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The effects of the spatial distribution of bottom

topography and bottom drag on seiche-induced wave

train formation

Anton Baglaenko, Marek Stastna, Derek T. Steinmoeller and

Francis J. Poulin
ABSTRACT
We consider the nonlinear, non-hydrostatic dynamics of seiches in small to medium-sized lakes.

Using numerical simulations of shallow water equations modified to include weakly non-hydrostatic

effects, we illustrate how spatially varying bottom drag and finite amplitude topography lead to the

bending of wave trains that develop from the initial standing wave. For the case of variable

topography, we discuss how the seiche and the wave trains that develop can resuspend material

(e.g. nutrients) from the bottom of the lake and redistribute it in space. The numerical methods

employed are spectrally accurate in space and second-order in time, yielding excellent accuracy and

little numerical dissipation. We find that while the resuspension itself is largely due to the long

standing waves at early times, the redistribution of nutrient distribution that is seen at later times is

profoundly influenced by the development of the wave trains; a fundamentally non-hydrostatic effect.
doi: 10.2166/wqrjc.2012.005

om http://iwa.silverchair.com/wqrj/article-pdf/47/3-4/300/163537/300.pdf

4

Anton Baglaenko (corresponding author)
Marek Stastna
Derek T. Steinmoeller
Francis J. Poulin
Department of Applied Mathematics,
University of Waterloo,
200 University Ave,
Waterloo,
Ontario,
Canada N2 L 3G1
E-mail: abaglaen@uwaterloo.ca
Key words | bathymetry, bottom drag, fluid dynamics, numerical simulations, nutrient redistribution
INTRODUCTION
Lakes, through their part in the hydrological cycle, their

modification of local climate and weather, and the habitat

they provide for life forms ranging over invertebrates, fish,

birds and mammals, are essential to a functioning bio-

sphere. Lakes provide humanity with a source of

freshwater, food and a focus for agricultural activities in

their surroundings. Studying the physical behaviour of

lakes and the various biogeochemical cycles contained

within is important for both theoretical and observational

science. The purpose of this article is to consider a funda-

mental, nonlinear process that is typically induced by

sustained winds over the lake: the breakdown of a seiche

(or standing wave) into a nonlinear and non-hydrostatic

wave train. While this process is well known to occur in

the field (Hodges et al. ; Boegman et al. ), we

aim to explore how the process is modified by the presence

of localized regions of high bottom drag and topography

using numerical simulations.
Our long-term goal is to understand the entire range of

motions from lake-scale to small-scale turbulent flows,

herein we focus on motions that are predominantly horizon-

tal. The effects of bottom boundary layer turbulence are thus

parameterized in the commonly used quadratic bottom drag

law. Similarly, the effects of finite amplitude topography are

included, but wave breaking and the resulting turbulence

are not. The model employed is simpler than lake-scale

models such as the Estuary, Lake and Coastal Ocean

Model (ELCOM) (Hodges et al. ) and the MIT General

Circulation Model (MIT GCM) (Marshall et al. ), but

has the advantage of representing nonlinear, non-hydrostatic

processes in a compact, numerically tractable manner that is

suitable for exploring theoretical questions. Moreover, simple

models like the one we use do not require strong horizontal

eddy viscosity and diffusivity to maintain stability, and thus

allow for the construction of numerical schemes that have

a minimal amount of numerical dissipation.

mailto:abaglaen@uwaterloo.ca
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This approach is somewhat different from past

literature. As an example, Hodges et al. () compare

ELCOM results to thermistor chain measurements for

Lake Kinneret, Israel. These simulations have a great deal

of practical significance since Kinneret is an important

source of freshwater. Moreover, this lake has a very simple

geometry. This implies that measurements of basin-scale

internal waves are possible to carry out with a reasonable

number of measuring stations. A second Lake Kinneret

study by Boegman et al. () discusses field measurements

demonstrating that internal waves degenerate from basin-

scale into high-frequency waves. Both of these papers use

between six and 10 measurement sites to extrapolate to

basin-scale features. While the results of Hodges et al.

() are important, the numerical model they use is

hydrostatic, making the simulation of high-frequency, non-

hydrostatic waves impossible.

While lake and ocean models come in a range of com-

plexity and a variety of numerical methodologies, no

present model can resolve motions from the lake scale

down to boundary layer processes. The issue of expressing

friction and drag, specifically when dealing with bottom

boundary layer effects is thus a critical one. We have

chosen to employ a long-accepted model for the study of

stratified lake motion (Fischer et al. ). The idea is to sep-

arate the lake into vertical layers, which provides a

reasonable approximation of basin-scale internal wave

effects. The classical way to drive such a model is to allow

for wind to impart energy to the system through the top

layer and to allow this motion to drive flow (via pressure

and possibly shear stress) in the lower layers (see Imberger

() and Wuest & Lorke () for a discussion of

energy propagation and de la Fuente et al. () for a simi-

larly layered numerical model). In order to study the effects

of bottom drag and nonlinear friction, we follow a similar

theoretical framework, focusing on the effect of bottom

drag in a single layer system. The results would naturally

extend to a multi-layer model with the drag in the bottom

layer.

Damping

The bottom drag we have chosen to study takes the form

CD|u|uh, where u denotes the velocity, and h the layer
://iwa.silverchair.com/wqrj/article-pdf/47/3-4/300/163537/300.pdf
depth. The dimensions of CD are m�1 and the corresponding

dimensionless coefficient is written as cD. CD is nondimen-

sionalized by the turbulent boundary layer depth, Hb

(Arbic & Scott ), a parameter that has no single univer-

sal value and may vary in space. Nevertheless, the quadratic

law is a common way of expressing drag in many forms,

from the classical problem of a vertically thrown ball in a

fluid (Timmerman & van der Weele ), to various

expressions of bottom roughness with a varying drag par-

ameter (e.g. Ullman & Wilson (), who relate cD
experimentally to the root mean square bottom roughness).

Most lake models use a constant value of cD or vary it

as a model parameter (Longuet-Higgins () and Ozkan-

Haller & Kirby () use values of cD to fit model predic-

tions to observed lake behaviour). More complete literature

surveys can be found in Fredsoe & Deigaard () and

Van Rijn (). The results of Arbic & Scott () for geos-

trophic turbulence suggest that fairly substantial variations of

cD yield similar behaviour. For our own investigations, we

will use an accepted value of cD¼ 0.0025, and vary the

value in certain numerical experiments in order to demon-

strate the system’s sensitivity to this parameter.

Quadratic drag is commonly used when attempting to

describe flow in comparatively shallow, rough regions

such as the continental shelf: Koblinsky () examines

quadratic drag in the West Florida shelf with a value of

cD¼ 0.002; Bowers et al. () examine the effect of drag

on incoming M2 and S2 tidal waves and argue for situation-

ally increased values of cD based on bottom roughness and

topography, but find values generally very close to the

accepted value to be sufficient; Feddersen et al. () con-

sider variations of the drag coefficient in the nearshore

based on bottom roughness and topography. Over coral

reefs (Kunkel et al. ; Fernando et al. ) extremely

high values of cD¼ 0.05 have been employed.

It is important to remember that although commonly

used, quadratic drag is an ad hoc parameterization of

drag and friction. Hasselmann et al. (), in a large

experimental survey of tides in the North Sea, found

that the quadratic bottom drag law is not a good approxi-

mation of the dynamics of shallow water coastal regions.

Similarly, Pingree (), analysing quadratic friction and

tides, numerically argues that the quadratic drag law is

not a valid approximation of the energy drain in the
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system. Alternatively, Godin & Martnez () examine

the effects of quadratic drag with the accepted coefficient

in tidal channels and determine that this drag parameter-

ization yields qualitatively correct behaviour. From these

discussions it is clear that quadratic damping has com-

ponents which are qualitatively correct (as its use has

been empirically verified) but requires further research

in order to fully understand the regimes in which it is

appropriate.

Topography

Secondly, we present an investigation of how bottom topo-

graphy alters the seiche breakdown process, and in turn

affects the resuspension of sediment (and hence nutrients)

into the main water column in analogy with work by

Hearn et al. () on nutrient uptake from coral reefs. In

many boreal lakes, the majority of the lake is nutrient

poor (i.e. the lake is oligotrophic). Thus, in oligotrophic

lakes, nutrient distribution is by far the limiting factor on

plankton and algae growth, and sediment resuspension

has the potential to enrich the main water column with pro-

found influence on the lake ecosystem.

The effects of bottom topography are investigated

through numerical simulations using the same weakly

non-hydrostatic shallow water model used for bottom

damping experiment simulations. The numerical exper-

iments are performed for several configurations of bottom

topography in order to further our understanding of the

effects of specific orientation of the bottom topography

on pick up and redistribution. The pick up scheme used

is an ad hoc parameterization which is motivated by

empirical observations, but is kept as simple as possible.

The numerical method used throughout is based on a

Fourier pseudospectral method with leapfrog time-stepping.

In the so-called pseudospectral method, derivatives are com-

puted in spectral space, i.e. the space of the Fourier

expansion coefficients (obtained with FFT), and products

are performed in physical space (see Boyd ()). An expo-

nential wave number cut-off filter is employed in spectral

space after each time-step to prevent aliasing errors and

numerical instabilities. Even and odd continuations are

employed to impose no flux boundary conditions at the

lake edge.
om http://iwa.silverchair.com/wqrj/article-pdf/47/3-4/300/163537/300.pdf
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Numerical experiments performed as part of the model

validation indicate that third order Adams-Bashforth (AB)

required a time-step roughly one-seventh of that used with

leapfrog to maintain stability (see Durran () for a com-

parison of AB and leapfrog numerical schemes). Thus

while high order time-stepping could be introduced

into the model, the small typical values of time-step ensure

that the leapfrog method employed yields highly accurate

results. The quadratic bottom drag is easy to implement as

part of the explicit step.

Aliasing due to the nonlinear terms is controlled by the

use of either spectral filtering with an exponentially decay-

ing filter ranging from one to zero over all wave numbers

larger than two-thirds of the largest resolved wave number,

or fourth order hyperviscosity (see Boyd () for a discus-

sion of the pros and cons of these alternatives). The choice

of filter was not found to influence the simulations on the

timescales shown. All simulations were confirmed to be

grid independent via grid halving and doubling sensitivity

tests, and we thus conclude that the results of the simu-

lations are robust. The pseudospectral method used here

has very little inherent numerical dissipation, and this

allows us to focus on the effects of both the quadratic

bottom drag parameterization and the topography. When

the topography is variable in space, the time-stepping is

performed using an auxiliary variable method due to

Eskilsson & Sherwin (). For the simple domains used

in the present study, the elliptic problem solved at each

time-step is easily handled using the generalized minimal

residual method (GMRES) iterative solver, and FFT, both

standard in Matlab.

Full details of the numerical solution procedure of the

model Equations (1)–(3) are presented in Steinmoeller

et al. (b), including the numerical linear algebra and

examples of analytical validation. Additionally, a grid con-

vergence study was carried out to validate the model in

the nonlinear regime using a test-case involving the emer-

gence of solitary waves by wave propagation over a ridge.

The model was also shown to be useful in a practical simu-

lation of resonant wave generation by flow over topography.

The methodology has been extended to the case of annular

domains and applied to the study of mid-sized lakes that are

strongly affected by both rotation and stratification in

Steinmoeller et al. (a) by using a Chebyshev
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pseudospectral discretization in the radial direction and a

Fourier method in the annular direction.
METHODS

We consider a weakly non-hydrostatic, weakly nonlinear

model of a single-layer lake. A variety of such models is

available in the literature, and we base our work on the

work of de la Fuente et al. (). In a one layer configur-

ation, these models are a generalization of the well-known

shallow water equations (Kundu & Cohen ). The shal-

low water equations assume that fluid motion occurs in

columns, and thus formally make the assumption that verti-

cal scales are much smaller than horizontal scales. This

leads to the neglect of vertical acceleration and a reduction

of the vertical equation of motion to the hydrostatic relation.

Thus, while these models retain the effects of nonlinearity,

the shallow water equations cannot model the dispersive

properties of waves, and hence shocks may form in a finite

time. While a great deal of mathematical literature is dedi-

cated to the study of numerical solutions of systems with

shocks (Teukolsky et al. ), in nature nonlinearity is

often balanced by dispersion, yielding wave trains and und-

ular bores, and precluding the formation of shocks in many

situations. Dispersion effects are due to departures from the

hydrostatic state, and become important when horizontal

scales are on the order of the total depth. Thus as available

computing power increases, and lake models resolve

motions on smaller and smaller scales, dispersion becomes

a vital aspect of accurate physical modelling.

A more complete lake model would consider the effects

of near-bottom turbulence and surface waves through para-

meterizations of unresolved processes (overturning, night-

time convection, flow separation over bottom bathymetry).

In the interest of simplicity, we consider only a single-layer

system here, hence modelling either barotropic motions or

internal waves in the ‘reduced gravity’ approximation

(Gill ). The results will be presented using the language

of barotropic motions with the understanding that this maps

directly onto the reduced gravity case. The governing

equations read,

ht þ∇(hu) ¼ 0 (1)
://iwa.silverchair.com/wqrj/article-pdf/47/3-4/300/163537/300.pdf
ðhuÞt þ∇ ðhuÞuð Þ ¼ �ghηx þ H2=6 ð∇ � ðhuÞtÞx þ FyD (2)

ðhvÞt þ∇ ðhvÞuð Þ ¼ �ghηy þ H2=6
� �ð∇ � ðhuÞtÞy þ FxD (3)

where h(x,y,t)¼H(x,y)þ η (x,y,t) is the total depth of the

fluid column (sometimes referred to as the layer thickness),

g is the acceleration due to gravity (or reduced gravity for

internal waves), H is the mean depth, η is the free surface

elevation (or layer depth for multi-level simulations), and

u¼ (u,v) represents the depth-averaged velocity vector. For

the sake of simplicity, Coriolis effects are not included in

the present manuscript; however, the numerical solver is

capable of such a modification. Although all plots presented

have been nondimensionalized, the scale of the basins being

considered was on the order of 3–5 km. At these scales, the

effects of the Coriolis force are dramatically outweighed by

the nonlinear and dispersive effects. For the sake of com-

pactness, partial derivatives are written as subscripts and

damping terms are written as FxD and FyD. Damping can

thus take a variety of standard forms (such as Rayleigh

damping, quadratic damping, etc.). For simplicity, we

ignore damping altogether for the topography modified

wave train simulations.

The second-last terms in Equations (2) and (3) are the

effects of a weakly non-hydrostatic correction to the stan-

dard shallow water model. Multi-layer extensions of the

system (1)–(3) with similar dispersive terms have been

explored by de la Fuente et al. (). Further theoretical

work on weakly non-hydrostatic multi-layer models that

remain well posed in the presence of background shear

has been carried out in Cotter et al. () and this remains

an active area of study.

Since Fourier methods are used and the FFT is readily

available, the two-dimensional spectra are easy to calculate

and do not require windowing or any other similar tech-

niques. We choose the initial conditions to be such that

there is a sinusoidal perturbation of the free surface. This

perturbation leads to a standing wave pattern which, in

the absence of nonlinear effects and damping, would con-

tinue to oscillate and maintain a consistent spectrum.

However, both the nonlinear terms and the quadratic damp-

ing lead to the excitation of higher wave numbers. For most

reasonable amplitudes, the former dominates the latter and
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the evolution proceeds in the following manner. First the

waves begin to steepen. When the length scales associated

with the wavefront become comparable to the undisturbed

layer depth, dispersive effects lead to the generation of a

finite amplitude wave train. This wave train propagates

back and forth across the lake, with damping slowly decreas-

ing amplitude. The process is illustrated in Figure 1. After

two half-periods (left panel) the damped system (black)

has a slightly smaller amplitude than the undamped

system (in red, or grey in printed version). After five half-

periods (right panel), it can be seen that the damping has

delayed the process of wave train formation. The damped

case does eventually break down into a wave train (not

shown); however, the resulting waves are of lower amplitude

than the undamped counterparts.

The resolution of all two-dimensional simulations is

512 by 512 points. The lake length is 3 km by 3 km,

which makes the grid spacing dx¼ dy ∼ 5.9 m. The undis-

turbed depth of the domain is 20 m, and the topography

has a maximum height of 50% of the depth (10 m). The

bathymetry is taken as a smoothed square with an essen-

tially uniform shallow region separated from an

essentially uniform deep region by a transition region of

width approximately 100 m (the topography thus has only

a moderate slope).

The initial conditions consist of a single, mode one

standing wave in the x direction and constant in the y. The

surface displacement has an amplitude of 2 m (i.e. 10% of

the depth of the lake). In linear theory the node of the stand-

ing wave would remain at x¼ 0.
Figure 1 | Surface displacement after time 2 T (left) and 5 T (right). At early times the damped (b

Both systems exhibit some steepening, however neither system displays any breakdo

grey in printed version) has steepened and formed a finite amplitude wave train whil

yet degenerated into a wave train. Please refer to the online version of this paper t

om http://iwa.silverchair.com/wqrj/article-pdf/47/3-4/300/163537/300.pdf
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In oligotrophic lakes, the hypothesis that sediment

resuspension substantially increases nutrient availability in

the lake interior and thereby affects primary productivity is

taken as motivation for the use of nutrient redistribution

as a passive tracer. We have chosen to forgo ‘standard’

pick up schemes, which are quite complex and whose

domain of validity is ill-defined (for example, the parameters

in such schemes are typically fitted from steady flow data).

Instead we implement a simpler scheme that suits our

needs while remaining computationally and theoretically

as simple as possible. It is well known, both experimentally

(Lou et al. ) and from a modelling standpoint (Bailey &

Hamilton ), that the rate of sediment pick up is

dependent on wind stress and thus wave-induced velocities

and bottom shear stress. For this reason, we choose the sim-

plest such relationship possible, relating the sediment

resuspension and hence the rate of nutrient uptake at a

point to the kinetic energy of the water directly above it.

For our investigations, the initial nutrient distribution is

zero (i.e. a totally barren lake). The equation for nutrient

distribution is:

DN
Dt

¼ Sþ μN∇
2N (4)

where
DN
Dt

is the material derivative. The coefficient of diffu-

sion, μN is kept slightly above molecular diffusion; this

diffusive term is present to ensure numerical stability

rather than due to any underlying physical motivation (e.g.

as a model of turbulence). Nutrient is introduced into the

system via the source term, S, when the kinetic energy of
lack) and undamped (red, or grey in printed version) surface displacements are very similar.

wn in wavefronts or wave train formation. At the later time, the undamped system (red, or

e the damped system (black) has also steepened and begun the same process, but has not

o see this figure in colour: http://www.iwaponline.com/wqrjc/toc.htm.

http://www.iwaponline.com/wqrjc/toc.htm
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the flow exceeds a certain threshold. This threshold is

chosen fairly arbitrarily based on the expected velocities

induced by a certain initial perturbation. The equation for

the nutrient source is:

S ¼
�
κ KE� KEcritð Þ if KE>KEcrit

0 if KE<KEcrit
(5)

where KE ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
, the kinetic energy, KEcirt is some

arbitrary threshold and κ is a constant which represents

the rate of nutrient removal. In our simulations, we have

used a value of KEcrit ¼ 2ðm2=s2Þ based roughly on the maxi-

mum velocities attained in the flat system and κ ¼ 1ðkgs=m2Þ.
Choosing a lower threshold creates a background influx

of nutrients, which would have proven distracting. Choosing

a higher threshold eliminates any resuspension. As such the

value we used was chosen by trial and error to fit our initial

set up so that it causes nutrient resuspension in the regions

of interest (namely around the topography), but does not

cause too much resuspension elsewhere, i.e. as a marker

for regions of velocity which are not attained in the flat

bottom case.
RESULTS

We begin by examining the effects of a region of high bottom

drag on the behaviour of a seiche in a flat-bottomed lake in

two dimensions. We allow the drag coefficient to vary in the

north–south direction while being held uniform in the east–

west direction. This allows us to examine the effects of a
Figure 2 | Surface displacement (left) and deflection (right), the ratio of north–south velocity to

we observe considerable deflection of the wavefront and the regions of high deflecti

drag coefficient.

://iwa.silverchair.com/wqrj/article-pdf/47/3-4/300/163537/300.pdf
varying drag coefficient on the shape of the developing

wavefront. The specific shape of the coefficient we have

employed is a single period of a cosine. Thus the drag

varies from low values near the north–south boundaries

(which are periodic) to a maximum value near the centre

at y¼ 0. This choice is consistent with our philosophy of

the simplest model possible and facilitates analysis of the

two-dimensional spectrum without any need for windowing.

All reported figures have been nondimensionalized

where possible both spatially (with respect to total basin

size), as well as for individual variables being considered,

such as layer thickness (with respect to undisturbed depth)

and fluid velocities (with respect to wave speed).

Investigations consisted of two experiments. The first

experiment used values of cD varying from the standard value

(0.0025) at the north–south boundaries to three times the stan-

dard value near the centre. This pattern maintains the

symmetry required for Fourier methods, and the gradual gradi-

ent demonstrates that it is the change in damping parameter

that produces the largest effect on the wavefront. The second

experiment had the same shape as the first, but varied from 0

at the north–south boundary to four times the standard value

at the centre. While there were differences between the two

experiments, the overall general features were present in

both, thus we will focus only on the high-gradient case here,

since the results are most easily visible and most dramatic.

We begin by considering the simulation at early times.

Since the system is initialized with a standing wave, we

expect the initially induced velocities to be the highest,

and thus the initial wavefront deformation to be the most

dramatic. At time 0.7 T (Figure 2), we can clearly observe
total speed, of the high bottom damping coefficient case at time 0.7 T. Even at early times

on can be clearly identified as corresponding to the highest gradient portions of the bottom
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that the wavefront is deformed about the region of high

damping as expected.

An important feature to consider is how much longitudi-

nal (north–south) flow is induced by the presence of a

gradient in the damping parameter and how the flow

depends on the gradient. To do this, we will examine the

deflection of the flow, or the ratio of the north–south vel-

ocity to the total speed of the fluid. We will use this same

analysis in subsequent experiments on sediment resuspen-

sion and redistribution to examine the effects of

topography on the flow. When performing this analysis, it

is important to consider only areas of the fluid with a

speed above some critical threshold. This cutoff is necessary

to ensure that we do not have any divide by zero errors, and

because (fundamentally) we are only concerned with waves

of some moderate energy which are most likely to impact

the lake system in a meaningful way. These interactions

could include nutrient resuspension and redistribution,
Figure 3 | Surface displacement (left) and deflection (right) of the high bottom damping coeffic

and the deflection reflects this quite well.

Figure 4 | Spectrum of surface displacement at 0.7 T (left) and 5 T (right) of the high gradient ca

expected.

om http://iwa.silverchair.com/wqrj/article-pdf/47/3-4/300/163537/300.pdf
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porous media interaction (sediment-layer interaction) or

other effects on the benthos.

The actual amount of deflection of the wavefront

observed after one period is fairly small. North–south deflec-

tion is systematically higher in the regions where the gradient

of the damping coefficient is higher, and thus there is a

clear connection between the gradient of cD and the rate of

deflection. This deflection continues to be manifested well

past the point that the original seiche has broken down

into wave trains (Figure 3) and again is most evident where

the gradient of the bottom damping coefficient is strongest.

Another way to demonstrate this phenomenon is to con-

sider the Fourier spectrum of the surface displacement. The

initial conditions (a single cosine in the east–west direction)

have no north–south component, and so any north–south

variations in the spectrum must be caused by the north–

south gradient in cD. The spectrum is shown at 0.7 T and

at 5 T in Figure 4. The initial conditions are shown as
ient case at time 5 T. The change in the wavefront is even more pronounced than before,

se. There is significantly more spectral cascade in the east–west direction (k direction) as is
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black circles (on the x axis, near the origin) in the plots of

the power spectrum. Note that the spectrum disperses

rapidly in both the east–west and north–south (k and l

respectively) directions. It is quite clear that there is a

much more substantial spreading of the spectrum in the

east–west direction (i.e. much more energy goes to the

small scales as the wave train forms). This would often be

labelled a ‘cascade’ in analogy with the cascade in turbu-

lence theory. The term ‘cascade’ is perhaps ambiguous

here as no actual turbulence is present in the simulations.

It is important to note that there has also been some spread-

ing of the spectrum in the north–south direction, which

implies deflection about the region of high damping and

some measure of structure in the direction perpendicular

to the dominant direction of wave propagation.

Consistent with the results in Figure 3, once the initial

wave deflection has occurred, it is difficult to detect any sub-

sequent wave deflection. This is probably because after the

initial large wave the nonlinear effects take over and the sub-

sequent velocities are sufficiently reduced that total

deflection is not significantly altered.

Small shoal

We begin the investigation of flow over topography by con-

sidering a standing seiche breaking down over a rectangular,

shallow region of relatively small areal extent, with a depth

reduction of 50%. As mentioned above, the purpose is to

present a process study where we wish to include the effects

of topography, but not breaking over topography.
Figure 5 | Surface displacement (left) and deflection (right) of the small shoal case at time 6 T

about the region of shallow topography in the centre.

://iwa.silverchair.com/wqrj/article-pdf/47/3-4/300/163537/300.pdf
The system begins its evolution as a linear standing

wave, but rapidly begins to steepen. Velocities over the shal-

low region are increased, while wave speeds decrease, with

a resulting bending of the wavefront. By 6 T (Figure 5) we

can observe that the surface wave has degenerated comple-

tely into a nonlinear, dispersive wave train. Namely the

nonlinear aspects of the dispersive shallow water equations

have done their job and the wave has steepened and broken

down as in the simple, one-dimensional case discussed in

the Methods section. Of more interest, however, is the

deflection of this same wave. If we consider the deflection

as before (right panel in Figure 5), we can see that we

have a great deal of deflection at the points of steepest topo-

graphic slope (especially the corners). Since the wavefront at

this time is found away from the shallow region, not much

deflection is evident around the topography, as expected.

Large shoal

We now consider flow over a smoothed square with a large

area of shallow depths (one half of the maximum depth).

The addition of nutrients (a passive tracer in our simu-

lations) to the system will allow us to examine the past

behaviour of the wave, as well as the regions flagged as

high velocity and thus of most interest. The initial tracer con-

centration is zero, thus all nutrient in the system must be

resuspended due to wave velocities.

From Figure 6 we can see significant deflection of the

surface height at early times (indeed much greater in

this case when compared with the small shoal case).
. The breakdown of the initial seiche into a wave train is clearly visible, as is the deflection



Figure 6 | Surface displacement (left) and deflection (right) of the large shoal case at time 0.7 T. Even this early in the simulation there is significant deflection over the topography and the

shape of the wavefront has been altered by the presence of the shallow region.
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Interestingly, there is very little difference in the deflection

of the node. The velocities again are consistently higher

over the topography, and again despite the larger topogra-

phy, the speed does not exceed the threshold until

approximately the same time as the small square case.

The nutrient resuspension at this time is almost negli-

gible (not shown), since the initial velocities have not yet

increased enough, and indeed this was the case for the

small square case. Specifically, we do not find dramatically

more resuspension compared with the small square case,

as we might have expected if the resuspension was related

strictly to the surface area of the shallow region.

Letting this system evolve in time, we can see similar be-

haviour to that shown in Figure 4 for the small square case.

Figure 7 shows the surface height and deflection at 6 T.

Regions of focusing can be seen in red in the left panel,
Figure 7 | Surface displacement (left) and deflection (right) of the large shoal case at time 6 T. N

deflection plot demonstrates that the most dramatic deflection occurs near the leadi

this paper to see this figure in colour: http://www.iwaponline.com/wqrjc/toc.htm.

om http://iwa.silverchair.com/wqrj/article-pdf/47/3-4/300/163537/300.pdf
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while large, north–south velocities are evident as bright

regions in the right panel. Note that some of these occur

in unexpected places, and this can have implications for

nutrient resuspension and transport. A similar story can be

seen in the right panel of Figure 7, which shows the deflec-

tion. In particular, the deflection is maximal at the points of

steepest topographic slope, and not as much over or around

topography, as expected.

The deflection seen here is significant near the edges of

the topography, which begs the question of whether the orien-

tation of the topography plays a role in the deflection of the

wavefront, or whether it is the reduced wave speeds over

the shallow regions that are responsible. To answer this, we

will consider deflection about rotated topography, below.

From Figure 8 we see that by 6 T, there has been signifi-

cant nutrient resuspension and distribution throughout the
otice that the change in the wavefront is quite extreme near the centre of the domain. The

ng edge of the wavefront and over the shallow domain. Please refer to the online version of

http://www.iwaponline.com/wqrjc/toc.htm


Figure 8 | Nutrient distribution at time 6 T. Clearly visible here is the fact that nutrient is

generated over the topography and is then advected by the long wave in the

shallow region. The regions of generation over the topography are strongest

near the edges of the shallow region. Also visible here are the effects of

deflection of the wave, as the advected nutrient has been significantly dis-

placed in the north–south direction.
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domain. The key point is that nutrient is introduced by the

modelled sediment resuspension over the topography. This

occurs almost immediately due to the increased currents

in the shallow regions, associated with the long, standing

waves. Subsequently, however, the nutrient is advected

throughout the shallow region by the same long waves,

and eventually by the developing wave trains. The wave

trains themselves are modified by the topography, as seen

in the deflection plot in Figure 7. This finally results in the

interesting patterns we observe in Figure 8, where the nutri-

ent blob has been advected in the x direction and dispersed

in the y direction through the shallows. The teardrop pat-

terns are created by the wave train as it steepens and

reflects off the wall. It is particularly interesting that it is

the initial long wave, and not the subsequent wave train

which is responsible for most of the resuspension and trans-

port of nutrient in the shallow region. The wave trains are

responsible for some of the more complex aspects of the

nutrient spatial distribution, as seen in Figure 8, as well as

the eventual pick up near the walls, visible in Figures 8

and 9 when the steepening of the nonlinear waves triggers

the resuspension scheme.

As the most common application of numerical models is

to compare with point measurements, we seek here to
://iwa.silverchair.com/wqrj/article-pdf/47/3-4/300/163537/300.pdf
generate artificial experimental data to emulate what a

measuring station would observe. The goal is to provide

another means of demonstrating the cascade from basin-

scale to high frequency effects. We consider three points

throughout the domain and around the topography. Figure 9

shows the placement of the ‘data sites’ where we will con-

sider kinetic energy and nutrient distributions. While we

expect our data to exhibit variation on many time-scales,

we do not expect it to be as ‘noisy’ as real world data

would be. This is partly because our artificial data do not

have measurement error associated with it, and our model

has no parameterizations (for mixing, for example) or sto-

chastic elements (for wind forcing, for example). Thus any

observed variations in the measurements must come from

the basin-scale seiche breaking down into high frequency

wave trains. Also note that unlike the Lake Kinneret

measurements of Hodges et al. () and Boegman et al.

() we have a system with no energy input.

The measurements reveal that as expected there is a

trend toward short, high frequency waves.

The data point in the shallow region over the topogra-

phy shows the most activity. The kinetic energy (and thus

velocities) reach the critical threshold (scaled KE¼ 1), and

thus nutrient is resuspended and subsequently advected

throughout the shallows and some way into the deeper

regions. In contrast, the region just outside the shallows,

directly south of the previous field point, exhibits virtually

identical temporal characteristics of the kinetic energy pro-

file; however the flow at this point never triggers the

resuspension scheme.

The data point in the deep region, well away from the

shallows and near the lake boundary, shows that the nutri-

ent levels there are triggered by discrete events, and only

for late times. This implies that it is only when the non-

hydrostatic wave train is formed, passes through and reflects

off the lake boundary, that resuspension takes place. From

the kinetic energy profile it is also clear that at the chosen

location and at one of the ‘measured’ times the resuspension

threshold is never reached.

This suggests that model integrations, with their lake-

wide data coverage, allow for the identification of sites

more likely to exhibit sediment resuspension. Moreover, it

presents a unique aspect of the problem of measurement,

namely that in order to capture the basin-scale resuspension
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behaviour, a large quantity of measurement sites is required.

Additionally it is very difficult to analytically show the

deflection of the wavefront from sparse measurements. In

contrast, the kinetic energy snapshots (as is visible in the

kinetic energy snapshot in Figure 9) clearly demonstrate

this effect.

Rotated topography

Now we examine a topography identical to the large square

in area, but rotated 45 degrees, so that the leading edge of

the wave first reaches the corner of the topography. This

set up of topography is also symmetric about y¼ 0.5,

although as we shall see, there are significant differences

that arise from orientation. This is done to consider whether

the deflection caused by the presence of topography can be
Figure 9 | Kinetic energy at 4.85 T and location of field sites used for artificial data creation (le

simulation output at intervals of T/6 (right). The kinetic energy and nutrients have b

Figure 10 | Surface displacement (left) and deflection (right) of the rotated topography case at

there is significantly less deflection over the topography itself compared with the

om http://iwa.silverchair.com/wqrj/article-pdf/47/3-4/300/163537/300.pdf
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significantly altered by the orientation of the seiche with

respect to the topography. Note however that the average

depth of the domain is unchanged from the large square

case.

At early times (Figure 10) we can see that, while the sur-

face shape and the deflection are both slightly different from

the large square case, the differences are not dramatic. In

particular, we can see that the node deflection is quite

similar to the large square case.

At later times (Figure 11, comparing with Figure 7) we

can see that the regions of wave focusing (the yellows and

reds in the left panel) have a slightly different location. It is

the north–south deflections (right panel), however, that

have the largest differences. This different pattern of north–

south currents (and waveforms in general) subsequently

manifests itself in the pick up and transport of nutrient.
ft); and kinetic energy and nutrient measurements at said sites for the length of the

een scaled by the critical pick up threshold and maximum nutrient levels, respectively.

time 0.7 T. Again we see some deflection in the shape of the wave; however in this case

large square case.



Figure 11 | Surface displacement (left) and deflection (right) of the rotated topography case at time 6 T. Once again the deviation in the shape of the wavefront is very dramatic, but now

the regions of highest deflection are outside the shallow region. Please refer to the online version of this paper to see this figure in colour: http://www.iwaponline.com/wqrjc/

toc.htm.
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While there are some small differences in the kinetic

energy profile of the rotated case and the large square (not

shown), the overall structure is also very similar. The key

difference between the two is that the regions of high kinetic

energy, and thus highest nutrient resuspension, occur not

near the centre of the topography, but at the north and

south edges.

If we consider the nutrient distribution at time 6 T

(Figure 12), we see that the regions of nutrient generation

have effectively flagged regions of high velocity.
Figure 12 | Nutrient distribution at time 6 T. Visible again are the regions of wave gen-

eration near the corners of the topography as well as the effects of long-

wave advection whereby nutrient is generated over the topography and then

advected east–west and dispersed north–south.

://iwa.silverchair.com/wqrj/article-pdf/47/3-4/300/163537/300.pdf
Additionally this distribution demonstrates the flow’s abil-

ity to advect resuspended nutrient. Interestingly, we do

not observe the dramatic deflection about topography

that we expected. Rather we see significant pick up

along the line y¼ 0.5, as well as near the north–south

edges of the domain.
DISCUSSION

We have seen that the evolution of the nonlinear aspects of

wave propagation is altered by the presence of quadratic

bottom drag. However, it is also quite clear from the one-

dimensional simulations that the majority of steepening

and spectral cascade is due to the nonlinearity of the shal-

low water equations, rather than the presence of nonlinear

damping.

For high speeds, the quadratic damping is an extremely

efficient means of removing energy from the system and

hence preventing significant wave steepening. However,

quadratic damping is also quite sensitive to the choice of

damping parameter, CD, and for low speeds damping is in

fact weak, or even nearly absent. A small damping par-

ameter, such as we have investigated herein does not

have the dramatic damping effect that we might expect a

priori. Experiments that varied the magnitude of a spatially

constant CD (not shown) suggest that the damping of the

emerging wave train is gradual. At 10 times the value of

CD used herein, the wave train is weak, but still discernible

while at 20 times the value used herein the wave train is

http://www.iwaponline.com/wqrjc/toc.htm
http://www.iwaponline.com/wqrjc/toc.htm
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essentially imperceptible. However, it is our belief that this

represents an unrealistic damping parameter, and so we did

not explore this scenario in detail here.

In our two-dimensional simulations we discovered that

there is a natural tendency in the flow to divert around the

regions of highest damping. In this way, regions of high fric-

tion tend to influence the flow in a similar manner to

bathymetry, diverting flow and inducing a bending of the

developing in wave trains from a direction aligned with

the winds that forced them.

In the section concerning the impact of bathymetry on

flow characteristics, we saw, as predicted, that topography

has a significant effect upon both the dynamics of the flow

and on the subsequent nutrient distribution. Having

chosen an a priori threshold velocity which is just barely trig-

gered by the flat-bottom case, we can clearly see the areas

that are most influenced by the addition of topography.

Bathymetric hills and valleys can thus have a profound influ-

ence on the lake ecosystem. Indeed the presence of even the

geometrically simple topographical features presented

herein dramatically alters the dynamics of the system as

well as the nutrient distribution and dispersal.

The nonlinear and non-hydrostatic nature of the model

is quite clearly visible in the degeneration of the original

seiche into a wave train. Note however that while we have

observed how the wave train can modify the nutrient distri-

bution in the lake, it is the initial long waves that are

responsible for the bulk of nutrient resuspension in the shal-

low regions. We found that in the shallows the long waves

are responsible for the bulk of the sediment resuspension,

with the eventual wave trains only playing a secondary

role. In the deep regions it is the nonlinear, non-hydrostatic

wave trains that were the only cause of resuspension. In

future work the present simulations will be contrasted

with process studies of internal wave phenomena that can

lead to more sediment resuspension than the above-men-

tioned long waves. Some evidence for such phenomena

exists from numerical simulations and experiments in con-

tinuously stratified fluids (Carr et al. ).

A more significant step forward would be to consider

basin-scale seiche effects using continuously stratified

models, possibly bridging the gap between basin scales

and the bottom boundary layer. This should be possible

for small lakes in a two-dimensional configuration. From a
om http://iwa.silverchair.com/wqrj/article-pdf/47/3-4/300/163537/300.pdf
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more physical standpoint, another interesting extension

would be the addition of a non-Newtonian or porous

model of the bottom layer (see for example, Nield &

Joseph () and Hearn et al. ()).

The idealized model presented above is a useful tool in

helping to understand the interaction between basin-scale

seiches, bottom topography and drag. The goal is to provide

fundamental insight into the nature of these interactions

using high-order numerics and a systematic approach to

individual effects. While not directly related to any particu-

lar set of lake measurements, models like the one above

provide a guide to which portions of parameter space yield

novel physical phenomena. These phenomena can sub-

sequently be explored by more complete (and numerically

much more costly) models. It is worth noting that parameter

fitting to single-point measurements, which is commonly

carried out as a model ‘calibration’ exercise, has been criti-

cized in a variety of disciplines as not leading to any

substantial improvement in model robustness. Carter et al.

() discuss the difficulties of calibrated models in finance

modelling, Seibert & McDonnell () discuss uncertainty

in catchment hydrology, and Beven () makes a compre-

hensive assessment of the dangers of calibrated models as

predictive tools in hydrological models. Moreover, for an

essentially inviscid model such as the one used in the

above there is little to ‘calibrate’ and the qualitative results

are in good agreement with what we expect to see and

what can be measured in the real world.
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