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Prediction and analysis of non-stationary runoff extreme

sequence based on ESMD combination prediction model

Yi-zhen Li and Chun-fang Yue
ABSTRACT
With increasingly severe climate changes and intensified human activities, it is more and more

difficult to predict the non-stationary extreme runoff series accurately. In this research, based on the

‘decomposition-prediction-reconstruction’ model, an instantaneous frequency distribution map was

used to measure the effect of empirical mode decomposition (EMD), ensemble empirical mode

decomposition, complete ensemble empirical mode decomposition and extreme-point symmetric

mode decomposition (ESMD) in dealing with mode mixing; appropriate prediction methods for each

component were selected to form a combined prediction model; and the advantages of a combined

prediction model based on ESMD were compared and analyzed with the following results acquired:

(1) ESMD can address the mode mixing problem with EMD; (2) particle swarm optimization–least

squares support vector machine, autoregressive model (1) and random forest are suitable for high-/

medium-/low-frequency components and the residual components R; (3) the results of the combined

prediction model are better than those of the single ones; and (4) the prediction effect of the

combined prediction model is the best under ESMD decomposition, and the prediction errors of the

runoff extreme value sequence can be reduced by about 58–80% compared with the three other

decomposition methods. Moreover, as demonstrated in this study, the combined prediction model

based on ESMD can effectively predict the non-stationary extreme runoff series, while providing

reference for forecasting other non-stationary time series.
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INTRODUCTION
Accurate prediction of runoff extreme value series is of

important scientific and practical significance for planning

and design of flood controls, prevention and mitigation of

disasters, protection of ecological environments and sustain-

able development of economy and society. In recent years,

however, due to climate change and human activities,

runoff extreme series have become non-linear and non-

stationary and thus more difficult to predict (Zhang et al.

b). Therefore, their accurate prediction of them has

attracted wide attention from researchers.

So far, many new methods and technologies have been

introduced to try to predict the non-stationary time series. In
particular, the idea of coupled decomposition-prediction-

reconstruction has been widely recognized by the industry

because of its good response to random, periodic and

trend terms of hydrological processes and its superior

prediction accuracy compared to traditional methods (Yu

et al. ). In the decomposition-prediction-reconstruction

model, decomposition is the premise and key. Since

Huang () proposed an empirical mode decomposition

(EMD) method in 1998, EMD decomposition algorithm

has been widely used in meteorology, acoustics, biology,

earthquake and mechanical vibration (Huang et al. ).

However, because EMD algorithm is based on experience,
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it has certain shortcomings in applications, with the main

problem existing in mode mixing, which refers to the case

that the decomposition of a single component contains a

large difference in the characteristic time scale, or the adja-

cent two components show similar time scales. The

phenomenon of mode aliasing in decomposition means

that the time-frequency spectrum of components is mixed,

with each component losing its uniqueness, leading to the

result that decomposition does not achieve the purpose of

separating different signals. To solve this problem, many

improved EMD-based decomposition methods have

emerged, such as the ensemble empirical mode decompo-

sition (EEMD) proposed by Huang et al. (), the

complete ensemble empirical mode decomposition

(CEEMD) by Yeh et al. () and the extreme-point sym-

metric mode decomposition (ESMD) method by Wang &

Li (). Among them, both EEMD and CEEMD add

white noises with normal distribution (i.e., signals with con-

tinuous and uniform spectrum) to the original signals

several times and change the extreme value distribution

characteristics of the signal by using the frequency uniform

distribution characteristics of white noises to solve the pro-

blem of mode mixing. The added white noise sequence,

however, will ‘pollute’ the original sequence signal, and if

the parameters are not selected properly, not only will the

mode mixing not be suppressed, but pseudo components

will also appear in the decomposition results (Wang & Li

; Chen et al. ; Zhao et al. ). On the other hand,

by using internal pole symmetry direct interpolation instead

of external envelope interpolation, the ESMD method intro-

duces the concept of optimal adaptive global curve to

optimize the trend line of decomposition to determine the

optimal number of modal decomposition, thus overcoming

the shortcomings of the former two methods (Wang & Li

).

The address the problem of mode mixing in EMD, many

scholars have proposed improved methods based on EMD,

and analyses have been carried out on how to express the

degree of mode mixing. Modal decomposition is purposed

to decompose the original sequence into a finite number

of independent and representative modes. To find out

whether there is mode mixing among components, it is

necessary to analyze the independence of each component.

To this end, existing studies usually measure the degree of
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mode mixing among components from three aspects: ortho-

gonality index (IOO) (Cao et al. ), correlation coefficient

(Wang & Zhang ) and error analysis (Wang et al. ).

Nevertheless, these three methods are not fully applicable to

characterizing the independence of each component. The

orthogonality and linear independence are only applicable

to modal functions with constant frequency and stable

amplitude. Wang & Li () thought that the independence

of modes was mainly manifested in the instantaneous differ-

ence of frequencies, i.e., if the frequencies of each mode do

not overlap concurrently, it can be decided that no mode

mixing exist; in such case, a direct interpolation method

can be used to obtain the instantaneous frequency distri-

bution curve of each component.

Another key part of the decomposition-prediction-

reconstruction model is prediction. In previous studies,

models have been coupled with decomposition methods

to make prediction, including back-propagation neural

network, radial basis function (RBF) neural network,

autoregressive moving average model (ARMA), autoregres-

sive model (AR), support vector machine (SVM) model

and grey model (GM) (1,1). For example, Zhang et al.

(a) used RBF neural network to predict the components

of EEMD decomposition; and Zhao et al. () tried to pre-

dict the runoff components of EMD decomposition in

combination with the chaotic least squares SVM. Some

scholars also believe that different frequency distribution

components are suitable for different prediction methods;

accordingly, different prediction methods shall be used for

different components. For example, Zhao et al. ()

thought that RBF neural network was suitable for high-fre-

quency component prediction, ARMA for low-frequency

component prediction and the GM (1,1) model for trend

item. Yu et al. () applied the AR model to low-frequency

components and the RBF neural network to high-frequency

components. Wang et al. () applied the autoregressive

model, the rank set pair prediction model and the poly-

nomial fitting equation to high-frequency, low-frequency

and residual components of EMD decomposition, respect-

ively. In summary, due to different characteristics of modal

functions in different time series, the prediction methods

for different components are not uniform; therefore, further

exploration is needed. In this research, to improve the pre-

diction accuracy, EMD, EEMD, CEEMD and ESMD were
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used to decompose the runoff extreme sequence; the instan-

taneous frequency distribution curve of components was

used to measure the effect of four decomposition methods

in dealing with mode mixing; and then the prediction

method suitable for the components of runoff extreme

series was explored. Finally, a combined prediction model

composed of a single prediction method was used to predict

and analyze the runoff extreme series. The main flow chart

of this research is shown in Figure 1.
Figure 1 | The summary flowchart of the ESMD-based combination prediction model.

://iwa.silverchair.com/ws/article-pdf/20/4/1439/705114/ws020041439.pdf
MATERIALS AND METHODS

Study area and data

The annual runoff extreme series measured at Bajiahu

hydrological stations in the Jingou River Basin from 1957

to 2016 (a total of 60 years) were taken as the research

object of this study. Located in Shawan County, Xinjiang

(85�220E–85�440E, 43�550N–44�280N) and covering a
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drainage area of about 2,626 km2 (Figure 2) as an inland dry

river with mountain streams and sediments, the Basin has a

total annual runoff of about 3.83 × 108 m3. Its inner-year

variation of runoff is quite different, but the inter-year vari-

ation is relatively stable. The runoff from June to August

accounts for 69.7% of the annual runoff. The Basin is

located in the north slope of Tianshan Mountain in Xin-

jiang, along the Jingou River, a typical glacial snowmelt

river. Due to climate change, plus the characteristics of

uneven distribution of runoff in time and space, floods and

spring droughts caused by extreme runoffs often occur in

the basin.
Figure 2 | The geographical map of the Jingou River Basin.

om http://iwa.silverchair.com/ws/article-pdf/20/4/1439/705114/ws020041439.pdf

4

Data source

Based on the monthly runoff data, the runoff extreme series

from 1957 to 2016 are selected as the first largest/smallest

order statistic of the year, i.e., the maximum runoff series

and minimum runoff series composed of the first largest

monthly runoff and the first smallest monthly runoff,

respectively, are selected for every year. The monthly

runoff data comes from Shihezi Hydrological and Water

Resources Survey Bureau and Planning Bureau of Water

Resources Department of Xinjiang Uygur Autonomous

Region.
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METHODS

ESMD method

Compared with traditional EMD decomposition methods,

the ESMD method has unique advantages: it uses the pole

symmetric midpoint for internal interpolation and obtains

the appropriate number of interpolation curves based on

different conditions; and the number of decomposition

termination extreme points can be customized, which is

conducive to obtaining the optimal global mean in the

sense of least squares (Zhang ). The implementation

steps of ESMD are as follows:

Step 1: Find out all extreme points (maximum points and

minimum points) of data Y (t) and record them as

Ei(i ¼ 1, 2, . . . , n).

Step 2: Connect the adjacent poles with line segments and

record the line segments as Fi(i ¼ 1, 2, . . . , n� 1).

Step 3: Supplement the left and right boundary middle

points F0 and Fn by using the linear interpolation

method.

Step 4: Use the obtained nþ 1 midpoints to construct p

interpolation lines and calculate their mean curves

L� ¼ (L1 þ � � � þ Lp)=p.

Step 5: Repeat the above steps for Y � L� until jL�j � ε ( ε is

a preset allowable error) or the number of screening times

reaches the preset maximum K, and then the first mode

M1(t) is decomposed.

Step 6: Repeat the above steps for Y �M1(t) to obtain M2(t),

M3(t)…, until the final residual R(t) has only a certain

number of poles.

Step 7: Let the maximum screening times K change in the

integer interval [Kmin, Kmax] and repeat the steps above

to get a series of decomposition results, then calculate

the variance ratio σ=σ0, and draw its variation diagram

with K, where σ and σ0 are the relative standard deviation

of Y(t)� R(t) and the standard deviation of the original

data Y(t), respectively.

Step 8: Select from the interval [Kmin, Kmax] the maximum

numbers of screening times K0 corresponds to the mini-

mum variance ratio σ=σ0 (which means that R(t) is the

best fitting curve of data), and repeat the first six steps

to output the decomposition results.
://iwa.silverchair.com/ws/article-pdf/20/4/1439/705114/ws020041439.pdf
Direct interpolation method

The method of direct interpolation to draw instantaneous

frequency distribution maps is based on the average fre-

quency of local period as interpolation points to generate

a smooth curve. The basic idea is as follows (Wang & Li

):

Step 1: Find the extreme point and calculate the time differ-

ence between the two adjacent maximum points and the

adjacent minimum points.

Step 2: Regard the time period obtained in Step 1 as a local

period and assign it to a point, and then draw the time-

period correspondence graph.

Step 3: Reciprocate the local periodic values to obtain local

frequencies, and then use the cubic spline interpolation to

obtain smooth time-frequency curves (if there is an equiv-

alent segment in the modal, its frequency is directly

defined as zero).

Combined prediction model

Due to inconsistent frequency distribution and complexity

of each component after modal decomposition, there will

be a large error in using the same prediction method to pre-

dict each component. First, three prediction methods, i.e.,

Particle swarm optimization–least squares support vector

machine (PSO–LSSVM), random forest (RF) and AR(1),

were used to predict and analyze the components of differ-

ent frequencies. Then, the root mean square error (RMSE),

the mean absolute percentage error (MAPE) and the mean

absolute error (MAE) were used to determine the suitable

prediction methods for different components. Finally,

each component was predicted according to its most suit-

able prediction method, forming a combined prediction

model.
RESULTS

Decomposition of maximum runoff series

EMD, EEMD, CEEMD and ESMD decomposition methods

were used to decompose the maximum series of runoff in
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Jingou River Basin from 1957 to 2016. The intrinsic mode

function (IMFs) and a trend R were obtained. The decompo-

sition results of these methods are shown in Figure 3, which

demonstrates that a series of IMFs from high to low frequen-

cies and a trend R were obtained after the maximum series

of runoff were decomposed by four decomposition methods.

Among them, EMD, EEMD and CEEMMD decomposition

results had five modes (IMF1–IMF5), and ESMD
Figure 3 | The decomposition results of maximum runoff sequence: (a) EMD, (b) EEMD, (c) CE
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decomposition results had three modes (IMF1–IMF3),

indicating that the number of modes of ESMD decompo-

sition results is smaller than that of EMD, EEMD and

CEEMMD decomposition results. Trend R of the four

decomposition methods can also reflect the weak increasing

trend of runoff maximum sequence, but R of EMD, EEMD

and CEEMD decomposition methods only has one extreme

point at most. Such trend function can only reflect the global
EMD and (d) ESMD.
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change of maximum runoff to a certain extent. By contrast,

the R obtained by the ESMD decomposition method has

multiple extreme points, so it can better reflect the overall

trend of maximum runoff sequence.

To understand the degree of mode mixing of decompo-

sition results more intuitively, the direct interpolation

method was used to draw the frequency distribution of

decomposition results, as shown in Figure 4, which demon-

strates that the frequency distribution curves of IMFs

overlap (i.e. the frequency crossover between adjacent

modes at the same time) in the EMD decomposition results,

indicating that there is a mixing problem among the modes.

The EEMD decomposition method alleviates the mode

mixing problem of EMD to some extent. There is no fre-

quency crossover between IMF1 and IMF2 or between

IMF4 and IMF5, but the frequency distribution curve of
Figure 4 | The instantaneous frequency distribution of maximum runoff sequence componen

://iwa.silverchair.com/ws/article-pdf/20/4/1439/705114/ws020041439.pdf
IMF3 has intersection with the frequency distribution of

the other four components. The frequency cross degree of

each mode in CEEMD decomposition method is smaller

than that in EEMD decomposition method. Except for

three cross points between IMF4 and IMF5, the frequency

distribution curves of the other modes are independent of

each other. In the results of the ESMD decomposition

method, the frequency distribution curves of the three

modes do not cross with each other, showing that the maxi-

mum sequence of runoff is fully decomposed by the ESMD

decomposition method.

Combining the modal frequency distribution maps of

each decomposition method shows that in EMD decompo-

sition, the degree of mode mixing is large and the number

of true components needs to be determined twice, making

the decomposition inefficient twice, so the decomposition
ts: (a) EMD, (b) EEMD, (c) CEEMD and (d) ESMD.
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is not efficiency. EEMD can alleviate the mode aliasing of

EMD to some extent, but the amplitude of the added

white noise signal needs to be determined before decompo-

sition. If the amplitude of white noise is too small, the

phenomenon of modal aliasing will not be improved; on

the other hand, if the amplitude of white noise is too

large, the original signal will be polluted, the signal-to-

noise ratio of decomposition results will be reduced and

the integrity of decomposition is poor. Although CEEMD

overcomes the problem of EEMD white noise residual by

adding noise with n-pair opposite signs and same amplitude

in the original data, CEEMD is similar to EEMD. The noise

amplitude also needs to be determined before CEEMD

decomposition. In fact, the CEEMD algorithm executes

EEMD twice, and thus the operation amount is doubled.

Thus, the operation amount is doubled. ESMD is an

improvement based on EMD by using internal symmetric

interpolation instead of external winding interpolation,

and uses the idea of least squares to optimize the final

remaining modes. From the frequency distribution map, it

can be seen that ESMD effectively solves the problem of

mode mixing (or frequency crossover) in EMD decompo-

sition, and it can be used as a feasible method for various

time series signal analyses.
Prediction analysis

Selection of appropriate forecasting methods for each
component

On the basis of the variation characteristics, frequency and

amplitude of each component in the decomposition results,

the single prediction methods suitable for each component

were selected to construct the combined prediction model.
Table 1 | Prediction errors of ESMD components by various methods

Prediction method

IMF1 IMF2

RMSE MAPE MAE RMSE MAPE

RF 0.199 0.816 0.153 0.022 0.605

PSO–LSSVM 0.107 0.793 0.182 0.091 3.191

AR(1) 0.177 0.930 0.156 0.011 0.318
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The errors of IMF1–IMF4 and trend R decomposed by

ESMD under different prediction methods (Table 1).

As seen in Table 1, for IMF1 (high-frequency modal

component), the prediction error of the PSO–LSSVM

method with strong adaptability is the best because of its

large fluctuation and complex characteristics. The period-

icity of IMF2–IMF3 (intermediate and low-frequency

modal components) is obvious. Analyses show that the

errors of the AR(1) prediction model were smaller than

those of the other two methods, indicating that AR(1) is

more suitable for the prediction of medium- and low-fre-

quency modal components. The error of trend R is the

smallest under the RF prediction method, demonstrating

that for relatively flat trend R, the RF prediction method

has the best prediction effect. Based on the above analyses,

the PSO–LSSVM prediction method was selected in this

research to predict high-frequency components, the AR(1)

prediction model to predict medium- and low-frequency

components, and the RF prediction method to predict

trend R.
Comparison between combined prediction method and
single prediction method

In order to verify the predictive performance of the com-

bined prediction model, the maximum series components

of runoff in the Jingou River Basin under different

decomposition methods are predicted by single prediction

method and a combined prediction model, with results

shown in Figure 5 and Table 2. Figure 5 shows that the

results of single prediction model in individual years were

better than those of the combined prediction model by

synthetically analyzing the forecasting results of four

forecasting methods. This may be because the proportion

of each component in the maximum runoff is different
IMF3 R

MAE RMSE MAPE MAE RMSE MAPE MAE

0.017 0.072 0.596 0.063 0.105 0.096 0.104

0.080 0.123 1.295 0.121 0.132 0.120 0.130

0.009 0.017 0.174 0.016 1.000 0.927 1.000



Figure 5 | Results of combined predictionmodel and single predictionmodel under different decompositionmethods formaximum runoff series: (a) EMD, (b) EEMD, (c) CEEMD and (d) ESMD.
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in different years, and different prediction methods

have different prediction performances for components

with different characteristics and so the prediction accuracy

of a single prediction method is different for different years.

Although the combined model may weaken the prediction

effect of the single prediction model for individual years,

the prediction effect of the combined model will be greatly

improved for the years when the single prediction model

has poor prediction effect. Therefore, from the perspective

of fitting effect of the original sequence, in general, the pre-

diction effect of the combined model is better than that of

the single prediction method.

Table 2 shows that the error of the PSO–LSSVMmethod

is the smallest among the three decomposition methods of

EMD, EMD and CEEMD, and that of the AR(1) model is

the smallest in the component prediction of ESMD. This

shows that the high-frequency components account for a

large proportion in the three decomposition results of

EMD, EMD and CEEMD, while the trend R accounts for a
Table 2 | Errors of combined prediction model and single prediction model under different de

Prediction method

EMD EEMD

RMSE MAPE MAE RMSE MAPE

RF 0.277 0.258 0.242 0.271 0.230

PSO–LSSVM 0.213 0.188 0.194 0.239 0.201

AR(1) 0.385 0.394 0.347 0.346 0.304

Combination forecasting 0.216 0.210 0.174 0.191 0.170

://iwa.silverchair.com/ws/article-pdf/20/4/1439/705114/ws020041439.pdf
large proportion in the ESMD decomposition results. It

also proves the advantages of the single prediction method

in predicting different frequency distribution components.

In addition, except for EMD decomposition method, the

error analysis results of the other three decomposition

methods show that the prediction error of the combined

model is less than that of the single prediction method,

demonstrating that the combined model has not only deliv-

ered the advantages of the single prediction method, but

also addressed the shortcomings of the single prediction

method and improved the prediction accuracy of the single

prediction method. In relation to the prediction errors of

EMD components, the RMSE and MAPE errors of the

PSO–LSSVM prediction method are the smallest, indicating

that the high-frequency components account for a large pro-

portion of EMD decomposition results, a result consistent

with the conclusion that IMF2–IMF5 and R in the EMD

decomposition method overlap with high-frequency com-

ponents, as shown in Figure 4.
composition methods for maximum runoff series

CEEMD ESMD

MAE RMSE MAPE MAE RMSE MAPE MAE

0.227 0.237 0.209 0.199 0.238 0.217 0.210

0.200 0.241 0.144 0.160 0.213 0.184 0.176

0.242 0.250 0.247 0.220 0.161 0.162 0.139

0.136 0.162 0.144 0.114 0.030 0.026 0.021



Table 3 | Errors of combined prediction model under different decomposition methods of

maximum runoff series

Methods RMSE MAPE MAE

EMD 0.216 0.210 0.174

EEMD 0.191 0.170 0.136

CEEMD 0.162 0.145 0.115

ESMD 0.030 0.026 0.021
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Prediction results of combined methods with different
decomposition methods

To verify the decomposition effect of the four decompo-

sition methods, the prediction effect of the combined

prediction model under the four decomposition methods

was sorted out as shown in Figure 6 and Table 3. As can

be seen from Figure 6, the combined prediction model

under ESMD decomposition method has the best fitting

effect with the original sequence, followed by the EEMD

and CEEMD decomposition methods, with EEMD

decomposition method rendering the worst prediction

effect. The error data in Table 3 also show that the predic-

tion error of the ESMD decomposition method is much

smaller than that of other three decomposition methods.

The prediction error of the combined prediction model

under four decomposition methods can be ordered as

EMD>EEMD>CEEMD>ESMD from large errors to

small ones. This result is consistent with the order of

decomposition effect of all the decomposition method

mentioned above. As shown, sufficient decomposition of

the original sequence is an important prerequisite for accu-

rate prediction, and it also verifies the advantages of

ESMD decomposition method in dealing with mode

mixing. In addition, the three kinds of prediction errors

under ESMD decomposition were 0.030, 0.026 and 0.021,

which were 81–88% less than the other three decompo-

sition methods, meeting the accuracy requirements of

runoff prediction. It also shows that the combination pre-

diction idea under ESMD decomposition can effectively

improve the prediction accuracy.
Figure 6 | Results of combined prediction model with different decomposition methods

for maximum runoff series.
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Verification analysis

To verify the stability of the ESMD decomposition method

and combined prediction model, the minimum sequence

of the Jingou River Basin runoff was decomposed using

EMD, EEMD, CEEMD and ESMD methods. The decompo-

sition results are shown in Figure 7. Similar to the

decomposition results of maximum runoff sequence, EMD,

EEMD and CEEMD methods can decompose minimum

runoff sequence into five components and trend R, while

the ESMD method can decompose minimum runoff

sequence into three components and trend term R.

The direct interpolation method was used to plot the

homeopathic frequency distribution of minimum runoff

sequence components under four decomposition methods

and the results shown in Figure 8, which demonstrates that

the frequency curves of each component of the minimum

runoff sequence mostly cross under EMD decomposition

than under EEMD and CEEMD decomposition, and there

is no cross point on the frequency distribution curves of

each component under ESMD decomposition. Similarly,

the ESMD decomposition method avoids mode mixing in

the decomposition of minimum runoff sequence.

The combined prediction model is applied to forecast

each component of Jingou River’s minimum runoff series.

In combination of forecasting results of the single predic-

tion model (Table 4), it is found that the combined

prediction model has the smallest error and the best predic-

tion effect under the four decomposition methods.

Components under different decomposition methods are

predicted using the combined model, with the results

shown in Figure 9 and Table 5, which are similar to

those of maximum runoff series. In addition, when the

combined prediction model was used, the prediction results



Figure 7 | Decomposition results of minimum runoff sequence: (a) EMD, (b) EEMD, (c) CEEMD and (d) ESMD.
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of ESMD decomposition method were better than those of

the original series. The order of prediction effect under the

four decomposition methods is EMD>EEMD>CEEMD

>ESMD. The three prediction errors of ESMD were

0.003, 0.045 and 0.002, which were 54–63% less than the

other three methods.

In summary, compared with other decomposition

methods, the ESMD decomposition method avoids the

mode mixing problem, and the combined prediction model

based on ESMD can deliver a better performance and

meet the prediction requirements.
://iwa.silverchair.com/ws/article-pdf/20/4/1439/705114/ws020041439.pdf
CONCLUSIONS

Given that most of the existing decomposition methods are

prone to mode mixing, the time-frequency distribution of

components was drawn in this research using the direct

interpolation method to directly judge the degree of

mode mixing in the decomposition methods. The decompo-

sition effects of the four decomposition methods, EMD,

EEMD, CEEMD and ESMD, were analyzed. Based on

the variation characteristics of each component, a

combined prediction model was proposed and compared



Figure 8 | The instantaneous frequency distribution of components of minimum runoff sequence: (a) EMD, (b) EEMD, (c) CEEMD and (d) ESMD.
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to the single prediction models. The main conclusions

include the following:
Table 4 | Errors of combined prediction model and single prediction model under differ-

ent decomposition methods for minimum runoff series

Methods Errors RF
PSO–

LSSVM AR(1)
Combination
forecasting

EMD RMSE 0.012 0.013 0.014 0.007
MAPE 0.217 0.154 0.223 0.123
MAE 0.012 0.009 0.013 0.006

EEMD RMSE 0.016 0.013 0.021 0.007
MAPE 0.249 0.139 0.349 0.115
MAE 0.014 0.008 0.019 0.006

CEEMD RMSE 0.013 0.015 0.011 0.007
MAPE 0.145 0.160 0.127 0.100
MAE 0.009 0.010 0.008 0.006

ESMD RMSE 0.013 0.013 0.016 0.003
MAPE 0.245 0.166 0.269 0.045
MAE 0.013 0.010 0.014 0.002

om http://iwa.silverchair.com/ws/article-pdf/20/4/1439/705114/ws020041439.pdf
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(1) Based on the time-frequency distribution of components,

the components’ mode mixing of EMD is the most

serious in the four decomposition methods. EEMD and

CEEMD decomposition methods can alleviate the prob-

lem of mode mixing to some extent, but the effect is

unstable. Compared with EMD, EEMD and CEEMD
Figure 9 | Results of combined prediction model with different decomposition methods

for minimum runoff series.



Table 5 | Errors of combined prediction model under different decomposition methods

for minimum runoff series

Methods RMSE MAPE MAE

EMD 0.0069 0.1233 0.0065

EEMD 0.0068 0.1145 0.0062

CEEMD 0.0070 0.0996 0.0057

ESMD 0.0029 0.0453 0.0024
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decomposition methods, the ESMD decomposition

method can remove the occurrence of mode mixing

and also decompose the time series more completely.

(2) Three prediction methods, PSO–LSSVM, RF and AR(1)

were used to predict each component. The results

show that PSO–LSSVM is suitable for predicting high-

frequency components, AR(1) for predicting medium-

and low-frequency components, and RF for predicting

trend R.

(3) Compared with the single prediction model, the com-

bined prediction model has the smallest error in each

component-predicting process (except for the EMD

decomposition method for maximum runoff sequence),

and its prediction performance is superior to that of

the single prediction models.

(4) The ESMD decomposition method generates the best

prediction results and the smallest errors. Under

ESMD decomposition, the prediction error of maximum

runoff sequence can be reduced by more than 80% com-

pared with the other three decomposition methods, and

the prediction error of minimum runoff sequence can be

reduced by more than 54%.

In conclusion, the combined prediction model based on

the ESMD decomposition method can effectively predict

the extreme value series of non-stationary runoff under

changing environment, improve the accuracy of forecasting

results and provide an effective reference for flood control

and disaster reduction measures to be formulated for river

basin projects.
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