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ABSTRACT

Transverse mixing coefficient (TMC) is known as one of the most effective parameters in the two-dimensional simulation of water pollution, and

increasing the accuracy of estimating this coefficient will improve the modeling process. In the present study, genetic algorithm (GA)-based

support vector machine (SVM) was used to estimate TMC in streams. There are three principal parameters in SVM which need to be adjusted

during the estimating procedure. GA helps SVM and optimizes these three parameters automatically in the best way. The accuracy of the SVM

and GA-SVM algorithms along with previous models were discussed in TMC estimation by using a wide range of hydraulic and geometrical data

from field and laboratory experiments. According to statistical analysis, the performance of the mentioned models in both straight and mean-

dering streams was more accurate than the regression-based models. Sensitivity analysis showed that the accuracy of the GA-SVM algorithm in

TMC estimation significantly correlated with the number of input parameters. Eliminating the uncorrelated parameters and reducing the number

of input parameters will reduce the complexity of the problem and improve the TMC estimation by GA-SVM.
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HIGHLIGHTS

• Genetic algorithm (GA)-based support vector machine (SVM) was used to estimate TMC in streams.

• Sensitivity analysis showed that the accuracy of GA-SVM algorithm in TMC estimation significantly correlated with the number of input

parameters.
1. INTRODUCTION

Increasing the accuracy of modeling the process of pollution release into streams will increase the ability to control the qual-

ity of streams and thereby reduce environmental damage. Therefore, the capability to estimate the transport of pollutants in
streams and waterways has always been a considerable issue in many industrial and environmental projects (Abderrezzak
et al. 2015). After being discharged into a river, contaminants and effluents mix with water of the river being transported
to the downstream (Seo & Cheong 1998). The effluent is spread vertically, transversely, and longitudinally by advective

and dispersive transport processes. In a shallow stream, after contamination is rapidly mixed throughout the depth, the trans-
mission will occur in the longitudinal and transverse directions (Ahmad et al. 2011). A full cross-sectional mix will not be
achieved, unless the pollutant travels the long distances which are generally not within the length of practical interest (Beltaos

1980). The length required for full cross-sectional mixing of contaminations is approximately 20 and 200 times the upper
width for a rough and a smooth flow, respectively (Fischer 1967). Transverse mixing plays an important role in determining
the effect of contaminants under steady-state conditions. This parameter has an important effect in water quality manage-

ment; especially in a case of point source discharges or tributary inflows (Rutherford 1994; Boxall & Guymer 2003).
According to Figure 1, for the effluent mixing process in rivers, three stages are considered: (1) mixing near to the discharging
point due to initial momentum and flow buoyancy (between A and B zones); (2) transverse mixing due to turbulence
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Figure 1 | General steps of pollution dispersion in a stream (Fischer et al. 1979).
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(secondary turbulence transfer) and its secondary flows (between B and C zones); and (3) dispersion due to longitudinal shear

flow (after C zone) (Fischer et al. 1979).
The distribution of tracer concentration can be written in a two-dimensional model according to the principle of mass con-

servation (Rutherford 1994; Sharma & Ahmad 2014):
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where t is the time; H is depth of flow (m); C is the depth-averaged tracer concentration (kg=m3); z and x are the transverse
and longitudinal directions, respectively; Uz and Ux are the velocities in the z and x directions (m=s), respectively; 1z and 1x

are the depth-averaged dispersion coefficients in transverse and longitudinal directions (m2=s). By assuming that longitudinal
dispersion of tracer has not begun yet for the uniformly flowing stream, the time differentiation of Equation (1) will be zero
(Sharma & Ahmad 2014). Also, by assuming a uniform flow and Uz ¼ 0, Equation (1) can be simplified to:

Ux
@C
@x

¼ 1z
@2C
@z2

(2)

The above equation has been used in many studies (Krishnappan & Lau 1977; Lau & Krishnappan 1981; Demetracopoulos

1994; Ahmad 2008; Aghababaei et al. 2017; Huai et al. 2018; Zahiri & Nezaratian 2020). More investigations on the role of the
effective parameters in transverse mixing would be required due to the complexity of the transverse mixing mechanism (Agha-
babaei et al. 2017). Thus, predicting the transverse mixing coefficient (TMC) for known flow conditions in a stream for

accounting the pollutant concentration at any location downstream of the injection site is genuinely essential (Azamathulla &
Ahmad 2012). Generally, there are three approaches for predicting the TMC in streammixing. Empirical methods have developed
equations using the hydraulic and geometric dataset of rivers and experimental studies in order to establish a relationship for 1z
and theoretical methods have used the concept of shear flow to derive the dispersion coefficient (Baek & Seo 2013). Moreover,
many researchers have recently used powerful predictive tools to find solutions for complex engineering problems. The signifi-
cance of dispersion coefficients in water quality modeling and the complexity of the pollutant emission and mixing process
have considerably increased the importance of using these tools (Zahiri & Nezaratian 2020). Soft computing techniques such

as fuzzy-neural inference system-based principal component analysis (ANFIS-based PCA), particle swarm optimization method
(PSO), artificial neural network (ANN), genetic expression programming (GEP), differential evolution (DE), decision tree
(M5), support vector machine (SVM), and fuzzy-neural inference system (ANFIS) have been widely used to estimate longitudinal

dispersion coefficient in streams by Parsaei et al. (2018), Alizadeh et al. (2017), Antonopoulos et al. (2015), Sattar & Gharabaghi
(2015), Li et al. (2013), Etemad-Shahidi & Taghipour (2012), Azamathulla & Wu (2011) and Riahi-Madvar et al. (2009).
Azamathulla & Ghani (2011), Azamathulla & Ahmad (2012), Aghababaei et al. (2017), and Zahiri & Nezaratian (2020), tried
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to predict the TMC accurately by using decision tree (M5), multivariate adaptive regression splines (MARS), particle swarm optim-

ization method (PSO), multiple linear regression (MLR), genetic algorithm (GA), genetic programming for symbolic regression
(GPSR), and GEP. Soft computing techniques used by the above-mentioned researchers have less statistical errors and higher
accuracy than empirical methods in TMC prediction (Zahiri & Nezaratian 2020). According to previous studies, there is a

strong relationship between the TMC and channel parameters such as channel width, flow depth, shear velocity, friction
factor, curvature and sinuosity (Fischer 1967; Beltaos 1979; Lau & Krishnappan 1981; Stefanovic & Stefan 2001; Boxall &
Guymer 2003). Table 1 shows some of the most well-known equations proposed for calculating the TMC.

Each of these mentioned algorithms has its strengths and weaknesses that may not be able to predict complex phenomena such

as TMC accurately. Selecting several meta-heuristic algorithms correctly and using them simultaneously will increase accuracy and
decrease errors in target values’ estimation. Selecting an algorithm as the main algorithm along with an auxiliary algorithm that can
improve the weaknesses of the main algorithm will lead to developing a hybrid algorithm with higher performance. In previous

investigations, several hybrid algorithms were used to estimate some of the complex phenomena and, consequently, the ability
of these algorithms was proven completely (Pourbasheer et al. 2009; Wang et al. 2013; Li & Kong 2014; Zhou et al. 2016). In
this study, two common algorithms were used to develop a hybrid algorithm: support vector machine (SVM) as the main algorithm

and genetic algorithm (GA) as the auxiliary algorithm. Connecting GA to SVM allows us to estimate optimal values of SVM’s adjus-
table parameters in the shortest time and increase predicting accuracy. The purpose of this study is developing an SVM-GA
algorithm by using 232 published datasets and making a comparison of its performance with previous models. In addition, sensi-

tivity analysis has been performed on the developed model to determine the effect of input parameters in the TMC modeling.

2. MATERIALS AND METHODS

2.1. Data

In the present study, 232 data points (see Supplementary material) were collected from the technical literature (Yotsukura et al.
1970; Holley & Abraham 1973; Krishnappan & Lau 1977; Beltaos 1979; Rutherford 1994; Jeon et al. 2007; Baek & Seo 2008;
Table 1 | Some of the empirical and data-driven models for estimation of TMC

Reference Formula

Fischer & Park (1967) 1z ¼ 0:23HU�

Yotsukura et al. (1970) 1z ¼ 0:7HU�
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þ Û
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Zahiri & Nezaratian (2020) (M5 method) 1z ¼ 0:133
W
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� �0:153 U
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� ��0:114
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1z is the TMC (m2/s), H is the flow depth (m), U� is a bed shear velocity (m/s), W is a channel width (m), Sn is sinuosity coefficient and Fr is a Froude number.
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Lee & Seo 2013). It must be added that 183 and 49 dataset have been collected from straight and meandering streams, respect-

ively. In addition, the dataset contains geometrical and hydraulic characteristics, including channel width, channel depth,
average velocity, shear velocity, Froude number, sinuosity, and TMC. Sinuosity was used to demonstrate horizontal irregulari-
ties in meandering streams (Aghababaei et al. 2017). Table 2 illustrates a statistical analysis of all variables.

Table 2 implies that the studied cases varied from narrow rivers (W=H, 10) to very wide rivers (W=H. 100). U=U�, which
is known as friction term and represents the hydrodynamic and roughness of the canal bed (Seo & Cheong 1998), varied from
0.026 to 28.571. This range of variations indicates the usage of a wide range of streams with various geometrical and hydraulic
features in this study, the results of which can be related to many streams with different characteristics. The dataset was ran-

domly divided into two sets, training (75% of the data) and testing (25% of the data). Although many unknown parameters
may affect the TMC, according to previous studies, the key parameters affecting the mixing process during steady flow in natu-
ral streams can be stated as follows:

1z ¼ f1(U, U�, W , H, r, m, Sf , Sn, g) (3)

where r is the fluid density; m is fluid viscosity; Sf and Sn are bed shape factor and sinuosity, respectively; and g is gravity.
Fischer et al. (1979) and Jeon et al. (2007) expressed the relation below in terms of dimensionless parameters by using
Buckingham Pi theorem:

1z
HU�

¼ f2
U
U�

,
W
H

,
Uffiffiffiffiffiffiffi
gH

p , r
HU
m

, Sf , Sn

 !
(4)

where U=U� is the friction term; W=H is the channel width to flow depth ratio; U=
ffiffiffiffiffiffiffi
gH

p
is Froude number; and rHU=m is

Reynolds number. Bed shape factor, Sf , and sinuosity, Sn, indicate vertical and transverse irregularities in natural streams,
respectively (Etemad-Shahidi & Taghipour 2012). By developing secondary currents and shear flow, transverse and vertical

irregularities affect the mixing processes in streams (Seo & Cheong 1998). Generally, the flow in natural streams is usually
fully turbulent, so Reynolds number could be eliminated from Equation (4) as a first approximation (Seo & Cheong 1998;
Kashefipour & Falconer 2002). Bed shape factor Sf could also be eliminated from this equation as Froude number (Fr)
and dimensionless roughness factor U=U� can reflect the other effects of bed material roughness and bed slope (Sattar &
Gharabaghi 2015). Finally, the best dimensionless form of 1z based on previous findings such as those of Yotsukura &
Sayre (1976), Deng et al. (2001), Jeon et al. (2007), Azamathulla & Ahmad (2012), Aghababaei et al. (2017), and Zahiri &
Nezaratian (2020) can be written as follows:

1z
HU�

¼ f
U
U�

,
W
H

, Fr, Sn

� �
(5)

where
1z

HU�
represents the dimensionless parameter of 1z and it will be used as the target parameter in this research. The

correlations between all input and output parameters are displayed in Figure 2.

Based on Figure 2, there is no considerable correlation between the input variables, thus the problems that could arise in
analysis from exaggerating the strength of the relations between variables, would be eliminated (Sattar & Gharabaghi 2015).
Table 2 | Descriptive statistics for the TMC database

Parameter W H U U* W/H U/U* Fr Sn ε z/HU* ε z

Min 0.200 0.013 0.040 0.005 1.670 2.051 0.018 1.000 0.054 0.000034

Max 320.000 5.250 1.750 0.163 287.500 28.571 0.971 3.330 2.400 0.215

Avg 15.950 0.304 0.308 0.026 26.710 12.976 0.285 1.108 0.238 0.007

SD 51.237 0.709 0.271 0.023 34.995 5.447 0.181 0.371 0.249 0.025

Skewness 4.246 4.506 2.947 2.379 3.797 0.196 0.866 4.974 4.510 5.246
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Figure 2 | Correlations between all input and output parameters.
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It should be noted that the average of each parameter
U
U�

,
W
H

, Fr, Sn,
1z

HU�

� �
in training and testing subsets is equal to

(13.36, 25.63, 0.29, 1.12, 0.25) and (11.91, 30.18, 0.27, 1.06, 0.20), respectively.

2.2. Support vector machine (SVM)

Vapnik (1995) proposed a nonlinear regression predicting method called support vector machine (SVM) which was usable to

solve pattern recognition, highly nonlinear classification and regression problems. Maximizing the accuracy of prediction or
minimizing the difference between the outputs and targets was the purpose of developing the SVM (Parsaie & Haghiabi
2017a, 2017b; Parsaie et al. 2019). For this purpose, the input parameters are mapped into a high-dimensional linear feature
space by a nonlinear transformation to construct the optimal decision function. The dot product operation in the higher

dimensional feature space is replaced by the kernel function in the original space, and by the finite sample training, the
global optimal solution is obtained (Zhou et al. 2016). In the current study, SVM is used for predicting the TMC as the
main algorithm, which is briefly described below.

If data [(x1, y1), (x2, y2), . . . , (xi, yi), . . . , (xn, yn)] is assumed as training set, where xi is the input vector, x [ Rn, yi is
the output, y [ R and n is the number of data pairs, the regression function of SVM which is called SVR will be formulated as
follows:

y ¼ f(x) ¼ vT � ;(x)þ b (6)

where vT represents the transposed form of v vector; b is a bias; and v can be obtained through some restricted rules. This
function can describe the observed output y with an error tolerance 1. ;(x) would be considered as a nonlinear transfer func-

tion mapping the input vectors into a high-dimensional feature space which, theoretically, even a simple linear regression will
be able to overcome the complexity of nonlinear regression of the input space (He et al. 2014). The tolerated errors within the
extent of the 1-tube, as well as the penalized losses when data concern the outside of the tube, are defined by Vapnik’s

1-insensitive loss function as:

l1(yi) ¼
0

jyi � [vT � ;(xi)þ b]j � 1,

�
forjyi � [vT � ;(xi)þ b]j , 1

forjyi � [vT � ;(xi)þ b]j � 1

(7)

After that, the SVM problem can be formulated as the optimization problem as below:

Minimize(v,b,j,j�) R :
1
2
vT � vþ C

Xn
i¼1

(ji þ j�i )

 !
(8)

Subject to
yi � vT � ;(xi)� bi � 1þ ji
vT � ;(xi)þ bi � yi � 1þ j�i

ji, j
�
i � 0

8<
:

9=
; i ¼ 1, 2, . . . , n (9)
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where the constant C is called a penalty factor and C . 0 shows the penalty degree of the sample with error exceeding 1

(Liu & Jiao 2011). Here, the value of C is set to 1 which shows the complexity of the model is as important as the empirical
error. Also, ji and j�i are introduced as slack variables that specify the upper and lower errors of training subject to the error
tolerance 1. These variables express the distance difference between actual values and the corresponding boundary values

of 1-tube. Figure 3 depicts the mentioned situation graphically. SVM reduces under-fitting and over-fitting problems by

minimizing
1
2
vT � v and C

Pn
i¼1 (ji þ j�i )

� 	
which are called the regularization and training error terms, respectively.

Thus, the dual Lagrangian form will be yielded as follows by considering Lagrangian multipliers and Karush–Kuhn–Tucher
condition in Equation (9):

Maximize L(ai, a�
i ):
Xn
i¼1

yi(ai � a�
i )� 1

Xn
i¼1

(ai þ a�
i )�

1
2

Xn
i¼1

Xn
j¼1

(ai � a�
i )(aj � a�

j )K(xi, xj) (10)

Subject to
Pn
i¼1

(ai � a�
i ) ¼ 0

0 � ai, a�
i � C

8<
: (11)

where ai and a�
i are Lagrangian multipliers that satisfy equalities; ai � a�

i ¼ 0, and also, L(ai, a�
i ) represents the Lagrange

function. The Lagrange multiplier terms (ai � a�
i ) related to the data accumulating the inside of the 1-insensitive tube will

be considered to be zero. The final regression function is calculated only by using the datasets with non-zero coefficients

(ai � a�
i ) which are known as the support vectors. There are two groups of support vectors: margin support vectors and

error support vectors (Noori et al. 2011). In the first group, the support vectors have absolute values of the weights
jai � a�

i j less than C and in the second group, equal to C. In other words, the support vectors, which are located outside

and on the margin of the insensitive tube, are called the error support vectors and the margin support vectors, respectively
(Figure 3). For changing the dimensionality of the input space to perform the regression or classification task with more con-
fidence, kernel functions are used (Azamathulla & Wu 2011). These functions yield the inner products in the feature space

;(xi) and ;(xj). A kernel function plays the most significant role to simplify the learning process by changing the represen-
tation of the data in the feature space. Thus, although the data may be non-separable in the original input space, an
appropriate choice of a kernel function allows the data to be highly separable in the feature space (Patil et al. 2012). If
there is no prior knowledge about data features, radial basis function (RBF) will be recommended as one of the most popular

kernel functions which is being used in different scientific fields (Roushangar & Koosheh 2015). For this reason, in this study,
Figure 3 | Nonlinear SVM with Vapnik’s e-insensitive loss function.
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RBF was used as the kernel function of the SVM model for the TMC prediction.

K(xi, xj) ¼ exp �gkxi � xjk2



) (12)

where K(xi, xj) ¼ ;(xi) � ;(xj) is a kernel function and g is the parameter of the RBF kernel function.

2.3. Genetic algorithm (GA)

According to the mechanisms of genetics and Darwin’s natural selection principles, John Holland in 1975, proposed a heur-
istic search method and called it the genetic algorithm (GA). This method was named after biological processes of

inheritance, mutation, natural selection, and the genetic crossover that happens when parents mate to produce offspring
(Goldberg 1989). Technically, there are four differences between the structure of GA and other traditional optimization algor-
ithms (Goldberg 1989):

• The GA typically uses a coding of the decision variable set instead of decision variable itself.

• The GA searches from a population of decision variable sets instead of a single decision variable set.

• The GA uses the objective function itself instead of the derivative information.

• The GA algorithm uses probabilistic instead of deterministic, search rules.

In the last decade, GA has successfully been used to solve some problems such as fitting nonlinear regression to data, opti-
mizing simulation models, solving systems of nonlinear equations, and machine learning (Deb 1998). Generally, a GA has
five major components to solve a particular problem that are briefly described below:

1 At the first, n chromosomes generate a population randomly that are known as candidate solutions to the problem.
2 A special fitness function evaluates the fitness of each chromosome. In the present study, efficiency coefficient (EC) was

used as the fitness function and it can be written as:

EC ¼ 1�

PN
i¼1

(di � yi)
2

PN
i¼1

(di � �d)
2

(13)

where N represents the total number of a testing data and yi is the predicted value. di is the observed value and �d is the
mean of the observed values.

3 The following steps will be repeated until n offsprings have been created:

(a) Selection: This operator selects the best chromosomes in pairs from the population to play the role of parents and
reproduce two offspring. The more appropriate chromosomes have more chances to be selected.
(b)

Table

Popula

Numb

Elitism

Crosso

Mutati

Crosso

Mutati

://iwa.silve
Crossover: This operator randomly chooses a locus between a couple of chromosomes to form two offspring.

Mutation: This operator creates new chromosomes by flipping some of the bits in the chromosomes randomly.
(c)
4 Replace the current population with the new population.
5 If the stopping condition is satisfied, the best solution is returned in the current population, otherwise step 2 should be

performed again.

The applied GA method settings in the present study are shown in Table 3.
3 | Genetic algorithm settings

tion size 250

er of generations 10

12

ver probability 0.8

on probability 0.1

ver function Scatter

on function Gaussian
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2.4. Genetic algorithm-based support vector machine

In this study, at first, the training data (input and target parameters) are presented to the GA-SVM algorithm. Then, GA ran-
domly generates an initial population of unknown SVM’s parameters (C, 1, and g) to determine their optimal values to

approach the best prediction with the lowest error and the highest accuracy. The fitness function examines the performance
of each model. The secondary population of SVM’s parameters is created by using the operators of GA (mutation, crossover,
and selection) to obtain the optimal values of parameters and then these parameters are introduced to the SVM algorithm,
again. This cycle is continued until the value of the fitness function is near or equal to the stopping conditions of the algor-

ithm. Therefore, model outputs are expected to be closer to the target values at each cycle. In the GA-SVM algorithm, both
algorithms operate separately but help each other in order to simplify the problem. In other words, first, SVM starts modeling
by using the random parameters generated by GA, and GA continues the procedure of modeling until the optimal values of

SVM’s parameters are obtained. In this method, the GA algorithm tries to estimate the optimal combination of three par-
ameters (C, 1, and g) in each cycle. C is known as a regularization parameter that must control the trade-off between
maximizing the margin and minimizing the training error. Low C values will place insufficient stress on fitting the training

data and high values of C make the algorithm over-fit the training data (Noori et al. 2011). Nevertheless, according to
Wang et al. (2003), it can be concluded that the prediction error is rarely influenced by C. g denotes the optimal width of
the kernel function, while RBF with large g allows the support vector to have a strong impact over a larger area. The type
of noise present in data determines the optimal value for 1, which is usually unknown. There is a practical consideration

of the number of resulting support vectors, even if enough knowledge of the noise is available for selecting an optimal
value for 1 (Liu et al. 2006). In the GA-SVM hybrid algorithm, GA automatically starts finding the mentioned parameters
of SVM and provides the optimal values, while determining the optimal values of parameters in the SVM algorithm was

done by trial-and-error process. The cross-validation, which is an improved version of the grid search method, described
by Hsu et al. (2010), was used to find these three parameters. In ν-fold cross-validation, after the training set was divided
into ν subsets of equal size, one subset is tested sequentially by applying the classifier trained on the remaining ν� 1

subset. Therefore, each instance of the whole training set is estimated once so the cross-validation accuracy is the percentage
of correctly classified data. The general flowchart of GA-SVM is illustrated in Figure 4.
Figure 4 | General flowchart of GA-SVM algorithm.
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In the present study, SVM and GA-SVM were applied by using RBF kernel function and input variables. Table 2 shows that

all parameters used in this study have a right-skewed distribution. On the other hand, according to Figure 5, there is an abun-
dance of outliers in the target and input parameters except Fr and U=U�. Those observations which are uncommon and do not
conform to the pattern of the majority of the data are called outliers (Rousseeuw & Van Zomeren 1990). The existence of

outliers can cause increased error rates and reduce the accuracy of prediction. It can also lead to considerable distortions
of statistic estimates when using either parametric or nonparametric tests (Zimmerman 1994, 1995, 1998). One of the sim-
plest methods to tackle this problem is logarithmic transformations of parameters individually or collectively (Hubert &
Van der Veeken 2008). Therefore, to reduce the negative effects of skewness and outliers on modeling, the whole dataset

had been transformed into logarithmic scale and then the logarithmic parameters were used for modeling.

2.5. Model evaluation

In this study, both SVM and GA-SVM were used to estimate the TMC. The performances of these two models are assessed by
evaluating the scatter plots between the observed and predicted results. In addition, the discrepancy ratio (DR), the root mean

square error (RMSE), the mean of the absolute error (ME) and the accuracy were used as statistical parameters to evaluate the
Figure 5 | Boxplots of all parameters with outliers (*).
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performance of SVM, GA-SVM, and empirical models. Statistical indexes that were used in this study are expressed as:

DR ¼ log
1zc
1zm

� �
(14)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

(DRi)
2

vuut (15)

MAE ¼ 1
N

XN
i¼1

jDRij (16)

where 1zc and 1zm are predicted and observed TMCs, respectively, and N is the total number of data points. If DR is equal to

zero, there will be an exact match between the observed and predicted values. An overestimation (DR . 0) or underestima-
tion (DR , 0) otherwise occurs. Previous researchers reported the percentage of DR values between �0.3 and 0.3 as an
accuracy index (Seo & Cheong 1998; Kashefipour & Falconer 2002). In this research, in order to better evaluate the

models’ performance and accuracy, percentages of DR values between �0.15 and 0.15 were used as an accuracy index
(Figure 6). As well, DR,�0.15 and DR. 0.15 have been considered as underestimation and overestimation beyond the pre-
cision range, respectively. A comparison of DR frequency could be used to determine the symmetry and skewness of TMC

estimation by different models.
3. RESULTS AND DISCUSSION

For estimating TMC by using SVM, as was mentioned before, we first need to find the optimal values of three adjustable par-

ameters of SVM (C, 1, and g). During the grid search, all combinations of C, 1, and g were tested for each cross-validation
routine, where these parameters all ranged from 0 to 120. Finally, the optimum values of these three parameters were deter-
mined by using both GA and grid search algorithms. These values are presented in Table 4. According to Table 4, although
both GA and grid search algorithms estimate parameter C to be approximately the same, their estimations were different for

the other two parameters. It should be noted that GA does not estimate the optimal value of each parameter separately. This
algorithm estimates only the optimal combination of the three parameters.

The performances of SVM, GA-SVM, and the previous methods in TMC estimation by using the mentioned statistical

indexes are presented in Table 5.
Figure 6 | Comparison of accuracy index between previous studies and the current study.

Table 4 | Optimal parameters of GA-SVM and SVM models

Models Method C 1 g

GA-SVM GA 3.01 0.15 0.47

SVM Grid Search 3.00 0.01 1.00
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Table 5 | Performances of various methods on TMC estimation

Models (DR,�0.15) (�0.15,DR, 0) (0,DR, 0.15) (0.15,DR) Accuracy% MAE RMSE

Fischer & Park (1967) 15.086 9.052 19.397 56.466 28.448 0.228 0.270

Yotsukura et al. (1970) 2.155 1.724 6.466 89.655 8.190 0.588 0.626

Chau (2000) 19.397 12.931 52.586 15.086 65.517 0.180 0.255

Ahmad (2007) 25.431 28.017 41.810 4.741 69.828 0.169 0.273

Jeon et al. (2007) 12.931 13.362 31.034 42.672 44.397 0.188 0.233

Azamathulla & Ahmad (2012) 31.034 31.466 35.345 2.155 66.810 0.180 0.287

Aghababaei et al. (2017) 12.069 37.931 42.672 7.328 80.603 0.096 0.148

Zahiri & Nezaratian (2020) 11.638 31.466 44.397 12.500 75.862 0.113 0.149

GA-SVM (Train) 5.747 42.529 50.000 1.724 92.529 0.066 0.107

GA-SVM (Test) 10.345 32.759 50.000 6.897 82.759 0.097 0.139

SVM (Train) 5.747 42.529 48.851 2.874 91.379 0.044 0.096

SVM (Test) 12.069 32.759 48.276 6.897 81.034 0.097 0.152
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Along with MAE, RMSE, and accuracy indexes, the balance between overestimation and underestimation values is also

another important point in analyzing the models’ performances. According to Table 5, among the previous regression
models, the two models of Yotsukura et al. (1970) and Fischer & Park (1967), had the lowest performances in estimating
the TMC with the accuracy of 8% and 28.5%, respectively. The two models of Aghababaei et al. (2017) and Zahiri & Nezara-

tian (2020) were able to have accurate performances in estimating TMC. The model of Aghababaei et al. (2017), based on
GPSR method, with an accuracy of 80% and RMSE and MAE values of 0.148 and 0.096, respectively, and the simple
data-driven-based model proposed by Zahiri & Nezaratian (2020) with a relatively good accuracy (75.8%) and the balance
between overestimation and underestimation values were the most accurate regression-based models available to estimate

this coefficient. Both GA-SVM and SVM algorithms had genuinely accurate and relatively similar performances. In the test-
ing stage, both of them had the least error rates and the highest accuracy compared to the previous regression-based models. It
should also be noted that although both models were based on the SVM algorithm, GA-SVM compared to SVM was able to

improve the accuracy of the TMC estimation gently, in both training and testing stages by 1.15% and 1.7%, respectively. On
the other hand, the grid search method is more time-consuming than GA, which make the GA-SVM model chosen for esti-
mating TMC in this study. A comparison of the DR values of all expressions along with developed SVM and GA-SVMmodels

is demonstrated in Figure 7. In addition, Figure 8 shows the performances of the developed SVM and GA-SVM in estimating
the TMC for the two training and testing stages.

Based on Figure 7, the superiority of GA-SVM and SVM performance is obvious and both models have lower overestima-

tion and underestimation values than the models of Aghababaei et al. (2017) and Zahiri & Nezaratian (2020). In addition, in
Figure 8, the estimating accuracy by SVM and GA-SVM models are shown in training and testing stages, separately. The data-
set used in this study included characteristics of straight and meandering streams. According to Table 6, the performance of
both SVM and GA-SVM models in both straight and meandering streams was more accurate than the regression-based

models. All models performed better in estimating the TMC in straight streams than meandering ones.

3.1. Sensitivity analysis

Sensitivity analysis helps researchers to determine which parameter has the most effect on reducing output uncertainty, and/
or which parameters are negligible and can be eliminated from the final model (Nezaratian et al. 2018). In this study, a sen-

sitivity analysis method was applied to determine the effect of each parameter on the performance of GA-SVM as the most
accurate model in the TMC estimation. Five scenarios of the input parameter combinations were introduced to the GA-SVM
algorithm for the TMC estimation. Table 7 presents the combination of inputs, absent parameters, SVM parameters, and the

performance of each scenario in the testing stage, respectively.
As presented in Table 7, the effect of eliminating each input parameter on accuracy of final GA-SVM model was deter-

mined. In the table above, ΔAccuracy% expresses the difference between the final accuracy of each scenario and the overall
://iwa.silverchair.com/wqrj/article-pdf/56/3/127/922167/wqrjc0560127.pdf



Figure 7 | Comparison of the DR values of different methods.
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accuracy in the testing stage. It should be noticed that the above method significantly depends on the mathematical and theor-
etical structure of GA-SVM and may not be able to introduce the most effective parameter on TMC. However, analyzing
Table 7 could help us, to some extent, on the effect of each input parameter on TMC estimation. The logic of input combi-

nation in scenario 5 was based on Figure 2. According to this figure, W=H and Sn have the highest correlation with the
dimensionless parameter of the TMC while the lowest correlation belongs to U=U� and Fr, respectively. Therefore, scenario
5 was used to measure the impact of removing the least correlated parameters on modeling TMC by GA-SVM. According to

Table 7, in scenario 1, by eliminating W=H from the input parameters, the accuracy increases by 1.725%. However, in scen-
ario 2, when W=H was replaced with U=U� in the input variables, the accuracy was improved by 3.488%. In addition, using
the same analysis and considering scenario 3, it can be deduced that Fr is the least effective parameter on TMC estimation by
using the GA-SVM algorithm. According to scenario 4, it can also be concluded that Sn is a most efficient parameter in the

process of modeling TMC. In scenario 5, only inputs which had a correlation coefficient above 0 were used, so U=U� and Fr
were eliminated from the process. The result showed that there was a significant improvement in the accuracy of the final
model, which increase the modeling accuracy by 8.26%. Table 7 demonstrated that reducing the number of input variables

with low correlation with the target improved the performance of the final GA-SVM model. Eliminating the low correlated
input variables could decrease the complexity of the modeling process and increase the accuracy. This finding agreed with the
results of Zahiri & Nezaratian (2020) and Jeon et al. (2007), which showed that Sn and W=H are the most influential par-

ameters in estimating the TMC, respectively.

4. CONCLUSION

In this study, SVM and GA-SVM algorithms were developed to estimate the transverse mixing coefficient that plays an impor-
tant role in modeling the pollutant release into streams. For this purpose, three statistical indexes (accuracy, RMSE, and

MAE) were used to determine the performance of different models. The results showed the superiority of the proposed
model compared to well-known regression-based models. The results also showed that the two models proposed by Aghaba-
baei et al. (2017) and Zahiri & Nezaratian (2020) had the highest accuracy in estimating the TMC, respectively. Dividing the

dataset into two groups (straight and meandering streams) showed that SVM and GA-SVM are still more reliable than the
previous models. In this study, the grid search method was used to develop the SVM algorithm and was much more time-
consuming than the GA algorithm. Therefore, the GA-SVM model was chosen as the best model to estimate the TMC in
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Table 6 | Performances of various models using data of straight and meandering streams

Models

Straight Meandering

Accuracy% MAE RMSE Accuracy% MAE RMSE

Aghababaei et al. (2017) 85.246 0.082 0.124 63.265 0.150 0.216

Zahiri & Nezaratian (2020) 86.339 0.089 0.115 36.735 0.200 0.235

GA-SVM 93.443 0.063 0.099 77.551 0.113 0.164

SVM 91.803 0.049 0.098 77.551 0.083 0.155

Figure 8 | The observed and predicted TMC (m2/s) values by: (a) SVM in the training stage, (b) SVM in the testing stage, (c) GA-SVM in the
training stage, and (d) GA-SVM in the testing stage.
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Table 7 | Sensitivity analysis of GA-SVM scenarios

Scenario Inputs Absent Parameters (C, 1, g) Accuracy% MAE RMSE Δ; Accuracy%

1 U/U*, Fr, Sn W/H 7.75, 0.11, 0.30 84.483 0.064 0.110 1.725

2 W/H, Fr, Sn U/U* 5.47, 0.27, 0.20 86.207 0.074 0.131 3.448

3 W/H, U/U*, Sn Fr 4.38, 0.19, 0.25 89.655 0.062 0.117 6.896

4 W/H, U/U*, Fr Sn 2.33, 0.33, 1.59 81.034 0.087 0.124 �1.725

5 W/H, Sn U/U*, Fr 3.50, 0.47, 0.67 91.379 0.071 0.137 8.620
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streams. Then, a sensitivity analysis was performed to determine the most effective input parameters in estimating the TMC by
GA-SVM. Based on the sensitivity analysis, U=U� and Fr had the least impact on GA-SVM performance in estimating TMC,
and eliminating these two parameters improved the accuracy of the TMC estimation.
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