correlation (or

autocorrelation) within the flood series is often a pre-

requisite before introducing random samples into a univari-

ate or multivariate framework (Daneshkhan et al. ).

Ljung & Box () based hypothesis testing, which is also

known as Q-statistics, were performed on each time series

of observations. As indicated in Table 4(a), the tests found

negligible or zero first-order autocorrelations for each of

the flood vector series for different lag sizes (i.e. lag 20, lag

10, lag 5). A nonparametric rank-based Mann-Kendall (or

M-K) test (Mann ; Kendall ) was also performed to

test for the existence of any monotonic trend within the his-

torical flood series. As indicated in Table 4(b), the test found

zero monotonic trend at the 5% or 0.05 level of significance

within the flood vector series. Testing for the existence of a

homogenous environment between any two given time

points was also investigated for each flood vector through
om http://iwa.silverchair.com/ws/article-pdf/20/4/1509/705551/ws020041509.pdf
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application of a Pettit test (Pettitt ), a Buishand test

(Buishand ), von Neumann’s test (Jaiswal et al. )

and by undertaking Alexanderson’s SNHT based hypothesis

testing (Alexandersson ). As demonstrated in Table 4(c),

it was found that homogeneity existed within the flood

vector series. It was concluded therefore that the time

series of the flood vector do not exhibit any significant trend.

Nonparametric estimations

Table 1 identified some standard univariate kernel functions,

which are adopted when defining a best-fit flood marginal dis-

tribution. The bandwidth of the candidate kernel functions

was estimated using the optimal bandwidth algorithm given

in Equation (6) (Azzalini ; Silverman ). According to

Kim et al. (), the nonparametric density approximations

do not facilitate a closed form of the PDF and CDF, thus

CDFs were estimated through an empirical procedure that is

based on numerical integration (Kim & Heo ).

Some frequently applied parametric family functions such

as the Log Pearson type III distribution (Bobee ), the Log-

normal-2P function (Yue ), the Weibull-3P distribution



Figure 4 | (a) Normal quantile-quantile (Q-Q) plot, (b) Box-whisker plot of annual flood characteristics.
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(Heo et al. ), the Johnson SB-4P distribution (Keshtkaran

& Torabihaghighi ), the Gamma-3P (Xu et al. ) and

the Inverse Gaussian-3P functions (Daneshkhan et al. )
://iwa.silverchair.com/ws/article-pdf/20/4/1509/705551/ws020041509.pdf
were also tested and compared to the nonparametric esti-

mates. The vectors of unknown statistical parameters or

model parameters were estimated using the Maximum



Table 4 | (a) Q-statistics and their corresponding p-value, (b) M-K test for annual flood characteristics between year 1961 and 2016, (c) homogeneity test statistics

(a)

Flood vectors Lag 20 Lag 10 Lag 5

P p-value 0.78 0.466 0.43

Q- statistics 14.9 9.719 4.89

V p-value 0.92 0.678 0.99

Q- statistics 12 7.497 0.5

D p-value 0.73 0.801 0.69

Q- statistics 15.7 6.171 3.04

Note: Critical value 31.4104 18.307 11.070

(b)

Series/test P V D

Kendall’s tau 0.007 0.006533 �0.041

S 9.000 8 �49.000

Var (S) 7,541.387 8,474.018 8,985.326

p-value (two-tailed) 0.917 0.939386 0.613

Alpha 0.05 0.05 0.05

Sen’s slope 2.100 3.954 0.000

Risk for rejecting null hypothesis
Ho 91.75% 93.94% 61.26%

(c)

Test Statistics P V D
Overall
conclusion

Pettitt K 138.000 140 128

T 4 8 34

p-value (two-tailed) 0.715 0.744 0.555 Homogenous

Confidence interval@99% on
p-value ]0.704, 0.727 [ ] 0.591, 0.616 [ ] 0.542, 0.568 [

SNHT T0 3.614 2.992 2.504

T 13 6 34

p-value (two-tailed) 0.501 0.603 0.697 Homogenous

Confidence interval @99% on
p-value ]0.488, 0.513 [ 4.051 ] 0.685, 0.708 [

Buishand’s Q 5.956 4.015 5.273

T 13 6 34 Homogenous

p-value (two-tailed) 0.363 0.817 0.519

Confidence interval @99% on
p-value ] 0.351, 0.376 [ ] 807, 0.827 [ ] 0.506, 532 [

Von Nuemann’s N 2.080 2.015 2.441

p-value (two-tailed) 0.592 0.501 0.970 Homogenous

Confidence interval @99% on
p-value ] 0.580, 0.605 [ ] 0.488, 0.513 [ ] 0.965, 974 [

Note: p-values are computed using 10,000 Monte Carlo simulations.
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likelihood estimators (MLE) andMethods ofMoments estima-

tors (MOM) and their estimated values are listed in Table 5.
)

Goodness-of-fit test

The theoretical cumulative density of each flood series was

estimated through the nonparametric procedure and com-

pared against empirical non-exceedance probabilities to

assess the data reproducing capabilities and fitness consist-

ency with observational samples. Empirical observations

were estimated using the Gringorten plotting position for-

mulae (Gringorten ), expressed as:

Pi ¼ i� 1
N þ 0:12

(10)

where ‘i’ stands for the smallest observations within the data

sets of N observations when the data are arranged in ascend-

ing order. Several fitness test statistics are incorporated such

as using error indices statistics called the Mean Square Error

(MSE) and the Root Mean Square Error (RMSE) (Moriasi

et al. ), the Kullback-Leibler information measures

(Kullback & Leibler ), statistics called the Akaike infor-

mation criteria (AIC) (Akaike ), Schwartz’s Bayesian

information criteria (BIC) (Schwarz ) and the Hannan-

Quinn criteria (HQC) (Hannan & Quinn ; Burnham

& Anderson ). The lowest value of RMSE, MSE, AIC,

BIC and the HQC statistics indicate the best fit. The AIC

statistics include the lack of the fit of the model on one

hand and the unreliability of the model due to the number

of model parameters on the other hand (Zhang & Singh
Table 5 | Estimated parameters of parametric probability distribution functions

Parametric functions Flood peak (P) Volume (V)

Log-Pearson‐3P a¼ 663.54, b¼�0.02887, g¼ 27.608 a¼ 1,781.0

Lognormal‐2P s¼ 0.7362, m¼ 8.4513 s¼ 0.74093

Weibull‐3P a¼ 1.1175, b¼ 5,389.8, g¼ 899.42 a¼ 1.0689

Johnson SB‐4P g¼ 1.5161, d¼ 0.74495, l¼ 27,319.0,
x¼ 1,304.2

g¼ 2.2027,
x¼ 961.8

Gamma‐3P a¼ 1.2106, b¼ 4,290.0, g¼ 884.47 a¼ 1.0848

Inverse
Gaussian-3P

l¼ 10,556.0, m¼ 6,320.9,
g¼�242.85

l¼ 26,884.

://iwa.silverchair.com/ws/article-pdf/20/4/1509/705551/ws020041509.pdf
). Therefore, maximizing the likelihood of fitted distri-

butions or in the context of the maximized value of the

likelihood functions, it can be mathematically estimated as:

AIC ¼ �2 log (maximized likehood for fitted model)

þ 2(number of fitted model parameters) (11)

Also,

AIC ¼ �2 log (MSE)

þ 2(number of fitted model parameters) (12)

Similarly, the BIC statistics can be formulated as:

BIC ¼ �(sample size) log (maximized likehood for fitted

distirbutions)þ [number of fitted model parameters

Log(sample size) (13)

Also,

BIC ¼ �(sample size) log (MSE)

þ [number of fitted model parameters Log(sample size

(14)

The HQC based model selection criteria, which is

another alternative to the AIC and BIC statistics (Hannan

& Quinn ; Burnham & Anderson ), can be
Durations (D)

, b¼�0.01771, g¼ 41.234 a¼ 14.523, b¼ 0.12506, g¼ 1.0099

, m¼ 9.594 s¼ 0.4717, m¼ 2.826

, b¼ 16,369.0, g¼ 3,155.6 a¼ 1.1951, b¼ 12.878, g¼ 6.9279

d¼ 1.0357, l¼ 1.3052Eþ 5, g¼ 2.5314, d¼ 0.92215, l¼ 118.81,
x¼ 8.2791

, b¼ 14,723.0, g¼ 3,150.8 a¼ 1.4696, b¼ 8.3319, g¼ 6.7958

0, m¼ 19,086.0, g¼ 36.267 l¼ 28.913, m¼ 14.81, g¼ 4.2297
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formulated as:

HQC ¼ �2Lmax þ 2klog(log (N)) (15)

where Lmax signifies the model log-likelihood of the total

number of fitted parameters ‘k’ for the ‘N’ sample size.

The HQC statistics are not an estimator of Kullback-Leibler

divergence (Burnham & Anderson ) and are not an

asymptotically efficient criterion (Claeskens & Hjort ;

Haggag ). Such characteristics are identical to the BIC

statistics; however, the HQC statistics exhibited a higher

level of consistency. Similarly, the MSE and RMSE are
Table 6 | Analytical comparison for different probability functions

Flood
vector F(X)

Error indices statistics

MSE (or mean
square error)

RMSE (or root mean
square error)

P Epanechnikov 0.00038 0.01957
Bi-weight or quartic 0.00026 0.01620
Triweight 0.00022 0.01483
Triangular 0.00028 0.01686
Cosine 0.00032 0.01800
LogPearson‐3P 0.00045 0.02127
Lognormal‐2P 0.00046 0.02163
Weibull‐3P 0.01612 0.12699
Johnson SB‐4P 0.00093 0.03053
Gamma‐3P 0.01173 0.10828
Inverse Gaussia‐3P 0.01636 0.12792

V Epanechnikov 0.00093 0.03060
Bi-weight or quartic 0.00018 0.01350
Triweight 0.00016 0.01287
Triangular 0.00020 0.01426
Cosine 0.00022 0.01514
Log-Pearson‐3P 0.00048 0.02207
Lognormal‐2P 0.00055 0.02351
Weibull‐3P 0.00047 0.02182
Johnson SB‐4P 0.00041 0.02027
Gamma‐3P 0.01327 0.11520
Inverse Gaussian‐3P 0.00077 0.02783

D Epanechnikov 0.00059 0.02430
Bi-weight or quartic 0.00051 0.02265
Triweight 0.00048 0.02208
Triangular 0.00055 0.02357
Cosine 0.00062 0.02496
Log-Pearson‐3P 0.00100 0.03171
Lognormal‐2P 0.00132 0.03635
Weibull‐3P 0.01619 0.12726
Johnson‐4P 0.00972 0.09861
Gamma‐3P 0.00091 0.03012
Inverse Gaussian‐3P 0.00091 0.03027

om http://iwa.silverchair.com/ws/article-pdf/20/4/1509/705551/ws020041509.pdf

4

estimated as:

MSE ¼
XN
i¼1

(xModel
i � xEmpirical

i )2=N (16)

and,

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffi
MSE

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

(xModel
i � xEmpirical

i )
2
=N

vuut (17)

where ‘xi’ indicating the ith series of sample size N.
Information criteria statistics

AIC (or Akaike
information criteria)

BIC (or Bayesian
information criteria)

HQC (or Hannan-Quinn
information criteria)

�391.37 �389.45 �390.64
�410.25 �408.34 �409.52
�419.07 �417.16 �418.34
�406.26 �404.35 �405.54
�399.98 �398.07 �399.25
�379.03 �373.30 �376.85
�379.34 �375.52 �377.89
�200.89 �194.62 �200.90
�340.89 �333.25 �337.99
�216.30 �210.56 �214.12
�199.63 �193.89 �197.45

�346.66 �344.75 �345.93
�428.44 �426.53 �427.71
�433.27 �431.36 �432.55
�423.01 �421.10 �422.29
�417.02 �415.11 �416.30
�375.31 �369.58 �373.13
�371.02 �367.20 �369.57
�376.47 �370.74 �374.29
�381.82 �374.17 �378.91
�210.10 �204.37 �207.92
�352.16 �346.42 �349.98

�369.69 �367.77 �368.96
�376.71 �374.80 �375.99
�379.27 �377.36 �378.54
�372.74 �370.83 �372.01
�367.03 �365.12 �366.30
�339.08 �333.34 �336.89
�327.46 �323.63 �326.00
�200.15 �194.41 �197.97
�223.65 �216.00 �220.74
�343.62 �337.88 �341.43
�343.74 �338.00 �341.55



Figure 5 | Probability density functions (or PDFs), cumulative distribution functions (or CDFs) and probability-probability (p-p) plot of annual flood series. (Continued.)
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Figure 5 | Continued.
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Figure 5 | Continued.
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Figure 6 | K-S test comparison cumulative and percentile plot of fitted distributions for (a) flood peak discharge series, (b) volume series, (c) durations series. (Continued.)
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Figure 6 | Continued.
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Figure 6 | Continued.
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Figure 6 | Continued.
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Figure 6 | Continued.
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Figure 6 | Continued.
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Table 6 presents the estimated values of MSE, RMSE,

AIC, BIC and the HQC statistics of all the nonparametric

kernel distribution functions fitted to the flood vectors. It

was found that the Triweight kernel outperformed other

functions as it gave the lowest values of the fitness test stat-

istics for all three flood distribution series; that is, MSE

(0.00022), RMSE (0.01483), AIC (�419.0760), BIC

(�417.164) and HQC (�418.348) for peak flow, MSE

(0.00016), RMSE (0.01287), AIC (�433.27), BIC (�431.36)

and HQC (�432.55) for flood volume series and MSE

(0.00048), RMSE (0.02208), AIC (�379.27), BIC (�377.26)

and HQC (�378.54) for flood duration. The performance

of the Biweight and Triangular functions was also more

effective than the targeted parametric functions. While the

Epanechnikov kernel was less effective than the other candi-

date kernel functions, it was still better than the parametric

functions as revealed in Table 6. Based on analytically based

fitness measures, it was concluded that it is likely that Tri-

weight kernel function is the best-fitted distribution for

defining the marginal distribution of peak flows, flood

volumes and flood durations in the Kelantan River basin.

A qualitative approach based on a graphically based

visual inspection was also conducted for each flood vector

for the probability density plot, the cumulative density plot,

the probability- probability (or p-p) plot, the K-S test compari-

son cumulative fraction plot and the K-S test comparison

percentile plot as illustrated in Figures 5 and 6(a)–6(c). It is

noted that the Kolmogorov-Smirnov test (K-S) is a nonpara-

metric distribution-free test that seeks to investigate the

largest vertical gap between cumulative empirical and theor-

etical probabilities and also has the advantage of not

assuming the distribution of data (Xu et al. ).

It was concluded that these plots clearly indicate the

effectiveness of a nonparametric kernel structure and sup-

port the adoption of a Triweight kernel function for

defining univariate flood marginal distributions.
CONCLUSIONS

Floods are becoming themost challenging hydrologic issue in

the Kelantan River basin inMalaysia, and particularly during

the period of wet monsoons. All three flood characteristics;

that is, peak flow, flood volume and flood duration, are
om http://iwa.silverchair.com/ws/article-pdf/20/4/1509/705551/ws020041509.pdf
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important when formulating actions and measures to

manage flood risk. Therefore, estimating the multivariate

designs and their associated return periods is an essential

element of making informed risk-based decisions in this

river basin.

In this paper, the efficacy of a kernel density estimator is

tested by assessing the adequacy of an interactive set of

kernel functions for capturing the flood marginal density

of 50 years (from 1961 to 2016) of daily stream flow data col-

lected at Gulliemard Bridge gauge station in the Kelantan

River basin.

Tests for stationarity or existence of serial correlation

(or autocorrelation) within the flood series is often a

pre-requisite before introducing the random samples into a

univariate or a multivariate framework. It was found that

homogeneity existed within the flood vector series. It was

concluded therefore that the time series of the flood vectors

do not exhibit any significant trend.

Based on analytically based fitness measures, it was con-

cluded that it is likely that Triweight kernel function is the

best-fitted distribution for defining the marginal distribution

of peak flows, flood volumes and flood durations in the

Kelantan River basin.
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