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Robust model predictive control for a small reverse

osmosis desalination unit subject to uncertainty and

actuator fault

Seyed Mohamad Kargar and Reza Mehrad
ABSTRACT
Actuator faults are inevitable in small reverse osmosis desalination plants. They may cause energy

losses and reduce the quality of the freshwater, which may endanger human life. Model predictive

control (MPC) is a model-based approach widely used to control process systems such as reverse

osmosis, while considering a set of constraints. In this paper, three methods of predictive model

controllers are considered for the control of a multi-input multi-output (MIMO) reverse osmosis

desalination system in the presence of noise, model mismatch, and actuator fault. Formulation of

enhanced constrained receding horizon predictive control via bounded data uncertainties (CRHPC-

BDU) are extended for linear time-invariant MIMO systems. Permeate flow rate and conductivity of

the water produced are controlled by a retentate valve and a bypass valve, respectively. The

simulation results show the robustness of the suggested approach in the presence of both noise and

uncertainties. CRHPC-BDU has a better performance subject to systems with model uncertainty and

actuator fault up to a reasonable limit. By increasing the actuator fault up to 34%, the robustness of

CRHPC-BDU is further highlighted in permeate conductivity, where the fluctuations of permeate

conductivity dampen sooner than in the other two controllers.
doi: 10.2166/ws.2020.043

://iwa.silverchair.com/ws/article-pdf/20/4/1229/705407/ws020041229.pdf
Seyed Mohamad Kargar (corresponding author)
Reza Mehrad
Department of Electrical Engineering, Najafabad
Branch,

Islamic Azad University,
Najafabad,
Iran
E-mail: Kargar@pel.iaun.ac.ir

Seyed Mohamad Kargar
Smart Microgrid Research Center, Najafabad
Branch,

Islamic Azad University,
Najafabad,
Iran
Key words | model predictive controller, passive fault tolerant controller, reverse osmosis

desalination system
INTRODUCTION
Utilizing sea water for drinking is a deep-routed wish for

nations that suffer from fresh water shortage. The use of

large water purification systems based on reverse osmosis

(RO) desalination is growing for the purposes of providing

drinking water for the food industry, the wine industry, car

washes and other industries. Small RO desalination plants

are used in operation rooms, the semiconductor industry

and domestic applications.

RO desalination control systems have different tasks for

each application. The most challenging part is when a multi-

input multi-output (MIMO) system needs to be controlled. A

system with more than one input and/or more than one
output are known as MIMO. Alatiqi et al. () proposed

a multi loop control system which includes a pressure con-

troller and two pH controllers. Dynamic models of RO

plants were studied by Soltanieh & Gill () and Al-Bas-

taki & Abbas (). The application of some advanced

control systems for RO plants were studied by Assef et al.

(); McFall et al. (b); and Hong Phuc et al. ().

For RO plants many control designs have been studied,

such as multi loop proportional-integral (PI) controller

(Gambier et al. ), self-regulating proportional integral

derivative (PID) based on genetic algorithms (Kim et al.

) and feed forward-feedback for disturbance rejection
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(McFall et al. a). Model predictive control (MPC) is

deployed for many RO plant applications. In Robertson

et al. () and Janghorban Esfahani et al. () an MPC

controller based on dynamic matrix control (DMC) was com-

pared with a PID controller for RO plants. Some other MPC

approaches are DMC design using system identification

(Abbas ), MPC design for high capacity RO plant con-

fronting membrane deformation (Bartman et al. ) and

MPC design based on mathematical modelling for an RO

plant (Ali et al. ). Other control methods are also used

for RO plants where, for instance in Hong Phuc et al.

(), a robust controller is designed based on two-degrees-

of-freedom loop-shaping control methodology.

In addition to problems such as slow variation, model

mismatch, measurement noise and disturbances, fault is a

likely problem in RO systems. Faults decrease the water

quality and increase the risk of hazard. The common faults

in RO plants are actuator faults, membrane deformation

and sensor faults. The most frequent are actuator faults, in

the form of decreasing efficiency which stems from constant

exposure to salty water. Fault tolerant control (FTC) systems

are divided into active and passive FTCs. In active FTCs, the

structure or parameters of the controller change with

respect to the estimation of fault detection and isolation

(FDI) filters. But passive FTCs are fixed robust controllers

that do not use the information of FDI filters and can toler-

ate faults because they are robust. Active fault tolerant

control for RO system was studied by McFall et al. ()

and Gambier et al. ().

In this work, passive FTC is used to tolerate an actuator

fault. It is essential to have a control system with a passive

FTC, because a fixed controller has modest hardware and

software requirements. Furthermore, in comparison to

active FTC systems, passive FTC systems are less complex,

and they can be designed to be more reliable based on clas-

sical reliability theory (Stoustrup & Blondel ). Passive

FTCs have implemented in MPC frameworks for RO

plants. In Lee () three decades of MPC developments

were explained, which supported our primary reason for

selecting this control approach. Three MPC controllers,

including generalized predictive control (GPC) (Clarke

et al. a, b), constrained receding horizon predictive

control (CRHPC) (Clarke & Scattolini ; Chow ),

and enhanced robustness CRHPC via bounded data
om http://iwa.silverchair.com/ws/article-pdf/20/4/1229/705407/ws020041229.pdf
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uncertainty (CRHPC-BDU) (Ramos et al. ), were con-

sidered. These controllers were designed for the small RO

plant studied and identified by Gambier et al. (). GPC

is a well-known controller of the MPC class that is simple,

effective, and has a low computational cost, but in general,

the stability of this controller is not guaranteed. CRHPC is

similar to GPC except for output constraints. These con-

straints lead to guaranteed stability for exact systems.

However, Manoso () showed how GPC and CRHPC

nominal stability may fail in systems with uncertainties

and cause steady state convergence error accuracy. The

CRHPC-BDU guarantees stability in the presence of model

and measurement uncertainties. In this work, formulation

of the CRHPC-BDU method for MIMO systems is was car-

ried out and is presented in the Supplementary Material.

The primary aim of this paper is to propose a novel robust

model predictive control (RMPC) to be used in the FTC

approach. The suggested approach employs the CRHPC-

BDU controller, which is the robust and stable variant of

GPC. The state-space model was utilized to design the

CRHPC-BDU controller.
PLANT DESCRIPTION

Desalination systems based on RO are commonly used. Con-

sidering the system scale and the quality of inlet and outlet

water, different units may be deployed for different systems.

General RO system units include pretreatment, membrane

assembly and post-treatment. The pretreatment unit includes

flocculation, chlorination, pH value adjustment, and other

treatments that are needed to reduce membrane fouling,

inhibit further precipitation and growth of microorganisms,

remove suspended particles and assure the safety of the pro-

cess. A high pressure pump is needed for the feed water to

overcome osmotic pressure and permeation of pure water

through the membrane. A control valve is also needed to dis-

charge brine water. The permeate water flows into the post-

treatment unit to adjust the pH value again, add minerals,

exchange ions, etc., as necessary. The whole process involves

many control loops which vary from case to case. Two impor-

tant variables of output are permeate flow rate and permeate

conductivity, which are affected by pressure pump and reten-

tate valve.



Figure 1 | Schematic of the control loops process.
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In this paper a small plant is considered that is used for

drinking water purification in which the permeate flow rate

is controlled by retentate control valve. The schematic of the

case study is presented in Figure 1.

As can be seen in Figure 1, input variables are the brine

and bypass flow, which are changed by the retentate and

bypass valves, respectively. The input variables control the

permeate flow rate and conductivity, which are the output

of the system. In order to control permeate conductivity,

Gambier et al. () suggested that a bypass valve is

installed to add a small amount of inlet water to outlet

water.

A dynamic linear time invariant (LTI) state space

model is identified for plants operating at 250 L/h for the

outlet, 500 L/h for the inlet, 0.02 L/h for the bypass flow

rates and 425 μS/cm for permeate conductivity. These
Table 1 | Model parameters

A
0:201 0:010 0 0 0 0 0 0:0002
�3:301 �0:129 0 0 0 0 0 0:001

0 0 0:757 0 0 0 0 0
0 0 0 0:955 0:116 0 0 0:01
0 0 0 �0:546 0:573 0 0 0:110
0 0 0 0 0 0:859 0:056 0
0 0 0 0 0 �1:338 0:043 0
0 0 0 0 0 0 0 0:905
0 0 0 0 0 0 0 0

2
6666666666664

C
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0
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0

0:668
0

0
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0
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0
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0
3705:56

�
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rates occur when the valve opening for both valves is 50%.

The discreet time LTI state space model equations are as

follows:

x(kþ 1) ¼ Ax(k)þ Bu(k) (1)

y(k) ¼ Cx(k)þDu(k) (2)

where model parameters for plant in the operation point

with 0.015 seconds for the sample time were obtained as

Table 1. Although the system is considered to be linear,

some authors highlight the nonlinear behavior of RO

plants due to membrane fouling. In practice, variation in

some parameters, such as membrane fouling that cause non-

linearity, is small and can be eliminated by membrane

washing once a week. Thus, it is promising that the behavior
B
�0:001
0:001
0:113
�0:062
�0:606
0:004
0:024
0

0:286

3
7777777777775

�8:02e� 5
�0:001

0
�0:002
�0:041

0
0

�0:632
0

�8:42e� 5
�0:001
0:009
�0:002
�0:041
1:7e� 4
0:002
0

0:057

2
6666666666664

3
7777777777775

D
0
0

0
0

�
0 0
0 0
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of the plant remains quite linear during a week when vari-

ations are modeled as small time varying parameter

uncertainties. These uncertainties have a small range

because they will be eliminated by membrane washing by

the end of a week. Moreover, actuator fault is a common

experience in this plant, and usually occurs in the retentate

valve and affects the control. The presented model is shown

below:

x(kþ 1) ¼ (Aþ ΔA)x(k)þ (Bþ ΔB)u(k)þ f(k) (3)

y(k) ¼ (C þ ΔC)x(k)þDu(k)þ ν(k) (4)

where ΔA ¼ δAA, ΔB ¼ δAB, ΔC ¼ δAB are model uncer-

tainties, f(k) is actuator fault and ν(k) is white noise. The

control goal is to track reference signal in the presence of

uncertainties, sensor noise and actuator fault with small

steady state error values.
CONTROL STRATEGIES

Simplicity and transparency of design, flexibility of control-

ler structure and optimal performance are the advantages

of the GPC method despite the lack of guaranteed

stability. CRHPC provides guaranteed stability for nominal

systems. The mathematical descriptions of the GPC and

CRHPC approach are presented in the Supplementary

Material.

CRHPC-BDU is presented in Ramos et al. () for

single-input single-output (SISO) systems. In this paper

this method is expanded for MIMO systems. The CRHPC-

BDU extension guarantees stability in the presence of

bounded uncertainties. First, the augmented matrices for

the MIMO system are defined. Consider the controlled

auto-regressive integrated moving average (CARIMA) rep-

resentation of a MIMO plant.

(A(z�1)Δ)y(z�1) ¼ B(z�1)(Δu(z�1))þ T(z�1)n(z�1) (5)

where yϵRp is output, uϵRm is input, nϵRk is noise (in a

case where T (z�1) ¼ �A(z�1)Δ is measurement noise) and
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Δ ¼ 1� z�1. Consider following parameters:

gki ¼ gki1 gki2 . . . gkip
h iT

(6)

Gi ¼

g1i 0 � � � 0
g2i g1i � � � 0

..

. ..
. . .

. ..
.

gNi gN�1
i � � � g1i

2
6664

3
7775 , G

¼ GT
1 GT

2 . . . GT
p

h iT
(7)

�Gi ¼

gNþ1
i gNi � � � gN�Nuþ2

i

gNþ2
i gNþ1

i � � � gN�Nuþ3
i

..

. ..
. . .

. ..
.

gNþmi
i gNþmi�1

i � � � gN�Nuþmiþ1
i

2
66664

3
77775 ,

�G ¼ �G
T
1

�G
T
2 . . . �G

T
p

h iT
(8)

wi ¼ wi(tþ 1) wi(tþ 2) . . . wi(tþN)½ �T ,

w ¼ wT
1 wT

2 . . . wT
p

h iT (9)

�wi ¼ wi(tþN þ 1) wi(tþN þ 2) . . . wi(tþN þmi)½ �T ,
�w ¼ �wT

1 �wT
2 . . . �wT

p

h iT
(10)

f i ¼ fi(tþ 1) fi(tþ 2) . . . fi(tþN)½ �T ,

f ¼ f T1 f T2 . . . f Tp
h iT (11)

�f i ¼ fi(tþN þ 1) fi(tþN þ 2) . . . fi(tþN þmi)½ �T ,
�f ¼ �f

T
1

�f
T
2 . . . �f

T
p

h iT
(12)

Δu ¼ Δu(t)T Δu(tþ 1)T . . . Δu(tþN)T
� �T

(13)

where gkij is the k-th step response coefficient of the transfer

function linking the j-th input to i-th output, N is prediction

horizon, Nu is control horizon, mi is the number of output

constraints of i-th output, wi(tþ k) is the reference signal

of i-th output at tþ k and fi(tþ k) is the free response of

i-th output at tþ k.

The solution of the optimization problem with the

following cost function and constraints is used for
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CRHPC-BDU:

min
Δu

max
∥δG∥<nG

[∥ (Gþ δG)Δu � (eþ δe) ∥2 þρ ∥ Δu ∥2]
∥δe∥<ηe

(14)

subject to: max
∥δ �G∥<η �G

∥δ�e∥<η�e

∥ ( �Gþ δ �G)Δu � (�eþ δ�e) ∥¼ 0 (15)

where e ¼ w� f, �e ¼ �w� �f and the operators δ and ∥ : ∥

define deviation and 2-norm respectively. The input vari-

ations Δu are calculated using the following equation:

Δu ¼ ψGTeþ (I � ψ(GTGþ λ2I))Δup (16)

In the above equation, Δup is the solution particular

to the constraints. It is calculated by solving the following

nonlinear equations concurrently using a numerical

method:

Δup ¼ �G
T
( �G �G

T þþλ �GI)
�1�e (17)

λ �G ¼ η �G ∥ �GΔup � �e ∥
∥ Δup ∥

(18)

and ψ is calculated by the following equation:

ψ ¼ H(HT (GTGþ λ1I)H)�1HT (19)

where H is the null space of �G. Also λ1 and λ2 are calcu-

lated by solving the following nonlinear equations

concurrently using a numerical method:

λ2 ¼
ρ∥GHΔuf � (e�GΔup)∥

∥GHΔuf � (e�GΔup)∥þηG(∥H ∥∥Δuf ∥þ∥Δup ∥)þηe

(20)

λ1 ¼ λ2 þ
ηG ∥ H ∥∥ GHΔuf � (e�GΔup) ∥
∥ GHΔuf � (e�GΔup) ∥ þηG

(21)

Δuf ¼ (HT (GTGþ λ1I)H)�1(HTGT (e�GΔup)� λ2HTΔup)

(22)
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SIMULATION RESULTS

In this section, the aforementioned three methods, GPC,

CRHPC and CRHPC-BDU, are deployed for the RO plant

with the purpose of testing and comparing MPC controllers

for the RO plant for optimality and robustness. Parameters

of the controllers are shown in Table 2 and further descrip-

tions are included in the Supplementary Material. These

parameters were adjusted equally to give a fair comparison

between control methods and were chosen in such a way

that CRHPC stabilizing conditions were satisfied and con-

trol signals were not exceeded. For this plant Nu � 11,

Nþ 1 � mi > 11, and N � Nu þ 1 guarantee CRHPC stab-

ility, as stated in the Supplementary Material.

The plant was simulated under seven scenarios, as shown

in Table 2. The experiments procedure was designed with the

aim of studying the plant behavior under various situations,

including noise, model mismatch and actuator fault.

Experiment 1: In the first experiment, noise, fault and

uncertainty were not included. Small N and Nu, which

satisfy the stabilizing conditions of CRHPC, provided a

promising performance. It should be noted that large N

and Nu impose more computational burden. The results

shown in Figure 2 indicate that CRHPC provided slightly

faster convergence compared to GPC and CRHPC-BDU.

CRHPC had the best performance because of its precise

mathematical structure, and CRHPC-BDU had the worst

performance because it is designed to be more robust than

optimum.

Experiment 2: In the second experiment, model and

plant were equivalent except for output measurement

noise. Figure 3 shows that CRHPC was very sensitive to

measurement noise and had an unacceptable performance

despite the guarantee of stability. CRHPC-BDU was more

robust and had an acceptable performance. In this case,

GPC was recommended, because it had the least compu-

tational burden and was robust to noise.

Experiment 3: In the third experiment, N and Nu were

increased, which subsequently increased the computational

burden. The results in Figure 4 show that bigger horizons

improved the controllers performance and made the behav-

ior of CRHPC similar to GPC. CRHPC-BDU settling time

decreased significantly in this case.



Table 2 | Controller parameters

Description EXP. 1 EXP. 2 EXP. 3 EXP. 4 EXP. 5 EXP. 6 EXP. 7

Horizon parameters N Prediction horizon 27 27 100 100 100 100 100
Nu Control horizon 25 25 80 80 80 80 80
mi Output condition horizon 12; i¼ 1,2 12; i¼ 1,2 12; i¼ 1,2 12; i¼ 1,2 12; i¼ 1,2 12; i¼ 1,2 12; i¼ 1,2

Cost function
weightings

Mi Output weighting matrix I2×2; i¼ 1,2 I2×2; i¼ 1,2 I2×2; i¼ 1,2 I2×2; i¼ 1,2 I2×2; i¼ 1,2 I2×2; i¼ 1,2 I2×2; i¼ 1,2
Λi Input weighting matrix in

CRHPC
I2×2; i¼ 1,2 I2×2; i¼ 1,2 I2×2; i¼ 1,2 I2×2; i¼ 1,2 I2×2; i¼ 1,2 I2×2; i¼ 1,2 I2×2; i¼ 1,2

λ Input weighting parameter
in GPC

1 1 1 1 1 1 1

ρ Input weighting parameter
in CRHPC-BDU

1 1 1 1 1 1 1

CRHPC-BDU
uncertainty
bounds

ηG Maximum deviation of G in
CRHPC-BDU

1 1 1 1 1 1 1

η �G Maximum deviation of �G in
CRHPC-BDU

1 1 1 1 1 1 1

ηe Maximum deviation of e in
CRHPC-BDU

0.1 0.1 0.1 0.1 0.1 0.1 0.1

η�e Maximum deviation of �e in
CRHPC-BDU

0.1 0.1 0.1 0.1 0.1 0.1 0.1

Reference signals w1 Flow rate reference signal 350 L/h 350 L/h 350 L/h 350 L/h 350 L/h 350 L/h 350 L/h
w2 Permeate conductivity

reference signal
420 μS/cm 420 μS/cm 420 μS/cm 420 μS/cm 420 μS/cm 420 μS/cm 420 μS/cm

Simulation plant
parameters

σn Noise power 0 0.05 0.05 0.05 0.05 0.05 0.05
f Actuator fault 0 0 0 0 0 30% 34%
δA Matched uncertainty in

A matrix
0 0 0 0.03 0.04 0.03 0.03

δB Matched uncertainty in
B matrix

0 0 0 0.02 0.03 0.02 0.02

δc Matched uncertainty in
C matrix

0 0 0 0.06 0.07 0.06 0.06
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Experiment 4: In the fourth experiment, the model was

considered to be uncertain and no fault occurred. The stability

and steady state performance of the system could have been be

affected by uncertainty and noise. Simulation results in Figure 5

shown that CRHPC-BDU was more robust, with lower fluctu-

ation compared to the others, despite its steady state error.

Experiment 5: In this experiment the amount of uncer-

tainty increased and outputs in Figure 6 show that CRHPC

and GPC become unstable while CRHPC-BDU successfully

controlled the system.

The five experiments above show that control objectives

are reachable for both certain and uncertain conditions.

However, for large amounts of uncertainty the performance

of controller was not acceptable. In order to study the per-

formance of the design in the presence of described

actuator fault, two more experiments were performed for

30 and 34% of valve decay.
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Experiment 6: In the sixth experiment, the actuator

fault was considered to be 30% at t¼ 9 seconds. In Figure 7,

the effect of the fault is clear, particularly in permeate con-

ductivity. This case shows that controllers had a robust

performance for this amount of fault and the quality of

responses in CRHPC-BDU was more promising despite

the fact that the existence of the fault caused steady state

error in responses.

Experiment 7: By increasing the actuator fault up to

34% at t¼ 9 seconds, the robustness of CRHPC-BDU was

further highlighted in permeate conductivity, as shown in

Figure 8, where the fluctuations of permeate conductivity

dampened sooner in comparison to the other two control-

ling approaches discussed earlier.

All simulations were performed by a PC with one quad-

core Intel Core i7 processor and 16 GB RAM. Compu-

tational time values for N ¼ 100, Nu ¼ 80 and m ¼ 12 for



Figure 2 | Input and outputs of the nominal model by three controllers with small computational cost for 15 seconds.

Figure 3 | Input and outputs of plant subject to measurement noise by three controllers with small computational cost for 15 seconds.
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Figure 4 | Input and outputs of plant subject to measurement noise by controllers with increased computational cost for 15 seconds.

Figure 5 | Input and outputs of plant subject to measurement noise and small uncertainties by three controllers for 15 seconds.
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Figure 6 | Outputs of plant subject to measurement noise and large uncertainties by three controllers for 15 seconds.

Figure 7 | Input and outputs of plant subject to measurement noise, uncertainties and 30% fault by three controllers for 15 seconds.
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Figure 8 | Permeate conductivity in the context of measurement noise, uncertainties and 34% fault by three controllers for 16 seconds.
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each sample of input signals were 0.0081 seconds for GPC,

0.0162 seconds for CRHPC and 0.0812–0.0302 seconds for

CRHPC-BDU. Although the time for CRHPC BDU is greater

than for the other two methods because of numerical optimiz-

ation loops, it is acceptable in comparison to the plant sample

time (0.15 seconds). Further experiments showed that for

faults larger than 34% all controllers were not able to

dampen the fluctuations.
CONCLUSION

In this paper, the comparative study between the three con-

trollers, CRHPC, GPC, and CRHPC-BDU, were studied to
om http://iwa.silverchair.com/ws/article-pdf/20/4/1229/705407/ws020041229.pdf
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show the performance of the proposed approach. These con-

trollers were analyzed by their closed-loop stability, nominal

performance, measurement noise, model mismatch, and

capability of being used as passive FTCs for small actuator

faults. Moreover, an expanded version of CRHPC-BDU for

MIMO systems was proposed. The simulation was per-

formed to show that the proposed method can tolerate the

fault because of its robustness. The actuator fault was

increased in the simulation model to measure the perform-

ance of the experiment.

The results revealed that GPC had the least compu-

tational cost with poor performance, and CRHPC-BDU

provided robustness for controlling the system, though

with more computational cost. CRHPC provided nominal
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stability, while its performance was not better than the other

two methods. These controllers were used as passive FTCs

for the RO plant with uncertainty in the model. CRHPC-

BDU gave better results than the other two controllers,

and the actuator fault was tolerated up to 34%.
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