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An MLP-ANN-based approach for assessing nitrate

contamination
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ABSTRACT
This paper investigates the feasibility of predicting nitrate contamination from agricultural sources

using multi-layer perceptron artificial neural networks (MLP-ANNs). The approach consists in

training an MLP-ANN to predict nitrate concentrations based on a set of indirect measurements, such

as pH, electrical conductivity, temperature and groundwater level. These are simpler and more

economical than direct measurements, and they can be continuously collected on-site, rather than

by performing laboratory tests. The approach has been validated in the nitrate vulnerable zone of

the Arborea plain (central western Sardinia, Italy) by comparing the results obtained with different

MLP-ANN models in order to find the most efficient model. The results show that the MLP-ANN-

based model is a time- and cost-efficient method for predicting nitrate concentration.
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INTRODUCTION
Groundwater is an important resource exploited for human

consumption, and agricultural and industrial activities. One

of the common kinds of pollution, in both surface and

groundwater, that may affect agricultural and industrial

areas, is nitrate contamination. To tackle this form of pol-

lution, in 1991 the Council of the European Communities

promulgated European Nitrates Directive 91/676/EEC

with the objective of reducing water pollution caused or

induced by nitrates from agricultural sources (fertilizers

and organic slurry) and preventing contamination from

further increasing by defining Nitrate Vulnerable Zones

(NVZs). Nitrate contamination is a major issue in the

region of Sardinia, particularly in the Arborea plain NVZ

where intensive agriculture practices and farming are the

major pillars of the local economy. Due to this leading

role, agricultural practices have seen a substantial increase

in the use of chemical and organic fertilizers to enhance pro-

ductivity. In addition, the intensive use of groundwater for

irrigation has caused the deterioration of groundwater and,

in particular, the surficial aquifer, making the area more
vulnerable to nitrate contamination. In fact, in the Arborea

NVZ, groundwater nitrate concentration very often exceeds

the water quality standard of 50 mg/l set by the Drinking

Water Directive 80/778/EEC and its 98/83/EC revision.

A variety of studies have been conducted in the Arborea

plain to determine the hydrological features of the area

(Ghiglieri et al. ), to explore saltwater intrusion phenom-

ena (Barrocu et al. ), and to investigate the intrinsic

vulnerability of the shallow aquifer (Foddis et al. b) and

nitrate contamination (Foddis et al. b, ). Due to the

complex hydrological system in the area, the hydrogeological

domain with all its peculiar features still needs to be further

explored. Consequently, to address the need to model and

predict nitrate contamination in agricultural areas, further

research should be directed towards innovative approaches

that make it possible to predict nitrate concentration in an

efficient manner, in terms of both time and cost.

A number of recent studies have focused on the use of

artificial neural networks (ANNs) to examine their

suitability for modelling the uncertainty and complexity
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inherent in environmental processes (Mohamed & Hawas

; Singh & Datta ; Yesilnacar et al. ; Nourani

et al. , ; Secci et al. ; Foddis et al. a,

b, ). Little has been published on predicting nitrate

concentration in groundwater using artificial neural net-

works. Zaqoot et al. () compared the results of

implementing two ANN algorithms for predicting nitrate

concentration based on a set of seven water quality par-

ameters determined from measurements and laboratory

analyses. Their results show that ANN models are able to

predict nitrate contamination with acceptable accuracy.

Ostad-Ali-Askari et al. () used an ANN to estimate

nitrate in groundwater based on 12 parameters of water

quality analysis. Their results confirm that ANN models

can be employed for investigating water quality par-

ameters. Sathish Kumar et al. () applied an ANN for

estimating nitrate in groundwater using a series of input

parameters found to have a strong correlation with, and a

major influence on, nitrate contamination. Mousavi &

Amiri () adopted an adaptive neural-based fuzzy infer-

ence system for estimating nitrate concentration on the

basis of 11 water quality variables measured in the labora-

tory. Their results showed that increasing the number of

input variables improves the accuracy of nitrate estimates.

This paper discusses the development of a method-

ology that adopts the multi-layer perceptron artificial

neural network (MLP-ANN)-based approach to predict

the concentration of nitrate in aquifers using easily and

economically quantifiable parameters such as pH, electri-

cal conductivity, temperature and groundwater level. As

opposed to other works, the methodology allowed us to

predict nitrate concentration in water wells using

ground-measured data. Furthermore, the possibility of per-

forming simple ground measurements enabled continuous

remote monitoring of the aquifers. The procedure pro-

posed has been validated using the measurements from

a set of wells located in the Arborea plain NVZ.
METHODS

This section includes a general description of the MLP-

ANNs and the method adopted to predict agricultural

nitrate concentrations.
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ANN design

In this paper, an MLP-ANN (Principe et al. ) is used to

associate nitrate concentrations with the ground-measured

data. As is well known, the most important feature of

ANNs is their generalizability, namely their ability to prop-

erly approximate examples not included in the training set.

As a general rule, with a large number of degrees of freedom

the ANN works well with the training set, but at the expense

of generalization ability. In contrast, if the number of

examples is too small then they cannot be properly approxi-

mated. Several rules-of-thumb are proposed in the literature

to determine the appropriate number of degrees of freedom,

mainly based on the number of training examples. Nonethe-

less, this heuristic yields a very broad range of possible

values from which to choose, as the optimal value depends

on the actual distribution of the points, which is generally

unknown. It has been demonstrated (Cybenko ) that

an MLP with only one hidden layer is a universal approxi-

mator. On the other hand, in many cases it has been

observed that two hidden layers of neurons improve MLP

performance even with the same number of degrees of free-

dom. In this work, the number of neurons in the hidden

layer has been assigned by means of incremental evolution

(see ‘Incremental evolution for hidden layer sizing’ below).

Training strategy

The performance of a trained MLP critically depends on the

training set. In fact, the training set needs to be representa-

tive of the entire distribution of possible cases. However,

at the same time, the number of training examples should

be maintained to be as small as possible, as this affects the

number of degrees of freedom and ultimately computational

cost. The main contribution of this paper concerns the pro-

cedure adopted for selecting the training set.

Another issue concerning training is overfitting. In prac-

tice, if the network is overtrained its generalization ability is

reduced, and in spite of providing good accuracy on the

training examples, with unacceptable errors on any other

examples. To avoid this, a test set is defined, which is uncor-

related with the training set, and the approximation error is

evaluated on both the training and test sets. If the latter

exceeds the acceptance threshold, then training has failed.
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The most common way to use the test set is early stopping

(Principe et al. ), which consists in evaluating the

error on the test set during the training phase, and in stop-

ping when the error on the test set begins to increase. This

is simply heuristics, and there is no guarantee that after a

certain number of epochs, the test error will not begin to

diminish again.

In light of the above considerations, in the present work

the following strategy was implemented. First of all, the

training set was selected from among all the available

examples by prioritizing the vertex points, namely the

points that, in the product space {Input} × {Output}, cannot

be obtained as a convex combination of the remainder of

the set (see ‘Training set selection’ below). The next step

consisted in determining the size of the hidden layer and

the number of layers. To this end, we adopted a growing

procedure, training several ANNs with a growing number

of hidden neurons, and for each case, the Mean Squared

Error (MSE) was determined on both the training and test

sets. Optimal size was taken as the best approximation of

the test set (see ‘Incremental evolution for hidden layer

sizing’ below). In order to deal with local minima problems,

an appropriate number of ANNs, all having the same

number of hidden neurons, but with different initial sets of

weights, are trained in parallel. In calculating the output of

a given example, the outputs obtained by the single ANN

are combined by applying a weighted majority voting

criterion (Bauer & Kohavi ) (see ‘Majority voting to

increase generalization ability’ below). In the following

three subsections, the procedure is described in detail.

Training set selection

In order to select the training set from among the available

examples, the distribution of the whole set is examined on

the product space {R}¼ {Input} × {Output}, namely the geo-

metrical space that encompasses the input and output

spaces. It is reasonable to assume that it is easier to inter-

polate a point inside the distribution than extrapolate

outside it. Therefore it is worth assessing the performance

of the system if the training set is composed of points that

cannot be obtained as a convex combination of the rest of

the points. In other words, all the convex combinations

among points of the set form a polyhedron and we take as
://iwa.silverchair.com/ws/article-pdf/19/7/1911/662360/ws019071911.pdf
the training set the vertices of this polyhedron. Linear pro-

gramming (Bazaraa et al. ) is used to establish whether

a point is a convex combination of the current training set.

This test is briefly described below. A point P is a convex

combination of a set of points Q
k
, k ¼ 1, . . . , K if the fol-

lowing equations hold:

P ¼ P

k
αkQk

P

k
αk ¼ 1

αk � 0 ∀k

(1)

The points with an extreme value (maximum or mini-

mum) of one coordinate are indeed vertices, and as such

can be included without performing any tests. Starting

from this initial set, test (1) is performed iteratively on the

whole residual set, and at each iteration, only the point

with the maximum value of the objective function is

included in the training set.
Incremental evolution for hidden layer sizing

Although Cybenko () demonstrated that an MLP with

only one sigmoidal hidden layer represents a universal

approximator, establishing the appropriate number of neur-

ons in this layer is still an open issue. What we do know is

that a large hidden layer facilitates learning but at the

same time the performance of the test set deteriorates.

Therefore, the best solution is determined by trial and

error. Furthermore, even if a single hidden layer is sufficient

to achieve an arbitrary degree of approximation, experience

suggests that distributing the hidden neurons into two layers

allows one to obtain better performance with the same total

number of neurons. In this work, a number of MLPs each

having one hidden layer of a different size have been

trained, and their performance compared. Performance is

evaluated on both the training and the test sets, and in

terms of both MSE and the greatest error in the set.
Majority voting to increase generalization ability

A key issue in developing an MLP-ANN is its generalization

capability, namely the ability to maintain a suitable degree
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of approximation for those examples not belonging to the

training set. To this end, a stopping criterion is adopted,

based on a test set of examples independent of the training

set. When the error in the test set begins to increase, training

is interrupted (early stopping) (Principe et al. ). To

ensure this approach is effective, it is important that both

the training and test sets are representative of the whole

population. As the performance of the ANN depends on

the initial set of connection weights, a certain number of

ANNs with the same size but with different initial weights

are trained in parallel. Their outputs are combined by a

weighted sum, where the weights are assigned on the basis

of the reliability of the ANN. More specifically, the weight

of each output is proportional to the inverse of the

MSE of the ANN on the training set. The weights are
Figure 1 | Study area and water well location (NVZ of Arborea, Sardinia, Italy).
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normalized, so that their sum is equal to 1. This makes the

system robust with respect to any outlier error made by an

ANN on a single sample.
CASE STUDY

The proposed method has been evaluated by predicting

nitrate concentration in 42 water wells throughout the

NVZ of Arborea plain.

Study area

The study area is located in the Arborea plain (central wes-

tern Sardinia, Italy) (Figure 1). The area extends over



Figure 2 | Trend of errors vs number of hidden neurons.
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roughly 70 km2 and forms part of the coastal flood plain

overlooking the Gulf of Oristano. The area lies within the

administrative boundaries of the municipality of Arborea

and in the northernmost part of the Campidano plain.

The Arborea plain is one of the most productive agricul-

tural areas in Sardinia, characterized by irrigated crops and

livestock holdings. Intensive agriculture and dairy farming

have resulted in this area carrying the risk of nitrate con-

tamination. Agricultural practices include the use of

chemical fertilizers and animal manure to increase yields.

These practices, together with aquifer overexploitation,

leaching and the infiltration of huge quantities of nitrogen

into the ground, have made this area particularly vulnerable

to nitrate pollution. Consequently, it has been designated

NVZ in the Sardinian Water Safety Plan (Piano di Tutela

delle Acque ) drawn up pursuant to EEC Nitrates Direc-

tive 91/676/EEC.

Data pre-processing

The 42 water wells located in the study area, monitored on a

monthly basis by ARPAS (Sardinian Agency for Environ-

mental Protection of Sardinia) (Figure 1), only intercept

the shallow aquifer, water being withdrawn by local farmers

almost daily. This investigation takes into account 482

measurements of nitrate concentration (NO3), pH, electrical

conductivity (EC), temperature (T), and groundwater level

(GL) collected during the monitoring campaigns in different

seasons from 2007 to 2011. Therefore the whole data set was

composed of 482 × 5 values. In addition, the availability of

samples acquired in different seasons and at geographical

points is fundamental for guaranteeing the representative-

ness of the data set used to train the ANN model. During

a preliminary phase the linear correlation, correlation

coefficient and the significance of data correlation

were evaluated for the data coupled in input–output pairs

(GL–NO3; T–NO3; EC–NO3; pH–NO3) and input–input

pairs (GL–NO3; T–NO3; EC–NO3; pH–NO3). This first

analysis highlighted the lack of correlation between both

pairs of variables. This first result is very interesting because

non-linear correlation can provide more significant infor-

mation for training purposes, avoiding signal redundancy,

and at the same time it justifies the interest in employing a

non-linear modelling tool such as MLP-ANNs.
://iwa.silverchair.com/ws/article-pdf/19/7/1911/662360/ws019071911.pdf
Developing the MLP-ANN model

The measurement campaigns described in the subsection

‘Study area’ provided a total of 482 input–output pairs,

where the input is represented by the measurements of pH,

electrical conductivity, temperature, and groundwater level,

while the output represents the nitrate concentration measure-

ments performed in the laboratory. The structure of the MLP-

ANN will be 4-x-1, which indicates that the MLP-ANN has

one hidden layer, and the number of neurons has to be

established.

First, the training set was determined, adopting the pro-

cedure described in the subsection ‘Training set selection’,

obtaining a set of 65 examples. The remaining 417 examples

formed the test set. The size x of the hidden layer was varied

between 7 and 45. For each size, 20MLPswith random initial

weights were trained, and their performance combined by

means of the majority voting method (majority voting to

increase generalization ability). All the MLPs were trained

for a fixed number of 60 epochs. For each size of the hidden

layer, the performance of the corresponding group of 20

ANNs was evaluated by considering both the MSE and the

maximum error on both the training and test sets. In the

following section, the results are reported and commented.
RESULTS AND DISCUSSION

Figure 2 shows the effect of increasing the size of the hidden

layer on the approximation level. As can be observed,



Figure 3 | Displacement of the output on the training and test sets.

1916 M. L. Foddis et al. | MLP-ANN for the estimation of nitrate contamination Water Supply | 19.7 | 2019

Downloaded fr
by guest
on 17 April 202
increasing the number of hidden neurons does not affect the

generalization ability of the MLP-ANN. In fact, the error

on the test set, both the maximum error and the MSE, exhibits

the same trend as the training set. This behaviour indicates the

training set has been appropriately selected, as the small

number of training examples is able to well represent the

whole set, and overfitting is avoided. Note that the trends

are not regular, in the sense that in certain portions the

curve first rises, then declines. This behaviour cannot be attrib-

uted to a specific size of the MLP-ANN, but can rather be

considered as fluctuations due to the initial randomization of

the weights. By training several networks combined through

majority voting the curve becomes smoother. Clearly, the

MLP-ANN becomes increasingly accurate as size increases.

Figure 3 shows the resulting degree of approximation of

the MLP-ANN 4-40-1, the largest one. As can be observed,

the MLP-ANN provides good accuracy for both the training

and test sets, demonstrating the suitability of the proposed

approach for predicting nitrate concentrations.
CONCLUSION

This work focuses on an MLP-ANN-based methodology for

estimating nitrate contamination from agricultural sources,

based on a set of ground measurements. A key aspect of

the procedure is MLP-ANN training, which needs to

ensure a satisfactory approximation of the physical system

as well as generalization ability. Nitrate contamination in
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water wells can be predicted on the basis of easily and econ-

omically quantifiable parameters employing an MLP-ANN

model. Furthermore, the MLP-ANN approach has proven

to be both time- and cost-efficient. The results show that the

development of an MLP-ANN needs to be supported by

algorithms designed and tested specifically for each case

study, so as to be able to exploit a significant amount of infor-

mation from the available data. MLP-ANNs may offer a

valuable contribution to the pool of existing solutions for

the control and abatement of nitrate contamination, by allow-

ing the accurate monitoring of the progressive degradation of

groundwater resources in NVZs and then the identification

of action plans aimed at informing and training farmers to

improve fertilization management and agricultural practices.

To the best of our knowledge, no studies reported in the lit-

erature have adopted this approach for the remote

monitoring of nitrate contamination in groundwater.
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