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Exploring uncertainty in thermodynamic modeling of the lead carbonate aqueous system
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ABSTRACT

Thermodynamic models of the lead carbonate aqueous system have been used in prior studies to evaluate the effect of water chemistry on

lead solubility and corrosion scale composition in water distribution systems. A common challenge in these studies is uncertainty arising

from the thermodynamic equilibrium constants (logK values) used to parameterize the models. The objective of this study is to evaluate

the way in which uncertainty in logK values propagates through thermodynamic models of the lead carbonate system and provide guidance

for future modeling efforts. This was done by conducting a full factorial statistical analysis implemented using a custom Python (v3) code

coupled with a PHREEQC (v1.4.2) geochemical model, along with batch lead solubility experiments. Two lead carbonate solid phases (cerus-

site and hydrocerussite) and nine aqueous lead complexes are considered in the geochemical model with conditions simulated ranging from

pH 4 to 11 and dissolved inorganic carbon (DIC) ranging from 0 to 250 mg C/L. Main effect analysis indicates that model uncertainty is pre-

dominately associated with logK values for five species (in order of decreasing effect): hydrocerussite, Pb(CO3)
�2
2 , cerussite, PbOHþ, and

PbCO3
o, with model uncertainty varying depending on the specific pH and DIC conditions simulated. Interaction effects show that logK

values cannot be selected independently, as their influence on lead solubility is connected. Finally, by considering uncertainty in logK

values it was possible for the thermodynamic model to match batch hydrocerussite solubility experimental data over a range of pH and

DIC conditions. Six combinations of logK values that provided a good match between the simulated and experimental data were determined

with the average difference between the simulated and experimental lead concentrations calculated to be 0.031 mg/L when the

recommended logK value combination was used.
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HIGHLIGHTS

• Thermodynamic model uncertainty is predominately associated with logK values for five species (in order of decreasing effect): hydrocer-

ussite, Pb(CO3)
�2
2 , cerussite, PbOHþ, and PbCO3

o.

• LogK values for species cannot be selected independently, as their influence on lead solubility is interconnected.

• Thermodynamic model uncertainty varies depending on specific pH and dissolved inorganic carbon conditions simulated.
INTRODUCTION

Lead is a pervasive toxic metal that can exist in the home, air, soil, or water. Industries focused on the removal or control of lead
include wastewater treatment, battery recycling, and soil remediation. Furthermore, lead-bearing plumbing materials in drinking

water distribution systems are common. The release of lead from corrosion scales that form inside these plumbing materials can
cause elevated lead concentrations in drinking water at the tap. While many municipalities have programs for the replacement
of lead-bearing plumbing materials, these programs are costly and progress slowly (Sandvig et al. 2008). As such corrosion con-

trol strategies are often implemented to reduce lead concentrations in drinking water. Water chemistry is generally the most
accessible parameter for water utility operators to adjust to control corrosion and thus reduce lead concentrations. For instance,
parameters such as alkalinity (or dissolved inorganic carbon, DIC) (Schock 1980; Marani et al. 1995; Tam & Elefsiniotis 2009;

Wang et al. 2012); pH (Tam& Elefsiniotis 2009; Kim et al. 2011; Wang et al. 2012); additives such as orthophosphate (Gouider
et al. 2009; Tam & Elefsiniotis 2009; Ng et al. 2012); and disinfectant type (i.e., free chlorine and chloramines) (Edwards &
Dudi 2004; Vasquez 2005; Switzer et al. 2006; Lin & Valentine 2008; Lin & Valentine 2009) can be adjusted to stabilize
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lead-bearing corrosion scales. As conditions vary between distribution systems, there is a need to be able to predict a priori the
effect water chemistry adjustments may have on lead corrosion scale stability and thus lead concentrations.

The composition of the corrosion scale is important for determining the effectiveness of a corrosion control strategy
(Docherty & Kariuki 2019). The main groups of phases in lead-bearing corrosion scales are lead (II) carbonate and lead

(IV) oxide solids (Wang et al. 2012). The major lead (II) carbonates are hydrocerussite (Pb3(CO3)2(OH)2) and cerussite
(PbCO3), while the major lead (IV) oxides are plattnerite (PbO2) and scrutinyite (PbO2) (Wang et al. 2012). The character-
izations of experimental pipe loops and exhumed lead pipes have shown that lead (II) carbonates are often the dominant
solid phase in distribution systems with higher DIC (Edwards et al. 1999; Liu et al. 2008; Noel et al. 2014).

Numerous studies over the last 50 years have used thermodynamic models to describe lead carbonate aqueous–solid phase
interactions for varying water chemistry conditions. Details of models previously used are provided in Supplementary
Material, Table S1. These thermodynamic models have provided valuable insight into the relationship between water chem-

istry, solid phases, and lead solubility (Hem & Durum 1973; Patterson et al. 1977; Schock 1980; Marani et al. 1995; Noel &
Giammar 2008; Tam & Elefsiniotis 2009; Noel et al. 2014; Tully et al. 2019). A common theme among these studies is uncer-
tainty in the lead solid phases included in the model (i.e., phases allowed to precipitate) and the equilibrium constants (logK
values) used for the lead solid phases and aqueous complexes. There is a large variation in the values for equilibrium con-
stants reported in the literature, and this can result in lead solubility and solid phase predictions that differ over several
orders of magnitude between thermodynamic models, and between model predictions and experimental or field data

(Noel & Giammar 2008; Noel et al. 2014). Equilibrium constants are typically determined by measuring species of interest
under different experimental conditions (Vanbriesen et al. 2009). Equilibrium constant values reported may vary due to mul-
tiple reasons including the specific conditions of the experiment (temperature, pressure, ionic strength, and solution species
present), the analytical methods used to measure the species concentrations (with methods improving over time), or vari-

ations in the morphology of the solid phases.
Based on prior thermodynamic models and laboratory experiments (see Supplementary Material, Tables S1 and S2), there

are two dominant solid phases (hydrocerussite and cerussite) and up to nine lead aqueous species (Pb(CO3)
�2
2 , Pb(OH)2,

Pb(OH)3
�, Pb2OHþ3, Pb3(OH)þ2

4 , Pb4(OH)þ4
4 , PbCO3

o, PbHCO3
þ, and PbOHþ) in the basic lead carbonate system. Based

on thermodynamic constraints, hydrocerussite is the most stable lead (II) carbonate when the pH is above 7–7.5, whereas
cerussite is stable under more acidic conditions (Schock 1980; Schock et al. 1980). A range in equilibrium constants has

been reported for hydrocerussite and cerussite. For instance, the hydrocerussite equilibrium constant (logK) has been
reported to range from �16.25 to �19.04 (Supplementary Material, Tables S1 and S2). While Noel et al. (2014) and Tully
et al. (2019) recently illustrated the sensitivity of lead solubility predictions to the hydrocerussite equilibrium constant, pre-
dictions also depend on the equilibrium constants for lead aqueous species. Equilibrium constants for these species also

have a range of reported values. There is a need to understand the way in which uncertainty in equilibrium constants, includ-
ing those for aqueous species, propagates through the thermodynamic model to guide the selection of equilibrium constant
values, understand uncertainty in predictions, and thus to develop more robust thermodynamic lead solubility models.

Uncertainty in thermodynamic models caused by variation in equilibrium constant values has been explored previously for
other chemical systems. For instance, Vanbriesen et al. (2009) used a Markov chain Monte Carlo to regress 27 thermodyn-
amic constants for an EDTA system simultaneously. More recently, Guo et al. (2019) used a Monte Carlo with Latin

Hypercube sampling to propagate equilibrium constant uncertainty through thermodynamic simulations of the mercury
system. Both studies found that slight variations in equilibrium constants can result in significant changes to the output
species concentrations spanning multiple orders of magnitude. Furthermore, Guo et al. (2019) highlighted that there is a sig-

nificant lack of thermodynamic parameter uncertainty quantification for environmentally important metals such as As, Pb,
Cd, and Hg.

While Monte Carlo methods are popular, they require probability distributions for input parameters (Novoselov et al.
2015). If probability distributions for input parameter values are not available, as is the case for the equilibrium constants

for the lead carbonate system, options to evaluate uncertainty are more limited. Modifying one factor (i.e., one equilibrium
constant value) at a time can be cumbersome and miss critical interaction effects between factors. The factorial analysis is
a sensitivity analysis method useful for assessing many factors without requiring large computational resources (Liu et al.
2020). A full factorial analysis involves simulating the permutation of every combination of factors at every level (high or
low value) investigated. One of the most important aspects of factorial analysis is the ability to analyze interactions between
the factors (Mee 2009). For example, Liu et al. (2020) showed important interaction effects between factors (e.g., between
://iwa.silverchair.com/wqrj/article-pdf/56/4/194/967234/wqrjc0560194.pdf
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snowfall temperature and threshold temperature for snowmelt) in a model used to simulate average streamflow. In a thermo-

dynamic model, these factors would be the equilibrium constants for the various species included in a model for simulating
total dissolved lead.

The main objective of this study is to evaluate how uncertainties in equilibrium constants for lead solid phases and aqueous

complexes propagate through a thermodynamic model used to simulate the lead carbonate aqueous system. In particular, the
study aims to (i) identify species’ equilibrium constants that contribute most to model uncertainty; (ii) determine how uncer-
tainty contributed by each species equilibrium constant varies with changing pH and DIC conditions; and (iii) provide
recommendations for future thermodynamic modeling of this system. The lead carbonate system considering two solid

phases (cerussite and hydrocerussite) and nine aqueous lead complexes is simulated using a full factorial statistical approach
that considers the range of equilibrium constant values previously reported. Batch laboratory lead solubility experiments are
also conducted with results compared with output from the factorial analysis. While the lead carbonate system simulated in

this study is simplified relative to the water chemistry and solid corrosion scales found in drinking water distribution systems,
analyzing this simpler system provides important fundamental insight into the uncertainty inherent in thermodynamic simu-
lations of the aqueous lead system. The study findings can be applied to guide the future application of thermodynamic

models including consideration of uncertainty inherent in these models.

METHODS

Factorial methods

A full factorial statistical analysis was performed to analyze the way in which uncertainty in equilibrium constants (logK
values) for all lead species in the lead carbonate system propagates through the thermodynamic model. A custom Python
(v.3) wrapper code was used to iterate through factorial combinations of logK values that were used as parameter inputs

to a thermodynamic model implemented in PHREEQC (v1.4.2). This code has been uploaded to a public repository (see
Data Availability Statement for URL). The PHREEQC model was a batch simulation with the lead carbonate solid-phase
hydrocerussite initially present in excess in a buffered solution with ionic strength 0.01 M that was closed to the atmosphere

at room temperature (20 °C). A second lead carbonate, cerussite, was not initially present but was allowed to precipitate if the
saturation index is .0. Nine aqueous lead species were considered: Pb(CO3)

�2
2 , Pb(OH)2, Pb(OH)3

�, Pb2OHþ3, Pb3(OH)þ2
4 ,

Pb4(OH)þ4
4 , PbCO3

o, PbHCO3
þ, and PbOHþ. These were chosen based on prior modeling and experimental studies (Schock

1980; Marani et al. 1995; Xie et al. 2010a, 2010b; Noel et al. 2014). Dissolution and formation equations for the lead aqueous

species and solid phases are provided in Table 1. The MINTEQ.V4 database (Allison et al. 1991) was used to specify the equi-
librium constants for non-lead aqueous and solid species (e.g., H2CO3, HCO3

�, and CO2�
3 ) that were considered in the model.

Simulations were conducted with pH ranging from 4 to 11 and DIC ranging from 0 to 250 mg C/L. These pH and DIC con-

ditions were coded into the PHREEQC model via the python wrapper.
Table 1 | Species, equations, and logK levels used for 211 factorial analysis

Species Equation Min (‘�’) LogK Max (‘þ’) LogK Type

Cerussite PbCO3(s) ¼ Pbþ2 þ CO�2
3 �13.64 �10.91 Dissolution

Hydrocerussite Pb3(OH)2(CO3)2(s) þ 2Hþ ¼ 3Pbþ2 þ 2H2Oþ 2CO�2
3 �19.04 �16.25 Dissolution

Pb(CO3)
�2
2 Pbþ2 þ 2CO�2

3 ¼ Pb(CO3)
�2
2 8.2 12.29 Formation

Pb(OH)2 Pbþ2þ 2H2O¼ Pb(OH)2þ 2Hþ �17.85 �16.42 Formation

Pb(OH)3
� Pbþ2þ 3H2O¼ Pb(OH)3

� þ 3Hþ �29.24 �27.99 Formation

Pb2OHþ3 2Pbþ2þH2O¼ Pb2OHþ3þHþ �7.28 �6.24 Formation

Pb3(OH)þ2
4 3Pbþ2 þ 4H2O ¼ Pb3(OH)þ2

4 þ 4Hþ �23.91 �22.48 Formation

Pb4(OH)þ4
4 4Pbþ2 þ 4H2O ¼ Pb4(OH)þ4

4 þ 4Hþ �21.02 �18.98 Formation

PbCO3
o Pbþ2 þCO�2

3 ¼ PbCO3(aq) 5.4 7.4 Formation

PbHCO3
þ Pbþ2þCO3

�2þHþ¼ PbHCO3
þ 12.96 13.2 Formation

PbOHþ Pbþ2þH2O¼ PbOHþþHþ �8.72 �6.18 Formation

The minimum (‘�’) and maximum (‘þ ’) values determined from the literature (see Supplementary Material, Tables S1 and S2 for more details).
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The custom python wrapper substituted logK values into the PHREEQC batch simulation for each solid and aqueous lead

species. This substitution was based on a target logK table (Table 1 and Supplementary Material, Table S3) which identified
the levels (e.g., minimum and maximum) for each factor to be included in the factorial analysis. The levels used for each logK
value were based on an extensive literature review including Lothenbach et al. (1999) who previously compiled relevant logK
values for the lead system that were reported in studies published between 1922 and 1998. Primary references for logK values
obtained from Lothenbach et al. (1999) are provided in Supplementary Material, Tables S1 and S2. Once all combinations of
logK values were then run through the PHREEQC simulation, the python code collated the model output for analysis. An
initial factorial analysis was run with 11 factors 2 levels (211), meaning that each of the 11 factors (aqueous or solid phase

logK values) investigated were varied across 2 levels: a high level and a low level. For this factorial analysis, a level was
either the minimum or maximum logK value previously reported in the literature for that factor (Table 1).

A second factorial analysis was run with 5 factors 12 levels (125). This factorial analysis only included the five factors that were

identified in the211 analysis tobeassociatedwith thegreatest uncertainty in themodel output.Additional levels that fell between the
minimum and maximum values were included in this factorial analysis to further understand the sensitivity of each factor (Sup-
plementary Material, Table S3). In this factorial analysis, the logK values in the MINTEQ. V4 database (Allison et al. 1991)
werealso set as a level for each factor. Finally, the resultsof the125 factorial analysiswere comparedwithbatch lead solubilityexper-
imental results to evaluatewhether the experimental data could be simulatedwhenconsidering all logK combinations for thesefive
factors that contribute to the greatest uncertainty in the model output. In doing this, recommendations are provided for selecting

logK values for thesefive factors and for consideringuncertainty in future thermodynamic simulations of the lead carbonate system.
The factorial results were analyzed by main effect analysis which determines the response of the model given a change in

one factor (logK value for a given species), allowing for all other factors to be averaged. The main effect of varying factor x
was calculated as follows:

Main Effectx ¼
P

Yxþ

nxþ
�
P

Yx�

nx�
(1)

where Y is the measured response of the model (in this case total dissolved lead), n is the number of model runs, ‘�’ indicates

the factor at a low level, and ‘þ’ indicates the factor at a high level. The indicators of ‘�’ and ‘þ’ are standard factorial notation
in statistical analysis. Using this equation, the main effect of x is calculated using the average of the response (total dissolved
lead), where x is at a high level minus the average of the response where x is at a low level. Main effects were calculated con-
sidering the complete range of pH and DIC conditions simulated, as well as for each pH and DIC condition simulated.

The model output for the 211 factorial was also analyzed to examine interaction effects. It is important to understand inter-
action effects because they show whether the selection of one factor (logK value for one species) may change the uncertainty
contribution of another factor (logK value for a different species). If interaction effects are high between different factors, this

indicates that it is not possible to select the logK value for an individual species without considering the way in which the
value depends on the logK value selected for another species. This would mean that the selection of appropriate logK
values for all species in an aqueous system may need to be done simultaneously.

Batch laboratory experiments

Batch hydrocerussite dissolution experiments were conducted across drinking water conditions (pH 8–10; DIC 20, 100, and
200 mg C/L) to determine whether the thermodynamic model was able to simulate total lead solubility from hydrocerussite

dissolution when considering uncertainty in the logK values. The matching of the experimental data with the 125 factorial
model output was used to determine appropriate logK values (or combinations of values) for the aqueous and solid-phase
species to be used in the model. It should be noted that while the logK values selected based on the matching are appropriate
for the solid phases used in our experiments, it is possible that logK values for solid phases may vary with crystallite size and

other aging phenomenon.

Experimental materials

Hydrocerussite (Pb3(CO3)2(OH)2; Sigma-Aldrich) was used for all experiments. XRD analysis and Rietveld refinement indi-

cated that the solid phase was dominant hydrocerussite. Sodium bicarbonate (NaHCO3; Sigma-Aldrich,.99.5%) and sodium
nitrate (NaNO3; Sigma-Aldrich, .99.0%) were combined with mega-pure water to prepare a stock solution at the target DIC
and at 0.01 M ionic strength, respectively. The target pH was maintained with organic buffers: EPPS (Alfa Aesar, 0.2 M, pH
://iwa.silverchair.com/wqrj/article-pdf/56/4/194/967234/wqrjc0560194.pdf
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8), CHES (Alfa Aesar, 0.5 M, pH 9), CAPSO (Alfa Aesar, 0.2 M, pH 9.5), and MOPSO (Alfa Aesar, 0.2 M, pH 7). Sodium

hydroxide (NaOH; Sigma-Aldrich) and concentrated nitric acid (HNO3; EMD Milipore, Omnitrace, 67–70% v/v condensed)
were used to adjust the stock solution to the target pH (+0.05 pH units) immediately before each experiment.

Experimental methods

All experiments were performed as closed experiments at room temperature (20 °C). The influence of the initial amount of
hydrocerussite present (solid loading) on the time to equilibrium was first evaluated by conducting experiments with varying
solid loadings (10–1,000 mg/L; Supplementary Material, Figure S1) at pH 8 and DIC 20 mg C/L. Equilibrium was determined

to have been reached when the measured dissolved lead concentrations were within 10% of each other for at least three
samples collected at consecutive times. Based on these experiments, a solid loading of 175 mg/L was used for all subsequent
experiments with a minimum of 4 days required until equilibrium was reached.

Experiments were run at conditions typical for drinking water systems and for which hydrocerussite is the dominant solid
phase (pH 8–10) and at varying DIC levels (20, 100, and 200 mg C/L; Supplementary Material, Table S4). Complications
due to possible cerussite formation can occur at pH lower than 7.5 (Schock 1980). Therefore,while some drinkingwater systems

operate at lower pH, all experiments were run at pH 8 or higher to avoid complications of cerussite/hydrocerussite dominance
within the experiments. Organic buffers were used to maintain target pH values, since a positive pH-driven feedback loop can
occur in unbuffered solutions as hydrocerussite dissolution increases as pH increases. The buffers used have been used in pre-

vious hydrocerussite dissolution experiments (Noel et al. 2014). Additional experiments (not presented) were conducted which
indicated that organic buffers do not alter the dissolved equilibrium lead concentrations at the range of pH values studied.

For all experiments, powdered hydrocerussite was first weighed into 150 mL polypropylene bottles. Each bottle was then
half-filled with a pre-prepared stock solution and agitated to evenly disperse the hydrocerussite powder. After agitation, the

bottles were filled completely and placed on a shaker table. A minimum of five sample bottles were run for each experimental
data point (Supplementary Material, Table S4). While the experiments were run under closed conditions, the stock solution
was not prepared under closed conditions and so alkalinity was measured to verify target DIC values. Interference from

atmospheric CO2 was not observed with all DIC measurements at expected target concentrations.
All samples were taken from individual bottles that were sacrificed after sampling. Samples were immediately filtered

through a 0.2 μm polyethersulfone filter. It is possible that the selection of this filter size (0.2 versus 0.45 μm) may have influ-

enced the dissolved equilibrium concentrations and thus the factorial analyses matching results, but the influence of filter
selection was not examined in this study. Samples for total dissolved lead analysis were acidified immediately using 2%
HNO3 and analyzed using graphite furnace atomic absorption spectroscopy (GFAAS, Agilent Technologies; limit of detec-
tion for lead ¼ 0.001 mg/L). Standard lead drying, ashing, and volatilization procedures for lead were followed without a

matrix modifier. Experimental blanks and laboratory blanks and spikes were included in analysis for quality control and
assurance.

Matching methods

The total dissolved lead concentrations for the different experimental conditions were compared with the 125 factorial model
output to determine set(s) of logK values that could be used to simulate the experimental data within a given tolerance. The

tolerance was set to five times the standard deviation for each experimental data point (Supplementary Material, Table S4).
When a factorial model output of total dissolved lead was within the tolerance of an experimental point, the grouping of logK
values used for that factorial PHREEQC simulation were considered a ‘match’. Common sets of logK values that ‘matched’ all

nine experimental data points were identified and assembled into groups for evaluation (Table 2).

RESULTS AND DISCUSSION

Main effects

The main effect of a factor (species logK value) indicates the impact of this factor on the dependent variable (total dissolved
lead). A large main effect indicates that changing the factor from a low value to a high value has a large effect on the simulated
total dissolved lead concentration. The model uncertainty associated with a factor with a large main effect is high. The cal-

culated average main effects for all factors considering the entire condition space simulated (pH 4–11, DIC 0–250 mg C/L)
are shown in Figure 1(a) with the data provided in Supplementary Material, Table S5A. Hydrocerussite (22.3 mg Pb/L),
Pb(CO3)

�2
2 (12.4 mg Pb/L), PbOHþ (7.6 mg Pb/L), cerussite (4.1 mg Pb/L), and PbCO3

o (1.1 mg Pb/L) were found to have
om http://iwa.silverchair.com/wqrj/article-pdf/56/4/194/967234/wqrjc0560194.pdf

4



Table 2 | Sets of logK values from 512 factorial analysis that match with experimental data

Group
Hydrocerussite
LogK

Cerussite
LogK

Pb(CO3)
�2
2

LogK
PbCO3

o

LogK
PbOHþ

LogK
Average
difference (mg/L)

Maximum
difference (mg/L)

Set 1a �17.77 �13.13 10.06 6.31 �8.72 to �8.03 �0.031 0.104

Set 1b �17.77 �13.13 10.06 6.13 �7.8 to �7.597 �0.031 0.104

Set 2 �17.77 �13.13 9.938 6.31 �8.72 to �8.03 �0.032 0.101

Set 3 �17.52 �13.13 9.938 6.31 �8.72 0.021 0.312

Set 4 �18.28 �13.39 10.06 6.67 �8.72 to �8.26 �0.043 �0.432

Set 5 �18.03 �13.13 10.06 5.95 �7.1 0.050 �0.402

Set 6 �19.04 �13.64 10.43 6.85 �8.72 to �7.597 �0.069 �0.195

These have been ordered from the ‘best’ fit (1a/b) to the ‘worst’ fit (6). The average difference and the maximum difference are calculated as the experimental lead concentration

minus the simulated lead concentration.
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highest average (across the entire condition space) main effects. The total sum of average main effects considering all factors

is 48.7 mg Pb/L – this value can be helpful in determining the relative importance of each factor on the model output (total
dissolved lead). In comparing this main effect to the magnitude of experimental lead concentrations (,1 mg/L), the impor-
tance of logK value selection is evident, as the main effect of a selected logK can have a large impact on the simulation results

when compared to experimental concentrations.
Hydrocerussite accounts for 46% of the average main effects, indicating that almost half of the uncertainty of the model

arises from uncertainty in its logK value. Pb(CO3)
�2
2 represents 25% of the average main effects, with PbOHþ (16%), cerussite

(8%), and PbCO3
o (2%) accounting for the remaining approximately 25% of the average main effects. All other factors had

average main effects of less than 1 mg Pb/L and account for only approximately 3% of the total average main effects, indi-
cating that uncertainty associated with these factors is minimal. Based on average main effect analysis, there are two

primary factors: hydrocerussite and Pb(CO3)
�2
2 and three secondary factors: PbOHþ, cerussite, and PbCO3

o that contribute
to uncertainty in the total dissolved lead predictions. These five factors (hydrocerussite, Pb(CO3)

�2
2 , PbOHþ, cerussite, and

PbCO3
o) were further investigated by running a 125 factorial analysis.

While average main effects indicate the influence of changing one factor across the entire condition space on the dependent

variable (total dissolved lead), it is also helpful to examine the maximum main effects for each factor and at what conditions
they occur (Figure 1(b), Supplementary Material, Table S5B). The maximum main effect is the highest main effect for each
factor considering each condition (pH 4–11, DIC 0–250 mg C/L). The largest maximum main effects were for Pb(CO3)

�2
2

(146 mg Pb/L, pH 9.5, DIC 250 mg C/L), hydrocerussite (95.5 mg Pb/L, pH 9.5, DIC 250 mg C/L), cerussite (86.7 mg Pb/L,
pH 4, DIC 250 mg C/L), and PbOHþ (28.8 mg Pb/L, pH 4, DIC 0 mg C/L). This indicates that model uncertainty due
Figure 1 | (a) Average and (b) maximum main effects for all solid and aqueous species in the lead carbonate system. Data are provided in
Supplementary Material, Table S5. Black bars are used for species that have the most effect on model uncertainty.
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to the Pb(CO3)
�2
2 logK value was the largest and can change the simulated total dissolved lead by up to 146 mg Pb/L at a pH

value of 9.5 and a DIC value of 250 mg C/L. The maximum main effects all occur near the limits considered in the study,
typically at either pH 4 or pH 10.5. It is therefore recommended that greater care be taken in selecting equilibrium values
for all factors when simulating these extreme conditions. All other factors studied had maximum main effects less than

6 mg Pb/L with these maximum main effects again occurring at extreme pH values (4 or 10.5).
The main effects across the condition space for the five factors identified to have the largest average main effects are shown in

Figure 2 (see Supplementary Material, Figure S2 for other factors). Note that the heat maps have an uneven contouring scale
where green is less than 10 mg Pb/L. Typical drinking water conditions (between 20 and 200 mg C/L and pH 7 and 10) are also

indicated. From Figure 2(a), it can be seen that uncertainty in the hydrocerussite logK results in three main areas of high model
uncertainty: low pH (,5.5); mid-high pH (8–10) and high DIC (100–250 mg C/L); and extremely high pH (11). At these con-
ditions changing the hydrocerussite logK value has a large impact on the total dissolved lead predictions. Furthermore, the

results suggest that any model simulating drinking water conditions will have high uncertainty associated with the selection
of the hydrocerussite logK value. Cerussite has a similar main effect heat map to hydrocerussite with three regions of high uncer-
tainty: low pH (,5) with mid to high DIC (.50 mg C/L); mid-high pH (9–10) with mid to high DIC (.100 mg C/L); and

extremely high pH (11; Figure 2(b))). For typical drinking water conditions (pH.7 and DIC .0 mg C/L), and there is moderate
uncertainty associated with the selection of the cerussite logK value. Pb(CO3)

�2
2 has one area that has high main effects at mid

to high pH and mid to high DIC – this overlaps with typical drinking water conditions so care needs to be taken in selecting this

logK value (Figure 2(c)). Finally, PbOHþ and PbCO3
o have low main effects when considering typical drinking water conditions

with both species having higher main effects at lower pH (pH ,8) or at extremely high pH (11; Figure 2(d) and 2(e)).
Interaction effects

Interaction effects indicate whether a factor is dependent upon another factor. This is important to consider because if there is
a large interaction between factors, both factors need to be simultaneously considered/adjusted when selecting their values as
Figure 2 | Heat map of main effects across pH 4–11 and DIC 0–250 mg C/L for the five species with the largest effect on model uncertainty:
(a) hydrocerussite, (b) cerussite, (c) Pb(CO3)

�2
2 , (d) PbOHþ, and (e) PbCO3

o. The black box indicates the region of typical drinking water
conditions.
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their impact on the model output is interconnected. Prior thermodynamic modeling of the lead carbonate system has only

examined the effects of modifying a single logK at a time to determine its impact on the model output, thereby neglecting
interaction effects (e.g., Noel et al. 2014; Tully et al. 2019).

Large interaction effects observed from the factorial analyses are shown in Figure 3. In interpreting these figures, parallel

lines indicate no interaction between factors, while divergent slopes indicate high interaction (results for all interaction effects
are provided in Supplementary Material, Table S6). As can be seen in Figure 3(a)–3(c), cerussite has three major factors that it
interacts with: Pb(CO3)

�2
2 , PbOHþ, and PbCO3

o. As such the cerussite logK value needs to be considered in assessing the
effect of the logK values for these other species. For instance, as the logK for cerussite increases, the model uncertainty associ-

ated with the logK values of Pb(CO3)
�2
2 (Figure 3(a)) and PbCO3

o (Figure 3(c)) increases. Alternatively, as the logK for
cerussite increases, the model uncertainty associated with the PbOHþ logK value decreases (Figure 3(b)). These interaction
effects mean that it is important to determine the logK values for cerussite, Pb(CO3)

�2
2 , PbOHþ, and PbCO3

o simultaneously.

Cerussite only has minor interactions with other species including Pb(OH)2, Pb3(OH)þ2
4 , Pb4(OH)þ4

4 , and PbHCO3
� (Sup-

plementary Material, Table S6). Finally, hydrocerussite has two major interactions: Pb(CO3)
�2
2 (Figure 3(d)) and PbOHþ

(Figure 3(e)) with the uncertainty associated with both these species logK values increasing as the hydrocerussite logK
increases. A minor interaction between hydrocerussite and PbCO3

o is shown in Figure 3(f) for comparison. This indicates
that the logK values used for hydrocerussite, Pb(CO3)

�2
2 , and PbOHþ should be determined simultaneously.

Experimental and matching results

The results for the lead solubility experiments at various pH values (8–10) and DIC values (20, 100, and 200 mg C/L) are

shown in Figure 4. All experimental points at pH 8 have a similar total dissolved lead concentration (∼0.05 mg/L) regardless
of the DIC with the lead concentrations diverging as pH increases. For the conditions examined, the total dissolved lead is the
highest for pH 10 and DIC 200 mg C/L (0.62 mg/L).

Before comparing the experimental data to the 125 factorial results, the contribution of each of the factors considered in the
211 factorial analysis to the total main effects was examined to confirm that the five factors included in the 125 factorial analy-
sis accounted for the majority of the model uncertainty at the experimental conditions. Of the factors considered in the 211

factorial analysis but not included in the 125 factorial analysis, only Pb(OH)2 was found to contribute to uncertainty (,4%) at
low DICs (see Supplementary Material, Figure S3). Twenty-one combinations of logK values out of the 248,832 combinations
Figure 3 | Key interaction effects for the lead carbonate solids hydrocerussite and cerussite. Cerussite interacts with (a) Pb(CO3)
�2
2 ,

(b) PbOHþ, and (c) PbCO3
o. Hydrocerussite interacts with (d) Pb(CO3)

�2
2 and (e) PbOHþ and has a minor interaction with (f) PbCO3

o. A summary
of all interaction effects is provided in Supplementary Material, Table S6.
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Figure 4 | Experimental (solid bars) and simulated (hatched bars) total dissolved lead concentrations for experimental conditions examined
(pH 8–10; DIC 20, 100, 200 mg C/L). Values in the legend indicate DIC concentrations. The simulated results use logK values from Sets 1a and
1b (see Table 2). Error bars indicate the tolerance calculated from the standard deviation of replicate samples.
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considered in the 125 factorial analysis were found to fit all experimental data points with a tolerance of five times the stan-

dard deviation between replicate experimental samples. These 21 combinations of logK values that match experimental data
can be grouped according to the logK values of Pb(CO3)

�2
2 , hydrocerussite, and cerussite to form six general groups (Table 2).

The uncertainties in the logK values for PbOHþ and PbCO3
o have less effect on the model output relative to the logK values

for hydrocerussite, cerussite, and Pb(CO3)
�2
2 . As the logK value for PbOHþ did not considerably affect the dissolved lead con-

centrations, a range of values could be used.
Two parameters, the average difference and the maximum difference between the experimental values and the simulated

values, were calculated to quantitatively compare the goodness of the fit of the model for each of the general sets of logK
values (Table 2). The average difference considering all the experimental conditions ranged from 0.021 mg/L (Set 3) to
�0.0686 mg/L (Set 6), whereas the maximum difference ranged from 0.101 mg/L (Set 2) to �0.432 mg/L (Set 4). The
logK values in Sets 1a and 1b provided the closest match with the experimental data considering the calculated average

and maximum differences (Table 2). While the matching suggests that any of the combinations of logK values shown in
Table 2 could be used in future simulations, in general, it is recommended that the logK values associated with Set 1
(Table 2; Figure 4) are used as it was the most common result from matching. In contrast to prior studies that have been

unable to simulate experimental results within the tolerance used in this current study (e.g. Noel et al. 2014), here this
was possible by understanding the uncertainty and the interactions between the logK values for the multiple solid and aqu-
eous phase species in the lead carbonate system. This highlights the need to consider the uncertainty of all logK values and

the interactions between these values when using thermodynamic models to simulate the lead carbonate aqueous system.
CONCLUSIONS

This study has shown how uncertainty in equilibrium constant values for solid and aqueous phase species propagates through
thermodynamic models of the lead carbonate aqueous system. It was determined that the logK values for the following
species contributed most to uncertainty: hydrocerussite, Pb(CO3)

�2
2 , cerussite, PbOHþ, and PbCO3

o. The model output was
shown to be highly sensitive to the hydrocerussite logK value with average main effects, indicating that this value accounts

for 46% of the uncertainty in the thermodynamic lead solubility predictions for pH 4–11 and DIC 0–250 mg C/L. When simu-
lating typical drinking water conditions (between pH 7 and 10 and DIC 20 and 200 mg C/L), care must also be taken in
selecting the equilibrium constant for Pb(CO3)

�2
2 , as it showed the most effect under these conditions. The Pb(CO3)

�2
2

logK value was associated with the second-highest average uncertainty (up to 25%) across the pH and DIC condition
space considered, and also had the highest maximummain effect. Overall, maximummain effects indicated that model uncer-
tainty due to logK selection is typically greatest at extreme pH values (pH ,5 and .10). Significant interactions effects were
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also observed between the logK values for cerussite, Pb(CO3)
�2
2 , PbOHþ, and PbCO3

o and between the logK values for hydro-

cerussite and Pb(CO3)
�2
2 and PbOHþ. This indicates that logK values used for these species should be selected simultaneously

for thermodynamic modeling of the lead carbonate system. Combinations of logK values that provided a good match with
experimental data were determined with the average difference between the simulated and experimental lead concentrations

calculated to be 0.031 mg/L for the best logK value combination (Set 1a/1b).
Overall, this study provides valuable insight into the uncertainty present in thermodynamic models of the lead carbonate

system. While the simulated lead carbonate system is simplified relative to the water chemistry in drinking water distribution
systems, analyzing this simpler system provides important insight into the uncertainty inherent in thermodynamic simu-

lations. Lead chemistry is more complex in drinking water distribution systems due to reaction kinetics, temperature
changes, and the presence of species including chlorine, natural organic matter, and calcium. It is recommended that this
uncertainty analysis be extended to other species including lead phosphate (inorganic) species and that the effects of temp-

erature are explored. Additionally, it is recommended that lead solubility experiments that use well-characterized lead
corrosion scales from real distributions systems be combined with similar thermodynamic model uncertainty analysis to
further evaluate the sets of recommended logK values derived in this study.
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