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ABSTRACT

Flood impact assessment in a river system is done with the help of flood routing and this process helps to determine the status

of sensitive points of the route in terms of flood entry and the resulting risks for urban and rural areas. For flood routing, a

hydrodynamic numerical model should be implemented and this model needs upstream and downstream boundaries. In

some cases, the upstream boundary, which is usually a hydrograph, is not available due to the lack of facilities and it is necess-

ary to be generated for numerical model implementation. The purpose of this study is to present an integrated method

comprising an optimization model and a hydrodynamic numerical model for flood modeling in order to determine the upstream

hydrograph using the measured downstream hydrograph along a river. The routing procedure consists of three steps: (1) gen-

erating a hypothetical upstream hydrograph using the genetic algorithm method; (2) hydrodynamic modeling using a numerical

simulation model for flood routing according to the hypothetical hydrograph, which is generated in the first step; (3) comparing

the calculated and observed hydrograph in the downstream by using a fitness function. This recommended procedure was

named the Reverse Flood Routing Method (RFRM) and was then applied to Karun River, the largest river in Iran. Comparison

of the final generated upstream hydrograph by the RFRM model with the corresponding measured hydrograph at the upstream

boundary (here Ahvaz hydrometric station was assumed as an ungauged river location) shows the high accuracy of the rec-

ommended model in this study.

Key words: generating missed hydrograph, genetic algorithm, Karun River, numerical FASTER model, reverse
flood routing
1. INTRODUCTION

Since the earliest recorded civilization, humans have settled near rivers because of the proximity to water
supplies, natural needs for urban and rural populations, and advantages for agriculture activities, resulting in a

significant percentage of people around the world living near rivers (Baldassarre et al. 2013). But living along
rivers has dangers like floods, which are a natural phenomenon and whose occurrence is inevitable in many
places and times and sometimes no human-made structures can stop them. However, there are some methods
for mitigating the risk of their happening and the consequences. Many researchers have studied the causes

and presented strategies for reducing the destructive effects of the flood. Flood control and management and
also the design of suitable flood-resistance structures and specifying flood catchment areas on both sides of a
river are dependent on the flood hydrograph, its peak discharge and base flow time. The continuity equation

in steady form (i.e. Q ¼ AV) shows the relationship between discharge and the cross-section area. Therefore,
in some places along a river it can be possible to relate the flow depth to discharge (Rating Curve) and then
the recorded flow depth-time can be easily converted to discharge time or hydrograph. These equipped cross-sec-

tions are generally called hydrometric stations. In these types of stations, water elevations are continuously
recorded and are converted to discharge using a pre-prepared accurate rating curve or stage-discharge relation-
ship. Therefore, flood hydrographs are provided at these stations (Perumal et al. 2007; D’Oria & Tanda 2012).

Construction, equipment, and maintenance of hydrometric stations require high costs for governments or
water agencies, especially for natural channels with complex and challenging conditions. However, a compelling
method that is currently under high development is the estimation of the river discharge through image veloci-
metry (e.g., Dal Sasso et al. 2020; Rozos et al. 2020). This method also needs sophisticated equipment and its
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uncertainty and accuracy due to some environmental factors such as turbidity and suspended sediments may
make many problems for discharge measuring. For this reason, the number of such stations along a river or
canal may be limited and is mostly dependent on the importance of the river area and also on the current and

future development projects. Therefore, providing hydrograph at any point of a waterway or river needs to set
up a hydrodynamic numerical model and run it for the desired reach of channel and time period. These types
of models need all information like stage-discharge at upstream and downstream boundaries of the chosen dis-
tance during the selected period. To mitigate the flood risk, the knowledge of discharge at gauging stations

and upstream or downstream of the section is essential (Zucco et al. 2015). Accurate information about flood
characteristics is one of the critical issues for managing its disaster (Soleimani-Alyar et al. 2016). There are several
hydraulic and hydrologic mathematical methods used for flood modeling in rivers (Pashazadeh & Javan 2020). A

hydraulic model consists of the conservation and energy or momentum equations that use geometric and hydrau-
lic data for flood routing. But a hydrologic model relies on limited parameters coupled with linear or nonlinear
equations based on the continuity equation for flood routing, which is simple in comparison to a hydraulic model

(Bozorg-Hadad et al. 2018). Flow hydrographs are one of the fundamental elements for flood modeling which is
recorded as time series at hydrometric or gauged stations. The information of the peak discharge of a hydrograph
is also essential for flood-risk assessment and management of water resource systems (Todaro et al. 2019). How-

ever, due to the lack of hydrometric and/or gauged stations, these hydrographs may not be available everywhere
(Kaya et al. 2017; Jeslin & Sumam 2021). The Muskingum method is one of the hydrological approaches that has
been used for many years due to its simplicity and acceptable accuracy (Norouzi & Bazargan 2020). The usual
downstream routing of flood flow; that is, using the existing upstream hydrograph, is a stable process for the

gradually varied subcritical flow in rivers, with the results being reliable. In contrast, reverse flood routing deter-
mines the upstream hydrograph based on the river geometry, flow hydraulic characteristics, and downstream
hydrograph (Bruen & Dooge 2007). A part of performing reverse routing is to solve the 1-D Saint-Venant

equations. Solving these equations requires initial and boundary conditions, and the discharge hydrograph at
the ends of the river reach (Spada et al. 2017). Zucco et al. (2015) applied a method to generate the upstream
hydrograph using the downstream hydrograph based on the Person Type-III distribution and only the continuity

equation, and they applied their method for the Tiber River in Italy. The same method was used by Jeslin &
Sumam (2021) for Chalakkudy River in India.

Hydrodynamic partial differential equations including continuity and momentum equations are generally
solved using the 1-D numerical models (in rivers) in order to specify water elevations and discharges at any

point and time during floods along the open channel. Since these models are deterministic, they must be
solved within a specified domain with boundaries. In many rivers, the upstream boundary may not be provided
due to some difficulties such as lack of facilities or being impassable. In this study, a procedure is deployed to

develop an integrated model comprising a hydrodynamic mathematical model, which solves the 1-D Saint-
Venant equations, and an optimization model accompanied by a genetic algorithm method. This combined pro-
gram can generate the upstream missed hydrograph using the existing downstream hydrograph.
2. THEORY AND PREVIOUS STUDIES

2.1. Governing 1-D hydrodynamic equations

The basic formulation of unsteady one-dimensional flow in open channels defined as Saint-Venant equations.

These equations comprise continuity and momentum equations, which are written in the following form, respect-
ively (Cunge et al. 1980; Mohammadi & Kashefipour 2014, 2020):
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where Q¼ discharge, A¼ cross section area, x¼ distance in flow direction, g¼ gravitational acceleration, Z¼
water surface elevation, R¼ hydraulic radius, n¼Manning’s roughness coefficient, qL¼ lateral inflow or out
flow (negative for out flow), TW¼ top width of channel, t¼ time and β¼momentum correction coefficient.

These partial differential equations are generally solved using different types of numerical methods. For example,
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in the FASTER (Flow And Solute Transport in Estuaries and Rivers) model, these equations are numerically
solved using an implicit staggered central finite difference scheme with variable grid size, which is accurate
and unconditionally stable. More details regarding this type of numerical solution of the Saint-Venant equations

can be found in Kashefipour (2002). In the MIKE11 commercial model, which was developed and released by
DHI (Danish Hydraulic Institute), these equations are solved based on an implicit finite difference scheme devel-
oped by Abbott and lonescu (DHI Reference Manual 2017).

2.2. Introduction to optimization

The optimization process can be used in all sciences such as math, computer engineering, electronic, water engin-
eering and so on in order to minimize an error, effort or energy, or to maximize profit or outcomes (Kramer
2017). Optimization is a technical and iterative procedure for making something better. In any process, there
is a set of inputs and a set of outputs, as shown in Figure 1.
Figure 1 | Optimization process.
Optimization refers to finding the values of inputs in such a way as to get the ‘best’ output values. The definition

of ‘best’ varies from one problem to another, but in mathematical terms, it refers to maximizing or minimizing
one or more objective functions by changing the input parameters. The set of all solutions or values, which
the inputs can take, make up the search space. In this search space, a set of points may exist that offers the opti-

mal solution. The optimization’s aim is to find that point or set of points in the search space.

2.3. Genetic algorithm

Genetic algorithm (GA), like many other optimization methods, is an iterative model and uses some key par-
ameters whose values control the way to reach the best answer and these values are usually determined using

trial and error. The GA model is generally used for a wide range of engineering subjects for optimization process.
The GA model guide search strategies inspired by a biological process, derived from Darwin’s principal of natural
selection and survival of fittest (Sivapragasam et al. 2008). This method is frequently used to solve optimization

problems, research and in machine learning. The general framework of most evolutionary algorithms is similar,
that means they start with a population of random solutions which are evaluated by a fitness function. The most
popular components of this algorithm are selection, crossover and mutation (Mirjalili et al. 2020). Crossover is

an operator that allows exchanging genes between parents to produce a new solution. There are three main cross-
over methods in the literature, single-point crossover, double point crossover and multipoint crossover. For
example, in single-point crossover, the chromosome of the two-parent solution changes before and after single-
point. Crossover is the primary operator of the exploitation of GA. The mutation causes random changes in

genes and is the primary mechanism of exploration in GA. There are many mutation techniques such as uniform,
and non-uniform that can be used in a genetic algorithm. By using a selection operator, the best offspring solutions
are selected to be parents in the new parental population to allow convergence towards optimal solutions. The

selection process is based on the fitness value in a population. When we face a minimize situation, the low
value is acceptable but in a maximize situation, the high value is preferred. There are many methods for simulating
the selection. Roulette wheel selection is one way. More details about GA can be found in Haupt & Haupt (2004).

3. MATERIALS AND METHODS

Description of the procedure of developing the integrated model in this research is followed by using an

application for Karun River, the largest river in Iran.

3.1. Case study description

Karun River is the largest and the only navigation river in the southwest of Iran. The basin area of this river is
about 45,220 km2, with the 50-year average discharge being reported as about 600 m3/s. The selected reach

length was about 50 km with 49 cross-sections (Figure 2). This figure shows the study area domain; Ahvaz
(cross-section 49 or C.S49) and Farsiat (cross-section 1 or C.S1) are the upstream and downstream boundaries,
respectively. The measured hydrographs (Q-t chart) and time-series of water elevations (Z-t chart) were available

at both boundaries for several periods; that is, the continuous measurements at both hydrometric stations. In this
a.silverchair.com/wpt/article-pdf/16/4/1465/943631/wpt0161465.pdf



Figure 2 | The selected reach and hydrometric stations along this reach in Karun River.

Water Practice & Technology Vol 16 No 4, 1468

Downloaded from http://iw
by guest
on 09 April 2024
study, the numerical FASTER model, which was initially developed by Kashefipour (2002), and genetic algorithm
was used for simulation of the flow in Karun River and optimization, respectively. A piecewise equation was added

to the FASTER model, enabling it to calculate the Manning’s roughness coefficient at any spatial point and any
time during simulation using flow discharge and depth. This dynamic equation makes the model very accurate
for determining time-dependent discharge and depth at any point of the domain. This part of the FASTER
model is fully described by Mohammadi & Kashefipour (2014). The FASTER model was set up for the aforemen-

tioned domain. All data needed for implementing the model for the years 2016–2017 and also the bed elevations
for all cross-sections were provided by KWPA (KhuzestanWater and Power Authorities) company. Ahvaz and Far-
siat hydrometric stations were defined as the upstream and downstream boundaries, respectively (see Figure 2).

The Q-t data is usually defined for the upstream boundary and the Z-t data for the downstream boundary.

3.2. Calibration of FASTER model

Since the main part of the developed integrated model in this study is the flow simulation model, it was essential to
ensure from the FASTER model accuracy in the prediction of discharges and water surface elevations. For this
reason, the FASTER model was first calibrated using the existing data. The main part of all hydrodynamic numeri-

cal models like FASTER for precise predictions of water elevations and discharges is accurate estimation of
roughness coefficients. It was found that the dynamic piecewise equations introduced for the Manning’s roughness
coefficient by Mohammadi & Kashefipour (2014) in the FASTER model needed to be slightly revised for this

domain of Karun River. The original equations were replaced by the revised ones in the FASTER model. By
these revised Manning’s coefficients, we have validated the accuracy of the model predictions for the discharges
and water surface elevations. These two equations are written as Equations (3) and (4). Comparison of these

equations with the original ones in the FASTER model shows that for discharges of more than 1,100 m3/s, the
roughness coefficients increased about 9%, and this value was about 27% for discharges of less than 1,100 m3/s.
The coefficients ‘a’ and ‘b’ in Equations (3) and (4) were therefore specified as 1.09 and 1.27, respectively.

If Q . 1100 m3=s n ¼ a� 0:037
y0:124ave � u0:53

ave
(3)

If Q � 1100 m3=s n ¼ b� 0:037
y0:023ave � u0:46

ave
(4)
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where yave and uave are the cross-sectional average of flow depth and velocity, respectively. In the hydrodynamic
module of the FASTER model, the Saint-Venant equations including continuity and momentum equations are
solved using an implicit staggered method with variable mesh size, which is unconditionally stable and accurate

(Kashefipour 2002). This deterministic model is very suitable for modelling of flow and flood routing with minimal
and acceptable uncertainty.
3.3. Optimization method

The aim of this study is to generate a suitable upstream hydrograph from the known downstream hydrograph.
According to the GA procedure, an objective function was first defined (Equation (5)). This equation, which is
written for the downstream discharges, must be minimum for the best answer of the upstream hydrograph.

f ¼
XN

i¼1

(Qobsi �Qcal)
2 (5)

where Qobs and Qcal are the measured and calculated discharge, respectively.

The number of existing measured discharges for the downstream hydrograph was 10 and the corresponding
discharges for the upstream hydrograph were unknown. The GA model works in several steps. Before starting
step1, 10 discharge values (each one is a gen) are randomly selected from the range of (0.8Q-1.3Q), which
makes a string (or chromosome). The number of population is selected (Npop will be constant for all steps up

to reaching the best answer), which is the number of strings, say m.
Step 1: Each string is individually used as the upstream boundary and the hydrodynamic FASTER model is

implemented and the downstream discharges are calculated.

Step 2: For each string the f function from Equation (5) is calculated, say f1, f2, . . . , fm.
Step 3: Evaluating of the fitness; the fitness for each string is calculated by Fj ¼ 1=1þ fj , j ¼ 1, 2, . . . , m . The

total value of F is calculated (T ¼ F1 þ F2 þ . . .þ Fm) and the probability of each string is also calculated by

pj ¼ Fj=T . The cumulative probabilities are calculated from the string or chromosome 1 to m (C1¼ p1, C2¼
p1þ p2,…, Cm¼ p1þ p2þ…þ pm), it is obvious that all cumulative probability values are between (0 and 1).
Now m (number of population or strings) numbers are randomly selected between (0,1), say R1, R2, . . . , Rm.
At this part of step 3, each new string (chromosome) is selected using the comparison of each R with two con-

secutive C; if R is smaller, the corresponding old string is selected. For example, for R1, we want to select the first
new string, the value of R1 is compared with C1-C2, C2-C3, C3-C4,…. Then if R1 , C3 the old string number 3 is
selected for the new string number 1. This procedure is continued for R1, R2, . . . , Rm. In this step, the poor fit-

ness strings are omitted from the list and the strong fitness strings may be selected for two or more new strings.
Step 4: A probability (pc) value is selected for crossover process. This value will be constant for all the process

up to reaching the best answer. Now again m random numbers between (0,1) are selected (R1, R2, . . . , Rm),

then all these numbers are compared with Pc. All the strings (1 to m) corresponding to the R numbers smaller
than Pc are chosen for crossover. In this stage, according to the number of the selected strings (chromosomes),
random integer numbers between (k¼ 1–10; number of gens or discharges in each string) are selected. Then in

the crossover process k gens of one string are replaced with the corresponding gens in another string (one-point
crossover method). Finally, in this step m new strings are generated. Some of them remain unchanged because
they did not participate in the crossover process.

Step 5:Mutation process;Nmut is first chosen (this value remains constant up to reaching the best answer). This

number shows the number of gens (discharges) that should be mutated. For all chromosomes (strings) the number
of all gens is (L ¼ m� 10), so each gen has a position between 1 and L. Now Nmut integer numbers are randomly
selected between1-L. The gens (discharges) corresponding to the selected number should be mutated. To do this,

the GA model again selects a corresponding discharge between 0.8Q-1.3Q from the input downstream discharges
data. At the end of this step,m new chromosomes or strings are produced (some of them remain unchanged). The
steps 1 to 5 will be repeated several times to minimize Equation (5) and to get the best answer for the upstream

hydrograph. The number of iterations depends on the desirable accuracy in prediction of the upstream hydro-
graph and also on the chosen parameters, Npop, Pc, and Nmut . For example, repeating steps 1 to 5 can be
interrupted when the f function is less than a very small value (f � e). The above described optimization

model is written using the well-known MATLAB software.
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Given that we face a minimization situation, the goal is to bring this function as close to zero as possible. By
changing some of the parameters in the genetic algorithm, at last, seven different optimization models were writ-
ten. These parameters were the number of members of the population (Npop), percentage of crossover (PC),

number of mutations (Nmut) and number of iterations. These models were produced based on trial and error, pre-
vious experiences, and using two types of numbers, Integer (Models 1 to 3) and Real (Models 4 to 7) numbers,
Table 1. The task of this part of the main program is to select the new set of discharges for the upstream boundary
based on the defined models and the previous set of data and check for minimizing Equation (5) by comparison

of the new set of calculated discharges for the downstream boundary with the corresponding measured values.
The models defined in Table 1 were finally evaluated by the statistical parameter of Root Mean Square Error
(RMSE), which is defined as:

RMSE% ¼ 100� f=
XN

i¼1

Q2
obsi (6)
Table 1 | Genetic algorithm parameters for Integer and Real models

Model Type

GA parameters

Npop Nmut Pc

1 Integer 6 2 0.9

2 Integer 10 4 0.9

3 Integer 3 1 0.9

4 Real 6 2 0.9

5 Real 10 4 0.9

6 Real 10 1 0.9

7 Real 3 1 0.9
3.4. Model development

The main model consists of three parts, including: 1-a numerical hydrodynamic model (here, the FASTER
model), which solves the Saint-Venant equations and determines water elevations and discharges at any
point and time of simulation; 2-a genetic algorithm (GA) model, which produces the new set of discharges
(hydrograph) for upstream boundary using the downstream discharges data and checking the fitness function

(Equation (5)) for minimization, and 3-an interface for linking the above models and managing the number of
iterations towards the best-optimized results. Ahvaz and Farsiat hydrometric stations were set as the upstream
and downstream boundaries, respectively (see Figure 2). The Q-t data (hydrograph) and Z-t data for a ten-day

period in 2016–2017 were defined for these boundaries, respectively. It is assumed that the upstream hydro-
graph does not exist, and the hydrodynamic model cannot be implemented without this hydrograph.
Therefore, a hypothetical hydrograph is first produced for the upstream boundary by the GA part of the

model based on the downstream hydrograph, as was mentioned above. The flow routing is then started
along with this domain and continued up to the end of simulation time (i.e., ten days or 240 hours). At the
end of the simulation time of the FASTER model, the downstream hydrograph is provided by the FASTER

model. By the defined fitness function, the calculated and observed hydrographs in the downstream boundary
are compared. At last, for the reasonable error, the generated hypothetical hydrograph is the final upstream
hydrograph. Otherwise, the GA model produces another hypothetical hydrograph as was extensively described
in section 3.3 and this cycle continues until the difference between calculated and observed hydrographs at the

downstream boundary becomes close to zero. The interface part of the model transfers the information
between the FASTER and GA models; that is, the upstream hydrograph from GA to FASTER and the down-
stream hydrograph from FASTER to GA. In this part of the model, a conditional statement is placed to

control the number of iterations based on the calculated error. According to the number of iterations, say
10,000, and running FASTER and GA models, it is necessary to use a supercomputer to reduce the program
running time. A flowchart of the model is shown in Figure 3.
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Figure 3 | Flowchart of the model.

Water Practice & Technology Vol 16 No 4, 1471

Downloaded from http://iw
by guest
on 09 April 2024
4. RESULTS AND DISCUSSION

Optimization problems are generally solved using a series of repetitive mathematical calculations and, by defining
one or more conditional statements, tries to get the best answers. For example, in this study, in each iteration, a

GA model, a numerical hydrodynamic model, and an interface model are implemented, and running these
models together with a usual computer takes a very long time, especially when the number of iterations is
high. Also, it should be mentioned that according to the simulation time and the amount of the time step, the

hydrodynamic model may take a considerable time to be completed in each iteration. Therefore, in this type
of computer program, the time consumption of running a program is a key parameter. For minimizing the
time-consumption of running a program, we used a supercomputer with a 64-core processor. However, selecting

a suitable combination of the parameters and their values for the GA model (i.e., models 1–7, see Table 1) may
significantly reduce the time for implementing the main model. In addition to program execution time, the per-
formance and accuracy of the GA model, which produces the upstream hydrograph, is another key parameter. In
this study, the number of iterations for all seven considered models in the GA model was the same and equal to

10,000. The most critical decision for implementing a genetic algorithm is to choose a good representation,
Table 2 | Calculated and Observed discharges for the upstream boundary (Ahvaz station)

Time (h) Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Observed

24 273 294 297 273.66 295.97 304.62 298.83 312

48 448 409 403 448.14 402.64 386.37 397.24 372

72 443 514 526 442.70 525.34 554.89 534.51 576

96 762 724 717 761.78 714.33 687.87 707.26 670

120 663 682 683 665.23 688.85 710.33 691.85 721

144 646 641 640 642.00 630.13 615.23 632.13 609

168 527 528 530 532.25 539.74 550.81 531.51 553

192 492 491 490 483.83 476.43 470.26 489.17 470

216 401 402 402 413.08 419.48 424.33 403.84 421

240 406 402 404 392.11 385.49 381.26 402.54 385

RMSE% 1.45 0.46 0.36 1.39 0.27 0.04 0.24 –
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otherwise leads to poor performance and answer. The results showed that the best combination of the GA par-
ameters is model No.6 (see Table 1). Running the program revealed that after 3,030 iterations, the RMSE% of
comparing the produced and real hydrographs for the downstream boundary was calculated to be less than

0.05, which indicated the high accuracy of the GA model. Furthermore, the implementation time of the program
to reach the best answer is much shorter. The produced hydrographs for the upstream boundary by the different
GA models are illustrated in Table 2, and the real hydrograph is also added to this table. The RMSE% based on
Figure 4 | Comparison of the estimated and actual hydrographs for upstream boundary.
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Equation (6) is also calculated and added to this table. As is shown in Table 2, model No.6 performed better than
the other considered models. Figure 4(a)–4(g) compare the produced or estimated hydrographs by seven GA
models with the measured or actual hydrograph at the upper boundary; that is, the Ahvaz hydrometric station

in this study.
Knowing the river conditions in terms of different discharges is essential for many river engineering projects,

such as numerical flow and water quality modeling in riverine basins, watershed management, designing hydrau-
lic and water supply structures, and flood control and distribution plans. However, continuous measurement of

discharges along a river network may require several hydrometric stations to be established, and this may be
impossible due to budget shortage or severe conditions, or high instability of river sections. This research teaches
us how to produce the missed or non-measured hydrographs for upstream from downstream or vice-versa. It

should be said that the parameter values used in the GA model may not be applicable from one river to another.
However, the most important and key achievement of this study is the instruction of the applied method and
giving the hint for producing the upstream hydrograph using the downstream one. For many engineering pro-

cesses in this subject such as water quality modelling (chemical, physical and biological) and sediment
transport modelling within a domain, having an upstream hydrograph is inevitable, and sometimes providing
it requires high cost.

Uncertainty is one of the most important and fundamental issues that greatly affects the accuracy of model pre-
dictions. Usually, models based on statistics such as hydrological models differ in accuracy and uncertainty
depending on the time interval of forecast and the use of a number of parameters in the model. In this study,
a deterministic hydrodynamic model was used and the only parameter that may affect its accuracy is the rough-

ness coefficient. Accurate estimate of this coefficient can highly affect the model accuracy in prediction of water
elevations and discharges at any point during flood (Pappenberger et al. 2005). The FASTER model uses a
dynamic and variable roughness coefficient, so this makes it very accurate and reliable (Mohammadi & Kashefi-

pour 2014).
5. CONCLUSION

In this study, an integrated model was developed comprising a GA model, a hydrodynamic numerical 1-D model,
and an interface program. This mathematical model was written so it can be used for reverse flow routing to
produce an upstream boundary hydrograph from the known downstream hydrograph. It was found that the
GA parameters play an important role in producing precise hydrographs and best answers, but also reducing con-

suming computer running time. Here, we could generate the upstream hydrograph with a minimum RMSE error
0.04% for the GA parameters of Npop¼ 10 (number of members of population), Nmut¼ 1 (number of mutations),
and Pc ¼ 0.9 (percentage of crossover) with minimum iteration.
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