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Evaluation of the effective forecast and decision horizon

in optimal hydropower generation considering medium-

range precipitation forecasts

Xu Wei and Yang Xun
ABSTRACT
This paper presents a rolling horizon control (RHC) model to evaluate the effective forecast horizon

(EFH) of 10-day forecast inflows derived from quantitative precipitation forecasts (QPFs) and the

effective decision horizon (EDH) for hydropower generation. This paper takes the Huanren

hydropower reservoir located in the northeast of China as a case study. Firstly, the 10-day forecast

inflows are derived from the QPFs. Then the hydropower generation processes are simulated by the

RHC model, and the performances of hydropower generation with different EFHs and EDHs are

evaluated, respectively. The results show that: (1) the RHC can adapt to varying conditions by re-

optimizing the decisions during the EFH; (2) with the EFH increasing, the hydroelectric reliability

increases and the efficiency decreases, while the efficiency and reliability are improved with

shortened the EDH.
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INTRODUCTION
With the development of weather forecasting technology,

quantitative precipitation forecasts (QPFs) have become

more and more popular for optimal reservoir operations

(Ngo et al. ; Wang et al. ; Xu et al. ; Zhang

et al. ). With forecast horizons extending, medium-

range QPFs have gained increasing attention for how they

may be used to improve reservoir operations (Xu et al.

, ). Although the accuracy and reliability of

medium-range QPFs are inferior to those of short-range

QPFs, they have proven to be useful for reservoir operations

(Bravo et al. ; Tang et al. ; Herr & Krzysztofowicz

; Wu et al. ).

In reservoir operations, the primary limitation of the

forecast inflows is high uncertainty, which mainly comes

from the uncertainty of QPFs (Mascaro et al. ; Xu

et al. ; Qi et al. ; Ran et al. ). Recent studies

have demonstrated that the uncertainty of the QPFs or
inflow forecasts generally increase with the forecast hor-

izon extending (Zhao et al. ; Peng et al. ). For

multi-period problems, such as reservoir operation pro-

blems, longer forecast horizons can provide more

information for decision-making to avoid myopic solutions

(Huang & Ahmed ). With the forecast horizon extend-

ing, the forecasting of information with a longer forecast

horizon affects initial decisions (Peng et al. ). Thus, it

is necessary to do further research on the influence of the

uncertainty before applying QPFs and forecasting inflows

to make decisions. Based on the analysis above, there are

three fundamental problems to be solved in this study: (1)

how long should the forecast horizon be for the forecast

inflow to be useful for hydropower generation with high

efficiency and reliability, when the forecast horizon is

defined as the effective forecast horizon (EFH); (2) how

long should decisions be executed with high efficiency
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and reliability by using the forecast inflows, when the

length of the decisions is defined as the effective decision

horizon (EDH); (3) based on the results of the EFH and

EDH, considering forecast inflow uncertainty reasonably

to improve forecast inflow utilization.

Instead of the conventional fixed-length forecast hor-

izon and decision horizon, there is a significant advantage

to using dynamic rolling horizons to re-optimize the

operational decisions dynamically according to updated

information (Bardhan et al. ; Wang et al. ; Zulkafli

& Kopanos ). The rolling horizon control (RHC)

model based on the forecasting model and optimization

model has a strong ability to adapt to varying conditions.

Richalet et al. () indicated that the decision-making

behavior of the RHC is analogous to that of humans in

varying conditions. This model decomposes the optimal

problem of an entire planning horizon into several sub-

problems to reduce the computational burden and adapt

to the varying conditions (Zhou et al. ). Thus, the

RHC is a powerful method to solve dynamic stochastic

problems. The framework provides a method to investigate

the stability of the operational decisions and the influence

of the forecasting uncertainty (Bardhan et al. ; Zhou

et al. ; Bertazzi & Maggioni ).

The primary purpose of this paper is to investigate the

EFH of the forecast inflows derived from medium-range

QPFs and the EDH for hydropower operation. In this study,

an RHC model is developed to evaluate the performances of

hydropower operations, which are affected by the uncertain-

ties of forecast inflows. Based on the RHC model,

performances with different forecast horizons and decision

horizons are evaluated, respectively. This study takes

China’s Huanren hydropower reservoir as a case study, and

the real-time QPFs published by the Global Forecast System

(QPFs-GFS) are utilized to forecast the inflows. Then the per-

formances with different EFHs and EDHs are quantified and

compared based on the forecast inflows.
ROLLING HORIZON CONTROL

The RHC model is constituted by combining the inflow fore-

casting model and the hydropower operation optimization

model. The inflow forecasting model is used to forecast
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the inflows during the forecast horizon, and the operational

policies are derived by the optimization model. The RHC

model is introduced below.
Inflow forecasting model

In the case study, the multiple linear regression model and

the Xinanjiang model are applied to simulate the inflows

during the dry season and the wet season, respectively.

The multiple linear regression model is built based on pre-

vious studies, and the parameters are determined using the

least squares technique (Tang et al. ; Xu et al. ).

The Xinanjiang model is a conceptual rainfall–runoff

model and has been widely used in China, particularly in

humid and semi-humid regions.
Hydropower optimal operation model

Decision strategy

In this study, the maximum forecast horizon is 10 days and

the interval of the time step is 1 day. According to the fore-

casting of inflows, the operational decisions in the forecast

horizon including n time steps defined as the EFH are opti-

mized. The initial few time steps (λ) are defined as the

EDH, and only the decisions from EDH with high efficiency

and stability are implemented. The operation strategy is illus-

trated as below.

(a) Before re-optimization

When the operation is at time step t, the operational

decisions of the entire planning horizon (denoted by

Dorg(t)) are represented as below:

Dorg(t) ¼ Dorg(S(t))þDorg(FH(t))þDorg(Y(t)) (1)

where t represents the indicator of the time step (day). S(t),

FH(t) and Y(t) represent the time steps during the executed

horizon, the EFH, and the remaining horizon, respectively.

Dorg(S(t)), Dorg(FH(t)) and Dorg(Y(t)) represent the original

decisions during S(t), FH(t) and Y(t) respectively.

(b) Re-optimization and decision execution

The original decisions during the EFH at time step t

are re-optimized. The optimal decisions (denoted by



2149 X. Wei & Y. Xun | Evaluation of the effective horizon in hydropower operations Water Supply | 19.7 | 2019

Downloaded from http
by guest
on 17 April 2024
Dorg(FH(t))) are obtained, and the optimal decisions during

the EDH (Fa(t)) denoted by Dopt(Fa(t)) are executed. The

optimal decisions during the EFH and the entire planning

horizon are represented as below:

Dopt(FH(t)) ¼ Dopt(Fa(t))þDopt(Fl(t)) (2)

Dopt(t) ¼ Dopt(S(t))þDopt(FH(t))þDopt(Y(t)) (3)

where λ time-step decisions (1 � λ � n) in Fa(t) are exe-

cuted. Apart from Fa(t), the rest of the time steps and

decisions during the EFH are denoted by Fl(t) and

Dopt(Fl(t)), respectively; n and N represent the time steps

of the EFH and entire planning horizon, respectively.

(c) Operation rolls from t to tþ λ

When decisions in Fa(t) have been executed, the time

step (tþ λ) is the initial time step of the next re-optimization.

The executed time steps have transferred to S(tþ λ), and λ

time steps in the remaining time steps Y(t) (denoted by

Yk(t)) are taken to fill in FH(tþ λ). The relationship of the

operation variation from t to tþ λ is represented below;

S(tþ λ) ¼ S(t)þ Fa(t) (4)

FH(tþ λ) ¼ Fl(t)þ Yk(t) (5)

Y(tþ λ) ¼ Y(t)þ Yk(t) (6)

The re-optimization decisions at time step t become the

original operational decisions at time step tþ λ:

Dorg(tþ λ) ¼ Dopt(t) (7)

Moreover, the decision relationships are represented

below:

Dorg(S(tþ λ)) ¼ Dopt(S(t))þDopt(Fa(t)) (8)

Dorg(FH(tþ λ)) ¼ Dopt(Fl(t))þDopt(Yk(t)) (9)

Dorg(Y(tþ λ)) ¼ Dopt(Y(t))þDopt(Yk(t)) (10)

Objective function during EFH

The operational objectives in this study are to maximize the

total power production and to minimize the deviation from

the required output to guarantee the stability of the power
://iwa.silverchair.com/ws/article-pdf/19/7/2147/662756/ws019072147.pdf
supply. Thus, the objective function consists of two com-

ponents: the power production and the penalty for

deviation from requirements:

J(D(FH(t)), kt, Qt) ¼ Max
Xn�1

j¼0

B(ktþj, qtþj, ltþj) � Δt
2
4

3
5

Qt ¼ (qt, qtþ1, qtþ2, � � � qtþn�1) (11)

B(ktþj, qtþj, ltþj) ¼ b(ktþj, qtþj, ltþj)

� α � {Max[e� b(ktþj, qtþj, ltþj), 0]}
β (12)

where J(D(FH(t)), kt, Qt) represents the performance of

hydropower generation during the EFH by giving decisions

– D(FH(t)) and state variables of kt and Qt; kt represents the

storage at the beginning of time step t, and Qt represents the

vector of the forecast inflows during the EFH at time step t;

ltþj represents the storage at the end of time step tþ j; qtþj

represents the inflow at time step tþ j. B(�) is a function of

hydropower generation, in which the penalty is evaluated

by comparing the power generation b(�) (MW) and the

system firm output of e (33 MW); α and β are penalty factors;

Δt is the time step interval (hour).

Recursive equation of the RHC model

The performance of the hydropower reservoir operations

depends on the storages and inflows in future time steps.

The hydropower generation benefit in future time steps

can be represented as expectations by using stochastic

dynamic programming (SDP) (Tang et al. ; Xu et al.

; Zhang et al. ). The recursive equation is defined as:

ft(kt) ¼ Max
lt

{Eqt [B(kt, qt, lt)þ ftþ1(lt)]} (13)

In the RHC model, the operational decisions in the EFH

are optimized by dynamic programming (DP). The benefit in

the remaining horizons is represented by the expectation

value. The re-optimization recursive equation of the RHC

is defined as below:

Yt(Dn
t =kt,Qt, n, λ) ¼ Max

r
[J(Dr(FH(t)), kt, Qt)þ ftþn(ktþn)] r∈R

(14)

where Dr(FH(t)) represents the rth operation trajectory,

derived by DP during the forecast horizons. R is the total
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number of operation trajectories, and r ¼ 1, � � � , R, and

ftþn(ktþn) represents the performance expectations in the

remaining horizons by giving the storage at the beginning of

the time step tþ n. Dn
t represents the selected optimal

decisions, which are executed during the EDH.
CASE STUDY

Huanren hydropower reservoir

Huanren hydropower reservoir, located in northeast China

as shown in Figure 1, is chosen as a study case. The reservoir

is located between latitudes 40�400N∼ 42�150N and longi-

tudes 124�430E∼ 126�500E with an approximate area of

10,400 km2. The mean annual rainfall is about 860 mm,

and about 70% to 80% of the precipitation occurs in the

wet season. The main features of the Huanren hydropower

reservoir are summarized in Table 1.
Figure 1 | The location of the Huanren hydropower reservoir in the Hun River Basin.
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Datasets

The Global Forecast System (GFS) was developed by the US

National Centers for Environmental Prediction. In this

study, the 10-day QPFs-GFS data have been daily down-

loaded since 2001. The forecast precipitation information

at 00 GMT is used to simulate the forecast inflows per day.

The observed precipitation and observed inflow data

from 1968 to 2010 are provided by the Hun River cascade

hydropower development authority.
RESULTS AND DISCUSSION

In this study, the forecast precipitations from 2001 to

2010 are applied to forecast the inflows. Then the perform-

ances of the hydropower generation are evaluated at

different EFHs and EDHs by using the forecast inflows,

respectively.



Table 1 | Basic parameters of the Huanren hydropower reservoir

Characteristic Value Characteristic Value

Total storage (Mm3) 3,460 Dead water level (m) 290

Usable storage (Mm3) 2,199 Installed capacity (MW) 222

Dead storage (Mm3) 1,380 Firm output (MW) 33

Normal water level (m) 300 Turbine capacity (m3/s) 416
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Analysis of QPFs-GFS

To evaluate the uncertainty of the QPFs-GFS in terms of

different forecast horizons, the hydrological year is divided

into four periods, as the dry season (from November to

next April) and the wet season (May to June, July to

August, and September to October). The empirical frequen-

cies of the forecast uncertainty are obtained, respectively.

And the quantiles of the forecast uncertainty, with frequen-

cies as 10%, 30%, 50%, 80%, and 90%, are evaluated

through the empirical frequencies, as shown in Figure 2.

The precipitation forecast uncertainties from May to

August in Figure 2(a) and 2(b) are more diffuse than those
Figure 2 | The percentiles of precipitation forecast uncertainties vary as the forecast horizon

://iwa.silverchair.com/ws/article-pdf/19/7/2147/662756/ws019072147.pdf
in the other periods and generally increase with the forecast

horizon extending.
Analysis of inflow forecasts

In this study, the Nash–Sutcliffe Efficiency (NSE) and Root

Mean Square Error (RMSE) are used to assess the accuracy

of the average inflows with different forecast horizons. In

the calibration and verification, the inflows are simulated

by using the observed precipitation. Then, the medium-

range QPFs from 2001 to 2010 are applied to forecast the

inflows. The accuracy indicators during the calibration,

verification, and forecasting periods are shown in Table 2.

During calibration and verification, the hydrological

model performs well. The deviations are mainly from the

forecast inflow process. With the forecast horizon extend-

ing, the deviations of the indicators are averaged. Thus,

the values of NSE increase and the values of RMSE

decrease with the forecast horizon extending.

During the forecasting periods, the values of the NSE

decrease, and the values of the RMSE increase with the
extends.



Table 2 | The variation of the accuracy indicators in different periods with the forecast horizon extending

Forecast horizon (days)

NSE RMSE (m3/s)

Calibration Verification Forecasting Calibration Verification Forecasting

1 0.87 0.86 0.80 34.32 42.05 46.42

2 0.87 0.86 0.81 33.65 42.05 46.17

3 0.88 0.86 0.81 33.25 41.35 45.10

4 0.88 0.86 0.80 33.16 41.15 45.63

5 0.89 0.88 0.78 31.49 39.25 47.68

6 0.92 0.88 0.76 30.87 37.11 49.84

7 0.94 0.91 0.75 28.62 34.39 50.08

8 0.93 0.91 0.74 28.36 35.14 51.52

9 0.94 0.91 0.74 28.36 34.27 51.83

10 0.94 0.92 0.73 27.21 32.40 54.82
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forecast horizon extending. The result gives the conclusion

that the accuracy of inflow forecasts is significantly affected

by the forecast uncertainty of the QPFs (Bravo et al. ;

Xu et al. ).
Performance evaluation

In the SDP model, the inflows are discretized into six inter-

vals (u¼ 6), representing 15%, 30%, 45%, 60%, 75% and

90% percentiles. Moreover, the storage of the Huanren

hydropower reservoir is discretized into 20 intervals. The

penalty factors of α and β in the objective function are set

to 1 and 2, respectively.

The forecast and observed inflows from 2001 to 2010

are used to evaluate the performances of the hydropower

generation with different EFHs and EDHs. The annual

hydropower generation (AHG) and reliability are chosen

to evaluate the performances. The reliability is defined as

the probability that the simulation output is not lower than

the system firm output.
Varying effective decision horizons

Figure 3(a) and 3(b) show the performance indicators with

the EDH varying from 1 day to 10 days. The indicators are

evaluated by simulating the performances with the forecasts

and observed inflows from 2001 to 2010, respectively, in

which the EFH is fixed for 10 days.
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Comparing the indicators of the AHG and reliability,

the results indicate that hydropower generation performs

effectively and stably by using the observed inflows. The

observed inflows can be considered as accuracy infor-

mation, which has low uncertainty. With the decision

horizon extending, the performances can maintain stability.

However, forecast inflows are less reliable and have

high uncertainty, and the optimal decisions are affected by

the uncertainties in future time steps (Zhao et al. ;

Zhou et al. ; Zulkafli & Kopanos ). In this study,

the performances are diminished continually with the

EDH extending. The results demonstrate that longer oper-

ations become unstable by using longer forecast inflows to

make decisions. The optimal length of the EDH is approxi-

mately 4 days in this study case by using the 10-day forecast

inflows from QPFs-GFS.
Varying effective forecast horizons

Figure 3(c) and 3(d) show the performance indicators of the

EFH (n) vary from 1 day to 10 days, respectively. The EDH

(λ) is fixed for 1 day to adapt the minimum EFH. The vari-

ations of the performance indicators are evaluated with

different EFHs. The results show that the AHG and

reliability increase constantly with EFH extending by using

observed inflows.

Figure 3(c) shows that the AHG is diminished with the

EFH extending by using the forecast inflows. The AHG is



Figure 3 | The performance indicators vary as EDH and EFH extends.
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mainly affected by operations during wet seasons, and the

reliability is mainly affected by operations during dry sea-

sons (Tang et al. ; Peng et al. ; Zhang et al. ).

Figure 4(a) shows the water level processes during the wet

season in wet years, i.e., 2006. When the forecast inflow is

lower than the observed inflow, the release of hydropower

generation during the EFH will be reduced. Then the reser-

voir will store more water and is prone to spill during the

wet season, as shown in Figure 4(a). The spillages are irre-

versible AHG loss. That is the reason that the AHG is

diminished with the EFH extending. Figure 4(b) shows

water level processes in dry years, i.e., 2009. The reservoir

stores more water for hydropower generation during the

dry season, and the reliability improves with the EFH

extending.

However, Figure 3(d) shows that the reliability increases

with EFH extending by using forecast inflows. It demon-

strates that the longer forecast inflows are still useful to

hydropower generation. To improve the efficiency of the

AHG, the forecast inflows in the first 4 days are assumed

to be accurate in this case study and defined as the EDH,

and the uncertainty in the remaining 6 days needs to be

addressed by Bayesian theory (Xu et al. ; Zhang et al.
://iwa.silverchair.com/ws/article-pdf/19/7/2147/662756/ws019072147.pdf
). The RHC model developed in this study adapts to

the different decision and forecast horizon scenarios.

Thus, in hydropower operation, the RHC can be applied

to consider the EDH and EFH by using the forecast inflows.
CONCLUSIONS

This study investigates the effects of forecast inflow uncer-

tainty on the performance of hydropower generation

through varying the forecast and decision horizons. Com-

paring the performances with different forecast and

decision horizons, the results obtained are summarized as

below.

(1) In this study, the observed inflows are considered as

accurate information. The operation performances

demonstrate that when the forecast inflows have high

accuracy, hydropower generation performs more effi-

ciently and stably with the EFH extending.

(2) The efficiency and reliability of hydropower generation

are diminished with the EDH extending by using fore-

cast inflows. Shortening the EDH and the strategy of



Figure 4 | The operation processes of the reservoir under different EFHs.

2154 X. Wei & Y. Xun | Evaluation of the effective horizon in hydropower operations Water Supply | 19.7 | 2019

Downloaded fr
by guest
on 17 April 202
decision re-optimizing in the RHC model are beneficial

for adapting the effect of the uncertainty of forecast

inflows.

(3) The reliability increases with EFH extending by using

observed and forecast inflows. It demonstrates that the

longer forecast inflows are useful for hydropower gener-

ation. However, the uncertainty of the forecast inflows

needs to be addressed to improve the efficiency of AHG.
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