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ABSTRACT

Evapotranspiration is a key variable for hydrologic, climatic, agricultural, and environmental studies. Given the non-availability of
economically and technically easy to implement direct measurement methods, evapotranspiration is estimated primarily
through the application of empirical and regression models, and machine learning algorithms that incorporate conventional
meteorological variables. While the FAO-56 Penman-Monteith equation worldwide has been recognized as the most accurate
equation to estimate the reference evapotranspiration (ET,), the number of required climatic variables makes its application
questionable for regions with limited ground-based climate data. This note provides a summary of empirical and semi-empirical
equations linked to its data requirement and the problems associated with these models (transferability and data quality), an
overview of regression models, the potential of machine learning algorithms in regression tasks, trends of reference evapotran-
spiration studies, and some recommendations of the topics future research should address that would lead to a further
improvement of the performance and generalization of the available models. The terminology used in this note is consistent
in both the theoretical and practical field of evapotranspiration, which is often dispersed in the academic literature. The goal
of this note is to provide some perspective to stimulate discussion.

Key words: empirical models, evapotranspiration prediction, machine learning, reference evapotranspiration, regression
models

HIGHLIGHTS

® An overview of trends in ET, studies is presented.

® The main limitation of FAO-56 Penman-Monteith is the large number of meteorological variables required.

® There is a wide variety of empirical equations for ET, estimation.

® The application of machine learning algorithms is increasing due to their high performance for ETo estimation.
® Some aspects of ET, estimation methods are discussed and recommended.

GRAPHICAL ABSTRACT

Evaporation + Transpiration Evapotranspiration

Ll

Soil surface

This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying,
adaptation and redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/).

Downloaded from http://iwa.silverchair.com/wpt/article-pdf/17/4/940/1044336/wpt0170940.pdf
bv auest


https://orcid.org/0000-0002-8021-9197
mailto:juan.pinos@gmail.com
http://orcid.org/
http://orcid.org/0000-0002-8021-9197
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.2166/wpt.2022.028&domain=pdf&date_stamp=2022-03-30

Water Practice & Technology Vol 17 No 4, 941

INTRODUCTION

An overwhelming volume of scientific literature is available on evaporation, transpiration, and evapotranspira-
tion (ET), and an immense volume of academic articles about ET estimation methods using empirical and
regression models, and machine learning algorithms have been published. Based on Scopus (Elsevier) journal
database (for the period 1800-2021), the number of online access documents (articles, book chapters, conference
proceedings, reports, dissertations, etc.) containing the keyword ‘reference evapotranspiration’ amounts to
72,899. A search in this database using the keywords ‘estimation models’ and ‘reference evapotranspiration’
yields 31,427 results in the period 1966-2021, while the combination of the keywords ‘machine learning’ and
‘reference evapotranspiration’ yields 3,128 documents in the period 1971-2021. Analysis of the number of pub-
lished documents in the Scopus journal database using the keywords ‘hybrid data-driven machine learning
techniques’ and ‘reference evapotranspiration’ reveals that in the period 1998-2021 a total of 557 documents
were registered. This simple analysis clearly indicates that still today quite some effort by the scientific community
is devoted to improving and calibrating the measuring techniques, empirical and model estimation methods, and
artificial intelligence-based methods to measure and estimate ET at different time frequencies and spatial scales.
In addition, a clear shift from the classical approaches to estimate reference evapotranspiration (ET,) using
empirical equations and models to artificial intelligence-based methods are noticeable. On the other hand,
Figure 1 shows the temporal evolution of the number of ET, articles published in the past decade in the core col-
lection of the Web of Science (WoS) using ‘reference evapotranspiration’ in the title. In the past decade, the total
number of publications reached 804, and ET, studies showed a remarkable increase that almost tripled by 2020,
with a mean production of 79 articles per year for ET,. This rising trend in the number of publications reflects a
growing interest among scientists in ET, studies.
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Figure 1 | Temporal evolution of the number of studies recorded in Web of Science (WoS) mentioning reference evapotran-
spiration in the title. The dotted line represents the trendline.

When faced with determining ET in the context of a project, the problem arises which method to apply. There
is so much literature on ET that in this context it is practically impossible to propose even a partial review. There-
fore, analysis of the literature on this subject is time consuming and costly, and to circumvent this, the idea arose
to develop a communication that can be used as a guide in selecting the most suitable approach for a given study.
This note is based on a detailed analysis of the literature published in the last decade, and available in the WoS
journal database. It is expected that the synthesized information will be a useful tool for water and climate
researchers and practitioners when ET, is required. The goal of this note is not to arrive at any particular
truth, but rather to stimulate lively discussion.

SOME GENERAL CONCEPTS

ET is the integration of land evaporation and plant transpiration from the Earth’s surface, which are crucial pro-
cesses in the hydrologic cycle. An accurate prediction of ET is essential for the estimation of the water budget
(Equation (1)) and the management of water-related environmental systems, i.e., in agricultural, meteorological,
and hydrological practices. However, the measurement of ET is complex and expensive. The methods for direct
measurements of actual evapotranspiration (ET.) with high precision are lysimeters and eddy covariance systems,
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the costs of which are relatively high in terms of installation and maintenance. Other methods to estimate ET are
the water balance, pan evaporation, or the remote sensing imaging technique.

AS = (P + SN + GWiy) — (Q + ET + GWoyy) 1)

where AS is the change water storage over a specified period of time (Af), P the precipitation, SN the snowmelt,
GW;, and GW,,,; the groundwater, Q the discharge and ET the evapotranspiration.

Because of the complexity of the field methods, measurements of evapotranspiration are spatially and tem-
porally scarce. As an alternative, crop evapotranspiration (ET.) is commonly calculated based on ET,. ET,
can be defined as the evapotranspiration amount from a reference crop (grass) with a height of 0.12 m, surface
resistance of 70 s m ™' and albedo of 0.23 (Allen et al. 1998). ET, is obtained by multiplying ET, with a crop
specific coefficient (k). In most cases ET, is calculated using mathematical models and climatological variables
as input. The FAO-56 Penman-Monteith equation has been adopted by the scientific community as a standard
method for the estimation of ET, (Equation (2)), and found suitable for most climate conditions. The method
is a physically based approach and requires the availability of different weather variables such as air temperature,
relative humidity, solar radiation, and wind speed. The procedure for calculating the Penman-Monteith equation
is documented in Allen et al. (1998).

0.408-A - (R, — G) + y-[900/(T +273)] - u - (es — €a)
A+7y-(1+0.34-u)

ET, = )

where ET, is the reference crop evapotranspiration (mm day '), R, the net radiation (MJ m 2 day %), G the soil
heat flux (MJ m~2 day '), y the psychrometric constant (kPa °C™!), e the saturation vapor pressure (kPa), e, the
actual vapor pressure (kPa), A the slope of the saturation vapor pressure-temperature curve (kPa °C™'), T the aver-
age air temperature (°C), and u the mean wind speed at 2m (m s ).

LIMITATIONS OF THE MEASUREMENT OF WEATHER VARIABLES

Currently, the distributed global network for eddy covariance flux measurements ‘FLUXNET’ (www.fluxnet.org),
is key to generate micrometeorological data (e.g., ET) for most of the terrestrial regions and biomes of the world
with different climatology. However, the network density is very low in the Global South (which is roughly
defined by latitude), and, moreover, unfortunately in many remote regions a weather station has never been
installed. Therefore, to integrate water resources research and management in those areas, approaches such as
the FAO-56 Penman-Monteith are still needed.

The main limitation to calculate ET, by using the FAO-56 Penman-Monteith method is that the full set of
climatic variables needed are not measured in many weather stations worldwide. The quality with which the
weather data are measured is another problem. The meteorological data obtained by different weather instru-
ments/sensors is not free from flaws such as lacking reliability (solar radiation), intermittent errors and
questionable quality (relative humidity and wind speed). Temperature is the variable that is least prone to
faulty sensor reading and is largely and easily available in many regions of the world.

To apply the FAO-56 Penman-Monteith equation under limited data conditions, classically missing solar radi-
ation (Ry), relative humidity (RH), or wind speed (u), some guidelines have been established by Allen et al. (1998).
Solar radiation and wind speed values from near weather stations with similar topography and climatic con-
ditions can be used when local values are missing. As the second option, solar radiation can be calculated
using the Hargreaves radiation formula as a function of the minimum and maximum temperature. When relative
humidity data is lacking, the actual vapor pressure (e,) can be estimated by assuming that the dew point temp-
erature (Tgew) is equal to the minimum temperature (Tpin), and under missing wind speed data, the FAO-56
Penman-Monteith equation can be estimated using the global average wind speed value of 2m s .

One should be aware of the fact that uncertainties of field measurement and meteorological variables could be
large, primarily associated with instrument calibration, installation, operation, and maintenance. To overcome
this issue, guidelines for quality control of weather data have been established. Meek & Hatfield (1994) and
Allen (1996) developed screening rules and instructions guiding the decision when data/sensors should be
scrutinized.
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Continuous monitoring of weather stations is another issue. Worldwide many stations have been abandoned or
disassembled, while many FLUXNET stations have been installed during the past decade. Overall, the lack of
spatial and temporal (long-term) weather data and the uncertainty of data quality are common, and limits the
application of the FAO-56 Penman-Monteith equation.

THE NEED FOR EMPIRICAL MODELS

Due to the lack of lysimeters and fully equipped weather stations to estimate ET, using the FAO-56 Penman-Mon-
teith method, the application of empirical equations requiring fewer weather variables is pivotal for hydrological,
ecohydrological, and biometeorological studies and applications. It must be highlighted that a large body of lit-
erature related to empirical equations for the estimation of ET, is available. Based on the data requirement
the available equations can be subdivided into the following groups: Temperature-, radiation-, and mass transfer-
based methods (see Supplementary Table). Most ET, equations have been developed specifically for definite
atmospheric conditions and for different temporal scales such as hourly, daily, or monthly. Hupet & Vanclooster
(2001) demonstrated that low temporal sampling resolutions of meteorological variables (time-aggregation effect)
tend to overestimate ET,. This highlights the paramount importance of using finer-scale monitoring resolutions.
Some academic efforts were directed to adapt empirical equations from low to finer resolutions. For example,
Pereira & Pruitt (2004) and Chang ef al. (2019) attempted to modify the original monthly Thornthwaite tempera-
ture-based equation to estimating daily ET,.

The Supplementary Table provides for each of the listed empirical and semi-empirical equations the data
requirement of each equation. In this way, this table serves as a guide for users to identify the optimal methods
that they can apply given the availability of weather data.

TRANSFERABILITY OF EMPIRICAL MODELS

As shown in the Supplementary Table different empirical models to estimate ET, were developed using meteor-
ological variables from weather stations at surface level, assuming intrinsically the local conditions where the
models were formulated. Some models work well in areas with similar climatological and environmental con-
ditions. When such approaches are tested in other climatic conditions, their performance might be poor. This
makes the transferability of models (those that can be used beyond the spatial and temporal bounds of their
underlying data) to other areas or time periods uncertain. Except for the FAO-56 Penman-Monteith method,
the transferability of ET, models across geographic locations have failed, and the development of transferable
models remains elusive. Empirical models will always have to be calibrated to the local conditions where they
are applied. Models require making the tradeoff between prediction bias and variance (homogenization versus
non-transferability), and it is evident that for application and decision making (e.g., irrigation systems, catchment
water balance), preference ought to be given to estimation models with high accuracy.

A relatively simple and widely applied calibration method consists of the recalibration of the coefficients by
means of the 10-fold cross-validation method. The complete dataset is randomly distributed in 10 groups of
approximately the same size. After the coefficients are computed by using nine of the groups as a training set
and validated with the remaining group, this procedure is repeated 10 times to get the new coefficients with
the lowest test error. Following, the calibration radius (cr) is derived by dividing the measured variable by the
estimated variable (Equation (3)). This rough but simple calibration method consists in multiplying the average
cr value with all data (Equation (4)), its performance can be tested by cross-validation.

\4
cr = A 3)
Vew = Vo x 1 “4)

where V,, is the calibrated variable, V the measured value, V,, the estimated variable, and ¢cr is the average cali-
bration radius of the data considered.
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THE ROLE OF REGRESSION MODELS AND MACHINE LEARNING ALGORITHMS

In recent decades, rapid advances in the application of regression models and machine learning (ML) have been
made, and the scientific community has adopted these techniques for different purposes in the hydrology field
(Lange & Sippel 2020). As found by Jing ef al. (2019) there is a large and growing field of implementation of evol-
utionary computational models for ET, estimates. Regression models in general terms are a method that use
observations records to quantify the relationship between a target variable (also named as dependent variable),
and a set of independent variables (also named as a covariate). The following are classic examples of regression
models: multiple linear regression, Bayesian regression, robust regression, and multivariate adaptive regression
splines. ML, depending on the underlying algorithm that is used, can perform supervised and unsupervised learn-
ing and then build statistical models, determining trends and patterns, for data analysis and forecasting. The ML
algorithms (e.g., artificial neural network (ANN), support vector machine (SVM) and adaptive neuro-fuzzy infer-
ence system (ANFIS)) are able to learn implicitly using the input data and provide accurate predictions, without
having been specifically programmed for that task. A brief description of the most widely used regression models
are given in the following.

The most popular applied regression model is the multiple linear regression (MLR), which is a statistical
approach for modelling the linear relationship between explanatory (independent) and response (dependent)
variables. The main assumption in the MLR is that the relationship between the dependent and independent vari-
ables is linear. It also assumes that there is no significant correlation between the independent variables. MLR
can be considered as an extension of ordinary least-squares (OLS) regression because it involves more than
one explanatory variable (Eberly 2007).

Multivariate adaptive regression splines (MARS) is a non-parametric model of a nonlinear regression that
allows explaining the dependence of the response variable on one or more explanatory variables. Non-parametric
modeling does not approximate one single function but adjusts it to several other functions for simple metrics,
usually low-order polynomials, defined on a sub-region of the domain (parametric adjustment per section), or
sets a simple function for each value of the variable (global setting). MARS is preferred because it allows approxi-
mating complex nonlinear relationships from the data, without postulating a hypothesis about the present type of
nonlinearity. The construction of the algorithm model incorporates mechanisms that allow the selection of rel-
evant explanatory variables. The resulting model is easier to interpret and apply. Finally, the estimation of its
parameters is computationally efficient and rapid (Friedman 1991).

The basis of robust regression (RB) consists of assigning a weight to each data point, to counter OLS estimates
which are extremely sensitive to outliers. Weighting is done automatically and iteratively through a process called
‘iteratively reweighted least squares’. In the first iteration, each point is assigned equal weight, and model coeffi-
cients are estimated using OLS. At subsequent iterations, weights are recomputed so that points farther from
model predictions in the previous iteration are given a lower weight. Model coefficients are then recomputed
using weighted least squares. The process continues until the values of the coefficient estimates converge
within a specified tolerance (Khoshravesh ef al. 2017).

Bayesian regression (BR) in simple terms attempt to find a variable 6 considered as a random variable with
probability distribution () (called prior distribution) from the data y=(yy,,...,y,) using a statistical model
described by a density function [1(y|8)], called the likelihood function. The prior distribution expresses the beliefs
about the parameter before examining the data. Given the observed data y, update of beliefs about 6 by combining
information from the prior distribution and the data by the use of Bayes theorem, and so the calculation of the
posterior distribution, n(6[y), i.e., the posterior distribution is computed by the variances of the prior and sample
data. The variance establishes two conditions: if variance (1) prior data<sample data, a higher weight is assigned
to the prior data, or (2) prior data>sample data, a higher weight is assigned to the sample data (Khoshravesh et al.
2017).

Similar to the brief outline of the most frequently used regression models in the previous paragraphs, in the
following a brief description is given of the most popular ML algorithms used for prediction. ANNs are con-
sidered a computation tool that emulates the function of neural networks in biological systems. ANNs extract
the relationship of inputs and outputs of a process, without explicitly knowing the physical nature of the problem
in such a way that the result is transmitted in the network until a signal output is obtained. The ANN-based
model’s procedure is, in general, divided into training, validation, and testing. The architecture of an ANN has
an input layer (where data are introduced to an ANN), the hidden layer(s) (where data is processed), and the
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output layer (where results of given inputs are provided). The advantage of the neural method relies on the possi-
bility of improving the performance criteria by modifying the network architecture (Lange & Sippel 2020).

SVM is popularly and broadly used for classification and regression problems in machine learning ML. SVM
for classification problems separate the data by class from the separating line (called hyperplane) and unlike
regression, a safety boundary from both sides of the hyperplane is created (maximizing the margin), while
SVM models for regression problems find the linear regression function that can best approximate the output
vector with an error tolerance. The advantage of SVM models is their flexibility in defining how much error is
acceptable and by yielding an appropriate line (or hyperplane in higher dimensions) that fits the data
(Kecman 2005).

Finally, a random forest (RF) is a trendy and effective algorithm based on model aggregation ideas for several
tasks such as classification, regression, and forecasts. RF works by constructing a large number of relatively
uncorrelated decision trees from bootstrap samples that operate as an ensemble, and also involves selecting a
subset of input features (columns or variables) at each split point in the construction of the trees. Each individual
tree in the RF returns a class prediction, and the class with the most votes becomes the model predictor (Breiman
2001).

The application of any of the models will depend on the objective to be achieved, the relationship between the
variables in the dataset, and also on the capacity and expertise of the user who develops and implements the
model. Some of the main advantages and disadvantages of these models are presented in Table 1.

Table 1 | Overview of advantages and disadvantages of regression models and machine learning algorithms

Estimation
models Advantages Disadvantages
MLR Adequate for small datasets The linear assumption
Simple to understand and interpret Sensitive to outliers
RB Improve the performance when the dataset When the underlying assumptions of the classic method
present heteroscedasticity and outliers (OLS) are true, the RBs have lower performance than the
classic method
BR Fast data processing Less accurate when collinearity exists
MARS Fast data processing The high degree of flexibility can result in overfitting
Simple to understand and interpret
Is flexible to capture the shape of functions
ANN Powerful to identify complex non-linear Large datasets are required to achieve good performance
relationships Overfitting
SWM Powerful to identify complex non-linear Requires considerable processing time
relationships The performance depends on the selection of the kernel
Robust for outliers function
Risk of overfitting
RF Powerful to identify complex non-linear Poor performance with small datasets

relationships
Harder to overfit

The number of decision trees must be set
Low model interpretability

MLR, multiple linear regression; RB, robust regression; BR, Bayesian regression; MARS, multivariate adaptive regression splines; ANN, artificial neural networks; SVM,

support vector machine; RF, random forests.

ESTIMATION MODELS: SOME CAVEATS

In the past decade, the assessment of the performance of empirical equations and ML algorithms and regression
model approaches for ET, estimation has considerably increased in the academic literature (e.g., Table 2). From
these studies, the following facts can be highlighted: (1) most studies used the FAO-56 Penman-Monteith model
as the reference for performance assessment; (2) studies applied original, modified, and locally adapted
equations; (3) the ranking of the different model’s performance between studies showed heterogeneity and its
mainly related to the geographic location; (4) most of the ET, models that have been developed are site specific;
(5) a combination of several input variables were chosen to identify the ML models with the least number of
weather variables, which were found to have higher superiority than empirical equations under all climatic con-
ditions; and 6) most of the regression models also demonstrated high performance.
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Table 2 | List of performance studies of empirical, machine learning, and regression models for the estimation of ET,

Number of empirical Machine learning Regression

source models* models models Country (environment type)

Landeras et al. (2008) 11 ANN - Spain (subatlantic enviroment)

Tabari et al. (2012) 13 SVM, ANFIS MLR, MNLR Iran (semi-arid environment)

Tabari et al. (2013) 32 - - Iran (humid environment)

Khoshravesh ef al. 1 MFP, RB, BR Iran (arid environment)
(2017)

Mehdizadeh et al. 17 GEP, SVM MARS Iran (mainly arid and semi-arid
(2017) environment)

Djaman et al. (2019) 35 - - New Mexico — USA (semi-arid

environment)

Farzanpour et al. 21 - - Iran (semi-arid environment)
(2019)

Muhammad et al. 31 - - Peninsular Malaysia (tropical
(2019) environment)

Celestin et al. (2020) 33 - - Hexi Corridor - China (arid environment)

Chen et al. (2020) 8 ANN, SVM, RF - Northeast Plain — China (subtropical

monsoon environment)

dos Santos Farias ef al. 4 ANN, SVM CB, SW Brazil (humid and semi-arid enviroment)
(2020)

Ferreira & da Cunha 1 ANN, RE, - Brazil (sub-humid environment)
(2020) XGBoost

Pinos et al. (2020) 22 ANN MARS Ecuador (super-humid environment)

Tikhamarine et al. 7 ANN, SVM - Algeria (Mediterranean environment)
(2020)

ANFIS, adaptive neuro-fuzzy inference system; ANN, artificial neural networks; BR, Bayesian regression; CB, cubist regression; GEP, gene expression programming;
MARS, multivariate adaptive regression splines; MFP, multivariate fractional polynomial; MLR, multiple linear regression; MNLR, multiple non-linear regression; RB,
robust regression; RF, random forest; SVM, support vector machine models; SW, stepwise regression; XGBoost, extreme gradient boosting. Asterisk (*) means that
the FAO-56 Penman-Monteith model is included.

Do you know a water or climate scientist who denies the importance of precise estimation of ET? It is well
known that the FAO-56 Penman-Monteith model has high performance in estimating ET, and its serves as a
good proxy of lysimeters or eddy covariance measurements, however, the model is not free of errors. In the
absence of lysimeter or eddy covariance data, the question arises whether the FAO-56 Penman-Monteith
method is a valid reference to be used? A ‘double bias’ in estimation model studies can be expected, one by
the FAO-56 Penman-Monteith model against the lysimeters/eddy covariance, and the second by the FAO-56
Penman-Monteith model against the estimation model. Why are accurate estimations so important? The under
or overestimation of ET, at the aggregated scale (e.g., Pinos ef al. 2020) can have consequences in terms of
water management, which can introduce water supply problems for agriculture and human consumption, as
well as water-cycling modeling.

Why can models not be generalized? Empirical equations require local calibration, which is site-specific,
thereby preventing generalization, because high variance exists between locations. Regression models are devel-
oped to be site-specific and are sensitive to changes in the ranges and dynamics of the input data, i.e., to other
locations. ML models cannot be transferred because the main data processing is implicitly developed as a
black box (i.e., the internal working is unknown). To complicate things even more, almost all the studies do
not publish the data used in their analysis in open access repositories, therefore, their results cannot be validated
or reused by the scientific community for new studies covering large scales such as regions, countries, or biomes.

CONCLUDING OBSERVATIONS

In summary, the past few decades have seen an explosion of research on ET, estimation methods; however, scien-
tific progress has remained somewhat stagnant. This note reports a brief explanation of the main components and
assumptions in estimation models and presents an extended compilation of relevant existing models. In the
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absence of actual field measurements, empirical models are helpful to estimate ET, using routine meteorological
variables. Yet these models require local calibration. To minimize the effort required to calibrate the empirical
models to local conditions, studies should be oriented to derive estimation approaches that cover large spatial
scales such as regional, national, or biomes. To achieve this goal, it is recommended that studies publish the
weather data used in open access repositories. In this way, the number of surveys usually conducted on a
local scale can be generalized to larger areas of interest. ML algorithms are increasingly applied to estimating
ET, as a function of weather variables. Since ML performs as a black box, future studies should be directed to
how to make these models with relatively high accuracy transferable. At present, a great bulk of studies compare
the performance of ET, estimation models against the FAO-56 Penman-Monteith equation, and only in a limited
number of studies are model results compared with lysimeters or eddy covariance measurements. The quality of
input data and direct measurements play a key role for estimation and validation, respective of the empirical,
regression, and machine learning models. Furthermore, heterogeneity on ET, models ranking, based on their per-
formance, can lead to ambiguous interpretations.
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