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ABSTRACT

Adsorptive properties for Cd(II), Cr(III), Cu(II), Ni(II), Pb(II) and Zn(II) onto amidoxime-functionalized polyacrylonitrile (APAN) micro/

nanofibers were systematically investigated in a hexahydroxy metallic solution system using batch experiments. The interactive

effect of multi-metal ions in multi- metal systems was antagonistic in nature, and the adsorption capacity in a multi-metal

system was lower than that in a single-metal system. The Langmuir isotherm model could explain respectively the isotherm

and kinetic experimental data for the hexahydroxy metallic system with much satisfaction. The maximum adsorption capacity

in hexahydroxy metallic for Cd(II), Cr(III), Cu(II), Ni(II), Pb(II) and Zn(II) was calculated to be 98 mg/L, 158 mg/L, 80 mg/L, 76, 312

and 58 mg/L individually. The APAN micro/nanofibers possessed good selectivity toward Pb(II) and Cr(III), over Cd(II), Cu(II), Ni(II),

and Zn(II), having the highest selectivity coefficients at 17.52 and 6.07 in the test range. The five adsorption-desorption cycle

experiments exhibited that APAN micro/nanofibers adsorbent are readily reusable, and have potential for heavy metal removal

from wastewater. The adsorption behavior in multi-metal systems was shown to be complex, including surface complexation,

antagonistic competition and displacement reactions. The diversity and selectivity in metal ion adsorption onto the micro/nano-

fibers relate mainly to the stability constants, and the microscopic coupling mechanism between the heavy metal ions and the

functional groups on the fiber surface. This interaction mechanism between the favorable component and other metal ions

could contribute significantly to the direct displacement impact illustrated schematically.

Key words: adsorption behavior, adsorption capacity, APAN micro/nanofibers, competitive adsorption, hexahydroxy metallic
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HIGHLIGHTS

• Amidoxime-functionalized polyacrylonitrile micro/nanofibers were prepared.

• Competitive adsorption behavior of hexahydroxy metallic system was investigated.

• APAN micro/nanofibers had a better selective adsorption for Pb(II) and Cr(III).

• The mechanisms included surface complexation, antagonistic competition and displacement reaction.
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GRAPHICAL ABSTRACT
INTRODUCTION

Heavy metals are among the most important pollutants in source and treated waters, and are becoming a severe
public health problem. Industrial and municipal wastewaters frequently contain metal ions. Special attention
should be given to heavy metal pollution – such as Cd, Cr, Pb, Ni, Zn and Cu –which are not only the commonest
in industrial wastewater but also pose serious threats to ecological systems and public health, because of their

high toxicity, and non-biodegradable and carcinogenic properties even at very low concentrations (Saeed et al.
2008; Kampalanonwat & Supaphol 2010; Li et al. 2011; Neghlani et al. 2011; Ihsanullah et al. 2016).

Adsorption has long been perceived as a simple, economical, and widely used environmental remediation pro-

cess for the removal of toxic metals from wastewater. Various adsorbents have currently been synthesized and
modified in an effort to enhance the affinity to metal ions and bring fast and high adsorption capacity. Among
the modified adsorbents, chelating polymer fibers, with one or more reactive functional groups containing O,

N, S and P donor atoms and extensive structural diversity, are capable of forming stable complexes with metal
ions, and thus induce large adsorption capacity, high selectivity, and excellent mechanical properties as well
as easy recovery.

Recently, polyacrylonitrile (PAN) nanofibers obtained by electrospinning or solution-blowing were used as the
base material of an adsorbent, because of their small diameter and easy preparation. This kind of adsorbent has a
high surface area because of the nano-scale diameter of the polymer nanofibers, and surface groups can be chan-
ged by choosing different polymers or modification. It can satisfy the criterion of a material used for adsorption

(Saeed et al. 2008; Kampalanonwat & Supaphol 2010; Neghlani et al. 2011; Huang et al. 2013; Deb et al. 2020a,
2020b). There has been substantial interest in surface modifying PAN micro/nanofibers, with several advantages
associated with their characteristic large surface area, chemical resistance, thermal stability, low flammability and

good mechanical properties, and they have performed well in heavy metal and dye adsorption (Deng & Bai 2003;
Saeed et al. 2008; Neghlani et al. 2011; Deb et al. 2020a, 2020b). Modified PAN micro/nanofibers can be regen-
erated and reused in other cycles after adsorption (Neghlani et al. 2011; Horzum et al. 2012). Hong et al. (2015)
successfully fabricated aminated PAN nanofibers, which had a maximum uptake capacity 1,520 mg/g for Pb(II),
and retained over 90% of their extraction capacity after six adsorption-desorption cycles. Ndayambaje et al.
(2016) used PAN imidazole ligand nanofibers to adsorb Ni(II) in aqueous solution, and equilibrium uptake of

Ni(II) at pH 3 and pH 5 was 0.3 and 0.7 mol/kg respectively, at a Ni(II) concentration of 0.0025 mol/L.
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Soltanzadeh et al. (2014) prepared PAN-TETA to adsorb Cu(II) and Cd(II), and maximum sorption capacities of
109.26 and 99.67 mg/g were achieved at pH 6, respectively.

In previous studies, the adsorption performance of amidoxime-functionalized PAN (APAN) micro/nanofibers

for Cd(II), Cr(III), Cu(II), Ni(II), Pb(II) and Zn(II) were systematically investigated (Lou et al. 2018). The maxi-
mum adsorption capacities could be up to 185, 204, 95, 104, 345 and 91 mg/g, respectively, and the re-adsorption
capacities were up to 80–91% of initial adsorption values after five succeeding cycle operations.

The use of binary or multiple aqueous solution in adsorption study is a more representative system as it reflects

the actual wastewater where sole toxic metal species rarely exist in natural streams and waste effluents (Sengil &
Özacar 2009; Koong et al. 2013; Hizal et al. 2016; Fan et al. 2017; Berber-Mendoza et al. 2018). Therefore, it is
more crucial to evaluate the simultaneous adsorption behavior and interactions involving two or more metal

species to better simulate the actual wastewater. Heavy metal adsorption depends not only on the characteristics
of adsorbents but also the nature of the different metals involved because of their competitive behavior for
adsorption sites. Many studies have been focused on competitive and selective adsorption of heavy metals

using various sorbents (Li et al. 2011; Koong et al. 2013; Yang et al. 2015). However, as of much significance,
involved in the combined impact of the different metal ions and various adsorbents, the conclusion of interactive
effect between metal species is not quite consistent with each other (Sc ́iban et al. 2007; Laus & Fávere 2011;

Hossain et al. 2014; Tan et al. 2016). Furthermore, a few of studies have been dedicated to the competitive
adsorption of heavy metals by PAN or modified PAN micro/nanofibers (Park et al. 2010; Kampalanonwat &
Supaphol 2014; Ndayambaje et al. 2016; Bouazzaa et al. 2018). However, competitive adsorption of six
metals by modified PAN has rarely been reported previously. So, it is necessary to extensively investigate the com-

pletive adsorption behavior and mechanism of multiple heavy metal ions solutions such as Cd(II), Cr(III), Cu(II),
Ni(II), Pb(II) and Zn(II) onto modified PAN micro/nanofibers thoroughly.

The main objective of this study is to determine the competitive adsorption behaviors through isotherm mod-

eling for Cd(II), Cr(III), Cu(II), Ni(II), Pb(II) and Zn(II) in a multi-metal system onto APAN micro/nanofibers at
an optimal nintial concentration and contact time. Furthermore, the interactive process and adsorption mechan-
ism are also systematically illustrated.

MATERIALS AND METHODS

Materials and apparatus

Sodium carbonate (Na2CO3), hydroxylamine hydrochloride (NH2OH·HCl), cadmium nitrate [Cd(NO3)2·4H2O],
chromic nitrate [Cr(NO3)3·9H2O], copper nitrate [Cu(NO3)2·3H2O], nickel nitrate [Ni(NO3)2·6H2O], lead nitrate

[Pb(NO3)2], and zinc nitrate [Zn(NO3)2·6H2O] were purchased from Sinopharm Chemical Reagent Co., Ltd, Shang-
hai, China. All the chemicals were analytical grade or above and used as received without further purification.
Stock solutions of Cd(II), Cr(III), Cu(II), Ni(II), Pb(II) and Zn(II) were prepared by dissolving appropriate amounts

of the corresponding chemical compounds in Milli-Q water (Milli-Q Academic A10 system, Millipore Co., MA,
USA). All other reagent solutions were made of analytic grade reagents with Milli-Q water.

The micrographs of the PAN and APAN micro/nanofibers were analyzed using a scanning electron

microscopy (SEM; Hitachi TM-3,000, Tokyo, Japan). A Nicolet 8,700 Fourier transform infrared spectroscope
(FT-IR), operating at a wavenumber range of 4,000–400 cm�1 with the resolution of 4 cm�1, was used to charac-
terize the neat and modified solution-blown PAN fibers, based on the KBr method. The fiber diameters of micro/
nanofibers were analyzed by Image J processing software (National Institutes of Health, Bethesda, MD, USA).

Functionalization of solution-blown PAN micro/nanofibers

Solution-blown PAN fibers were prepared according to our previous studies (Lou et al. 2013, 2014). APAN
micro/nanofibers were synthesized based on the procedure of Saeed et al. (2008). Briefly, about 0.1 g of the sol-

ution-blown PAN micro/nanofibers were placed into a sealed chamber containing 5.5 g of Na2CO3, 3.5 g of
NH2OH·HCl, and 100 mL of Milli-Q water. The reaction temperature and time were fixed at 70+ 2 °C and
2–8 hours. Then the obtained micro/nanofibers were washed several times with deionized water to remove

the remaining salts, and then dried in a vacuum oven at 50 °C.

Competitive adsorption experiments

The batch technique was used with a mixed-metal solution containing equal concentrations of Cd(II), Cr(III),
Cu(II), Ni(II), Pb(II) and Zn(II) – thus ‘100 mg/L mixed solution’ means that the concentration of each metal
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ion was 100 mg/L. The metal ion concentrations were determined by inductively coupled plasma optical emis-
sion spectrometry (ICP-OES) (Thermo iCAP 6,000, Thermofisher Co., MA, USA), which was calibrated with
0.1, 1, and 10 mg/L standard solutions prepared by diluting a 1,000 mg/L standard solution with 2% HNO3.

The competitive adsorption experiments were conducted in multi-metal systems (Cd(II), Cr(III), Cu(II), Ni(II),
Pb(II) and Zn(II)) with the metal concentrations of 20–200 mg/L. The pH value of each solution was adjusted to
6.0+ 0.2 using 0.1 M HNO3 and 0.1 M NaOH. 0.1 g of APAN adsorbents were firstly added in 100 mL above
solutions in 250 mL flasks and then shaken at 125 rpm at room temperature (25°C). After reaching adsorption

equilibrium, the adsorption capacity (qe) of APAN micro/nanofibers in a single-metal system and multi-metal
system for each metal ion was calculated, respectively.

Effects of initial concentration and contact time

The multi-metal system and single-metal system solution were formulated according to the above-mentioned

methods. Samples were withdrawn at predetermined time intervals to analyze the remaining metal concen-
trations in the aqueous solution, and adsorption amount (qt) for each metal ion was calculated with different
initial concentration.

Adsorption isotherm

Adsorption equilibrium studies of the multi-metal system and single-metal system were carried out according to

the above-mentioned methods. After reached adsorption equilibrium, 1 mL of the testing solutions was taken and
diluted with a proper amount of Milli-Q water for ICP-OES analysis. All the sample solutions were filtered by
0.45 μm filters, and the metal ion concentrations in filtered solution were measured by ICP-OES. All experiments

were conducted in triplicate and mean values were used in data analysis. Blank experiments were performed to
ensure that no adsorption occurred on the walls of the apparatus used.

The Langmuir model is the most popular adsorption isotherm model. It is not only used for prediction of single

metal adsorption behavior but also for multi-metal adsorption. By introducing some interaction factors, the Lang-
muir isotherm can be modified into a multi-metal adsorption isotherm as follows (Srivastava et al. 2008; Padilla-
Ortega et al. 2013; Birungi et al. 2017):

qe,i ¼ qm,iKL,i(Ce,i)

1þ PN

j¼1
KL,j(Ce,j)

(1)

where qe,i is the equilibrium adsorption capacity for i metals (mg/g), Ce,i is the equilibrium concentration of i
metal ion (mg/L), KL,i is the isotherm parameter for i metal (L/mg), and qm,i is the maximum adsorption capacity
for i metals (mg/g), j is the number of metals of the solution.

In this experiment (i¼ 1–6 and j¼ 6), the adsorption system can be formulated by reforming Equation (1) for a
hexahydroxy solution of Cd(II)-Cr(III)-Cu(II)- Ni(II)-Pb(II)-Zn(II) system:

For Cd(II):

qe,Cd ¼ qm,CdKL,CdCe,Cd

1þKL,CdCe,Cd þ KL,CrCe,Cr þKL,CuCe,Cu þKL,NiCe,Ni þKL,PbCe,Pb þ KL,ZnCe,Zn
(2)

For Cr(III):

qe,Cr ¼ qm,CrKL,CrCe,Cr

1þKL,CdCe,Cd þ KL,CrCe,Cr þKL,CuCe,Cu þKL,NiCe,Ni þKL,PbCe,Pb þ KL,ZnCe,Zn
(3)

For Cu(II):

qe,Cu ¼ qm,CuKL,CuCe,Cu

1þKL,CdCe,Cd þ KL,CrCe,Cr þ KL,CuCe,Cu þKL,NiCe,Ni þKL,PbCe,Pb þKL,ZnCe,Zn
(4)
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For Ni(II):

qe,Ni ¼ qm,NiKL,NiCe,Ni

1þKL,CdCe,Cd þ KL,CrCe,Cr þ KL,CuCe,Cu þKL,NiCe,Ni þKL,PbCe,Pb þ KL,ZnCe,Zn
(5)

For Pb(II):

qe,Pb ¼ qm,PbKL,PbCe,Pb

1þ KL,CdCe,Cd þKL,CrCe,Cr þ KL,CuCe,Cu þ KL,NiCe,Ni þ KL,PbCe,Pb þKL,ZnCe,Zn
(6)

For Zn(II):

qe,Zn ¼ qm,ZnKL,ZnCe,Zn

1þ KL,CdCe,Cd þKL,CrCe,Cr þ KL,CuCe,Cu þ KL,NiCe,Ni þ KL,PbCe,Pb þ KL,ZnCe,Zn
(7)

Desorption and reusability experiments

The reusability experiments were conducted in multi-metal systems with metal concentrations of 20 mg/L. The
metal ion-APAN micro/nanofiber complexes were collected when adsorption reached equilibrium, and
washed several times with deionized water to remove any unadsorbed metal ions. Then, the adsorbent samples

containing the metals ion were placed in 50 mL of HNO3 (1 mol/L) solutions and stirred for 2 hours. The
amounts of adsorbed and desorbed metal ions were quantified by ICP-OES. After each adsorption-desorption
cycle, the APAN micro/nanofibers were washed thoroughly with deionized water, to neutralize and recondition
them for the next cycle. The adsorption-desorption experiments were conducted in five consecutive cycles.
RESULTS AND DISCUSSION

Characterization of APAN micro/nanofibers

FT-IR spectra of the neat and amidoxime PAN micro/nanofibers are shown in Figure 1. The neat PAN spectra
(curve a) show the absorption peaks of stretching vibrations at 2,245 cm�1 (C≡N), 1,738 cm�1 (C¼O), and
1,159–1,060 cm�1 (C–O), which indicates that the PAN is a copolymer of acrylonitrile and methylacrylate;

and the C¼O and C–O bands come from methylacrylate comonomer. The spectra of APAN micro/nanofibers
(curve b) exhibit correlative characteristic bands of amidoxime at 3,081 cm�1, 1,649 cm�1, 1,580 cm�1,
Figure 1 | FT-IR spectra of the (a) neat and (b) amidoxime PAN micro/nanofibers.
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1,238 cm�1 and 1,043 cm�1, corresponding to the stretching vibrations of O–H, C¼N, N–H, C–N and N–O in
amidoxime group, respectively. The intensity of the C≡N peak (2,245 cm�1) of APAN fibers decreased as the
conversion of the nitrile to the amidoxime group increased. The reduction of the C¼O peak (1,738 cm�1) of

APAN fibers suggests that the hydroxylamine group was incorporated by chemical treatment of methylacrylate
comonomer. From the FT-IR spectra of the APAN micro/nanofibers, the introduction of amidoxime group on
solution-blown PAN fibers was identified.

The SEM images of PAN and APAN micro/nanofibers are shown in Figure 2. Figure 2(a) indicates the solution

blown PAN micro/nanofibers have a main fiber diameter of 500–700 nm. Figure 2(b) shows an SEM image of the
APAN micro/nanofibers, and the fiber structure was similar to that of the initial solution-blown fibers, even
though the fiber diameters slightly increased due to being modified with hydroxylamine. It was worth mentioning

that the APAN micro/nanofibers presented an almost similar morphology with the former state, which did not
show any serious surface cracks or degradation.
Figure 2 | SEM images of (a) the PAN and (b) the APAN micro/nanofibers.
Characterization of competitive adsorption behavior

The equilibrium adsorption capacity (qe) of each metal ion in a single-metal system and multi-metal system onto
APAN micro/nanofibers was shown in Figure 3.

Under the same conditions of coexisting with other interfering metal ions, the qe of each metal ion in a multi-
metal system was 10%–45% lower than that in a single-metal system; especially for Pb(II) and Cr(III), the
reduction rates of qe were in the range of 10%–15%, while for Cd(II) it is 40%–45%. Besides, the reduction

rate increased with increasing initial concentration from 20 to 200 mg/L. The various degree and increasing
trend of reduction rates indicated that there was an obvious and intense antagonistic competitive phenomenon
between the metal ions in the multi-metal system. The diversity of adsorption reduction rates was attributed to the
different physical and chemical properties of metal ions and the different affinity and binding stability between

APAN micro/nanofibers and metal ions. Generally, when competitive sorption of metals is compared with
their mono-metallic behavior, the adsorption capacity is lower in competitive systems (Hossain et al. 2014; Sell-
aoui et al. 2017). Former research results also confirmed that the coexistence of multiple metal ions could affect

the adsorption capacity of each metal ion. Ding et al. (2016) found that the adsorption process in the mixture
(Cd(II) and Pb(II)) was different from the single solution, and the adsorption capacity both decreased in
binary system. Sellaoui et al. (2017) verified that the adsorption of Cd(II) was affected by the presence of

Zn(II) in binary system, and the adsorption capacity of Cd(II) is lower when coexisting with Zn(II) in binary
system. Similar experimental results were reported by Jain et al. (2016), Shu et al. (2016) and Du et al. (2016).

Effects of initial concentration and contact time

As presented in Figure 4, the qt increased obviously with the increasing initial concentration, but the increasing
trend became slower at higher concentrations, which indicated the initial concentration of metal ions has notice-

able influence on the qt. At lower concentration, the APAN micro/nanofibers were not saturated adsorption, the
a.silverchair.com/wpt/article-pdf/16/4/1327/943887/wpt0161327.pdf
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initial concentration directly impacted the mass transfer effects in the process of adsorption. Yang et al. (2015)
found that the adsorption capacity of Cu(II) and Zn(II) by extracellular polymeric substances increased with
increasing initial concentration of metal ions. Similar results were also obtained by Ding et al. (2016). With
the increasing of concentration, a higher concentration gradient could produce a larger adsorption driving

force, which made the adsorption capacity rise. As most of the active sites of APAN micro/nanofibers were occu-
pied by metal ions, the qt was close to the maximum adsorption capacity in this condition, so the increasing trend
of qt became slower.

The changing trend of qt with contact time was different for various metal ions. the qt of Pb(II) and Cr(III) onto
APAN micro/nanofibers were larger than that of other metal ions, which first increased rapidly and then tended
to level off, which was similar to the adsorption process of a single-metal system (Kampalanonwat & Supaphol

2014; Lou et al. 2014; Tan et al. 2016). However, the qt of APAN micro/nanofibers for Cd(II), Cu(II), Ni(II) and
Zn(II) firstly increased to the ‘inflection point’, then dropped, and eventually tended to balance gradually with
a.silverchair.com/wpt/article-pdf/16/4/1327/943887/wpt0161327.pdf



Figure 4 | Effects of initial concentration and contact time on adsorption amount (qt).

Table 1 | The isotherm constants of Langmuir model in a multi-metal system and single-metal system

Metal

Single-metal system Multi- metal system

qm(mg/g) KL(L/mg) R2 qm(mg/g) KL(L/mg) R2

Cd(II) 185.19 0.1154 0.9989 98.04 0.0566 0.9996

Cr(III) 204.08 0.1234 0.9973 158.73 0.0835 0.9997

Cu(II) 95.26 0.1012 0.9972 80.65 0.0519 0.9996

Ni(II) 104.17 0.1196 0.9982 76.34 0.0523 0.9997

Pb(II) 344.83 0.1593 0.9996 312.50 0.1317 1.0000

Zn(II) 90.91 0.1102 0.9975 58.82 0.0526 0.9992
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increasing contact time. This results indicated that Pb(II) and Cr(III) have a stronger affinity to -NH2 on the sur-
face of APAN micro/nanofibers than Cd(II), Cu(II), Ni(II) and Zn(II), which are easier to react with -NH2 and
form stable complexes, so Pb(II) and Cr(III) are preferably adsorbed on APAN micro/nanofibers. As the adsorp-

tion reaction proceeds, the active sites were occupied by different metal ions: however, free Pb(II) and Cr(III) in
the solution, which were easier to combine with -NH2, could adsorb on APANmicro/nanofibers by displacement
reaction mechanism, and make Cd(II), Cu(II), Ni(II) and Zn(II) desorption from the adsorbent. Therefore, the qt
of Cd(II), Cu(II), Ni(II) and Zn(II) decreased when the reaction reached a certain degree. In this experiment, the

qt of APANmicro/nanofibers for Cd(II), Cu(II), Ni(II) and Zn(II) appeared to undergo a significant decline at 6–8
hours, and then became equilibrium.

Adsorption isotherm

Adsorption isotherm is established when the remaining concentration of metal ions in solution (Ce) is in balance
with that being adsorbed onto APAN micro/nanofibers (qe). This level of equilibrium concentration depends sig-
nificantly on the initial concentration of the metals and the isotherm adsorption results. The isotherm constants

(KL) of the Langmuir model along with the correlation coefficients (R2) for Cd(II), Cr(III), Cu(II), Ni(II), Pb(II)
and Zn(II) in a multi-metal system and single-metal system are summarized in Table 1.

For all studied metal ions of multi-metal systems, the modified Langmuir model gives higher regression corre-
lation coefficients (R2. 0.999); this indicates the modified Langmuir isotherm model successfully fitted the

competitive adsorption of Cd(II), Cr(III), Cu(II), Ni(II), Pb(II) and Zn(II) onto APAN micro/nanofibers. The
maximum adsorption capacities (qm, mg/g) of the metal ions determined from the Langmuir isotherms were
in the order of Pb(II) (312 mg/g), Cr(III) (158 mg/g), Cd(II) (98 mg/g), Cu(II) (80 mg/g), Ni(II) (76 mg/g) and

Zn(II) (58 mg/g) in multi-metal systems, while Pb(II) (344 mg/g), Cr(III) (204 mg/g), Cd(II) (185 mg/g), Ni(II)
(104 mg/g), Cu(II) (95 mg/g) and Zn(II) (90) in single-metal systems. Obviously, the qm of each metal ion in a
multi-metal system were lower than that in a single-metal system. Ding et al. (2016), Park et al. (2016) and Liu

& Lian (2019) also confirmed that the adsorption process of metal ions in a multi-metal system fitted the Lang-
muir model better than the Freundlich model, and the adsorption capacity in a multi-metal system differed from a
single-metal system due to the competition behavior.

Compared with the single-metal system, the qm of metal ions in the multi-metal system declines in different
degrees, which is consistent with the parameter KL of the Langmuir isotherm (Srivastava et al. 2008; Hossain
et al. 2014; Vilardia et al. 2018). The values of the parameter KL of the Langmuir isotherm provides an indication
of the affinity of the adsorbent for the metal ions in the test solution, and the higher values of KL indicate strong

bonding of metal ions onto APAN micro/nanofibers. The values of KL,Cd, KL,Cr, KL,Cu, KL,Pb, KL,Ni and KL,Zn in
the case of the multi-metal system were lower than the value of KL derived for the single-metal system, which
means that the affinity of APAN micro/nanofibers for metal ions was reduced in the multi-solution system. So

the adsorption capacity of Cd(II), Cr(III), Cu(II), Ni(II), Pb(II) and Zn(II) in the multi-solution system was
lower than the single-metal system. Moreover, in the multi-metal system, the values of KL,Pb and KL,Cr were con-
siderably larger than other metal ions. This indicated that Pb(II) and Cr(III) had a stronger competitive power

than Cd(II), Cu(II), Ni(II) and Zn(II) in the multi-metal system; therefore, Pb(II) and Cr(III) both had higher
adsorption capacities.

The non-linear relationships between the adsorption capacities versus the concentration of remaining metal
ions in the multi-metal system are depicted in Figure 5. As can be seen from the figure, the calculated adsorption

amounts (qe,Langmuir) obtained from the Langmuir isotherm are in good accordance with experimental values
(qe,exp), which further proved that the modified Langmuir isotherm model could accurately estimate the adsorp-
tion capacities for all metal ions.

Distribution coefficient and selectivity coefficient

The ability for adsorbents to remove a given metal ion from aqueous solution can be expressed in terms of dis-
tribution coefficient (Kd), which is defined as the ratio of the amount of metal ions adsorbed onto the solid

matrix to those in the liquid matrix (Lin et al. 2001; Chen et al. 2015; Wei et al. 2016). Kd is a measurement
of the affinity of an adsorbent for a particular ion and an indicator of the selectivity of the adsorbent to the par-
ticular ion in the presence of interfering ions. The magnitudes of the distribution coefficient reflect the adsorption

selectivity and these values are found to be applicable for multi-component adsorption systems as well, and Kd
a.silverchair.com/wpt/article-pdf/16/4/1327/943887/wpt0161327.pdf
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can be determined at adsorption equilibrium by Equation (8):

Kd ¼ (C0 � Ce)
C0

� V
M

(8)

where Kd is the distribution coefficient (mL/g), C0 and Ce are the initial and equilibrium concentrations of the
metal ions (mg/mL), V is the volume of the testing solution (mL), and M is the amount of adsorbent (g).

TheKd values of APANmicro/nanofibers inmulti-metal systemofCd(II), Cr(III), Cu(II), Ni(II), Pb(II) andZn(II)

are listed in Figure 6. It is clear that the APANmicro/nanofibers showed extremely good selectivity for Pb(II) and
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Figure 6 | Distribution coefficient (Kd) of APAN micro/nanofibers in the multi-metal system.
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Cr(III), withKd values up to 1,786–42,490 and 849–14,709 respectively at initial concentrations ranging from 20 to
200 mg/L. In contrast, the APANmicro/nanofibers had little or no selectivity for Zn(II) and Ni(II) with initial con-
centrations ranging from20 to 200 mg/L, and theKd valuesweremuch lower than Pb(II) andCr(III). Therefore, the

aminated on the surface of PANmicro/nanofibers not only provides enhanced adsorption for Pb(II) andCr(III) but
also the possibility of selectively adsorbing or separating Pb(II) and Cr(III) from other ions for the potential benefit
of Pb(II) and Cr(III) recovery when they are to be removed from water or wastewater.

To further investigate the selectivity of APAN micro/nanofibers, the selectivity coefficient (α) of a specific or

targeted metal ion for the binding sites in the presence of other competitive species can be obtained from equili-
brium binding data according to Equation (9) (Li et al. 2005; Liu et al. 2010; Monier et al. 2016):

a ¼ Kd(T)
Kd(I)

(9)

where α is the selectivity coefficient, Kd(T) is the Kd value of the targeted metal, and Kd(I) is the Kd value of other
metal ions in the multi-metal system. The greater the α value, the better selectivity towards the targeted metal ion.

Figure 7 summarizes the α values of APAN micro/nanofibers towards Cd(II), Cr(III), Cu(II), Ni(II), Pb(II) and
Zn(II) obtained in the presence of other competitive metal ions. With the concentration ranging from 20 to
200 mg/L for each metal ion, the α value of Pb(II) was greater than 2 towards any other metal ion, and the

next is, and the α value of Cr(III) was greater than 1 towards other metal ions except Pb(II). In contrast, the α

values of Cd(II), Cu(II), Ni(II) and Zn(II) were lower than those of Cr(III) and Pb(II), respectively. This was con-
sistent with the previous research results of Tripathy et al. (2018) and Li et al. (2011), where the Kd value of Pb(II)

and Cr(III) is higher over other competitive metal ions in a binary system and multi-component system. This
phenomenon indicated that APAN micro/nanofibers had a better selective adsorption for Pb(II) and Cr(III)
than Cd(II), Cu(II), Ni(II) and Zn(II), which was also confirmed with the former-mentioned results of competi-
tive adsorption experiments.

Moreover, the α value changed with different trends with increasing concentration for the better selectively
adsorbed metal ions than the relatively weak ones. When the metal ion concentration was increased, the α

values for higher selective adsorption (α. 1) decreased gradually, while the α values for lower selective adsorp-

tion (α, 1) had a tendency to increase. This indicated that the antagonistic competition adsorption effect
between the metal ions was intense with increasing the metal ion concentration, and the selective adsorption per-
formance of APAN micro/nanofibers was prominent at lower concentration.

Desorption and reusability studies

The results of five cycles of adsorption-desorption in multi-metal systems are graphically displayed in Figure 8.

The re-adsorption capacities of the APAN fibers are slightly decreased with increasing adsorption-desorption
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Figure 7 | The selectivity coefficient (α) of APAN micro/nanofibers towards Cd(II), Cr(III), Cu(II), Ni(II), Pb(II) and Zn(II).
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cycles, and more than 84.16%, 86.99%, 78.80%, 78.23%, 89.51% and 76.50% of the initial adsorption capacities
for Cd(II), Cr(III), Cu(II), Ni(II), Pb(II) and Zn(II) are attained after the fifth cycle. This result is probably attrib-
uted to (1) desorption efficiency, which cannot be as high as 100% because of the non-electrostatic forces

between the APAN fibers and metal ions (Singh et al. 2007), thus certain binding sites are still occupied; and
(2) the loss of some functional groups on the fibers by acid hydrolysis (Aliabadi et al. 2013). The results indicated
that the APANmicro/nanofibers can be reused frequently without appreciable losses in adsorption performance,

and thus, they have potential application in industrial activities.
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Figure 8 | The reusability of APAN fibers in multi-metal systems.
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Mechanism of competitive adsorption

In essence, the adsorption of metal ions Mnþ (n¼ 2 or 3) is the process to form surface complexes between metal

ions and lone pair electrons of the nitrogen atom in the -NH2 functional group on the APAN surface, as shown in
Equation (10).

RNH2 þMnþ ! RNH2M
nþ (10)

It is commonly known that the diversities of adsorption capacity and selectivity of adsorption in the multi-
metal system are mainly related to the stability constants and the microscopic coupling mechanism between
the heavy metal ions and the functional groups on the fiber surface (Heidari et al. 2013; Chand & Pakade

2015). The stability constant is generally determined by the nature of the interaction between micro-molecular
and functional groups, and higher stability constant indicates that the complexing ability between the metal
ions and the functional group is stronger. The stability constants between heavy metal ions and -NH2 and

-OH functional group on APAN surface are shown in Table 2.
Table 2 | Stability constants between the heavy metal ions and the functional groups

Metal ions

Stability constants

qm(mg/g)-NH2 -OH

Cd(II) 2.65 4.17 98.04

Cr(III) 4.15 10.1 158.73

Cu(II) 4.31 7.0 80.65

Ni(II) 2.80 4.97 76.34

Pb(II) 4.92 7.82 312.50

Zn(II) 2.37 4.40 58.82
As can be seen in Table 2, the adsorption capacity of Cd(II), Cr(III), Cu(II), Ni(II), Pb(II) and Zn(II) is basically
consistent with the order of the stability constants between metal ions and -NH2 but different from -OH, which

indicated that -NH2 is the main and -OH is the minor functional group in APAN micro/nanofibers. In this exper-
iment, the stability constants of Pb(II) and Cr(III) with -NH2 and -OH were higher than that of other metal ions,
which was due to the fact that both -NH2 and -OH can form complexes with Pb(II) and Cr(III), and can even

form complex complexes such as -NH2-M-OH. While Pb(II) and Cr(III) have a stronger affinity with the surface
functional groups of APAN micro/nanofibers, and it is easier to form stable complexes; therefore, in the multi-
metal system, Pb(II) and Cr(III) can reject Cd(II), Cu(II), Ni(II), and Zn(II), which have been adsorbed but
have weak affinity with the displacement reaction mechanism (Li et al. 2011).

It may be speculated that Pb(II) and Cr(III) first adhere to the adjacent adsorption sites of Cd(II), Cu(II), Ni(II),
and Zn(II) on the APAN micro/nano fibers, then Cd(II), Cu(II), Ni(II), and Zn(II), which have been adsorbed
but have weak affinity to -NH2, are repelled by inducing electrostatic repulsion. These results clearly indicate
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that the Pb(II) and Cr(III) higher affinity to -NH2 induce the desorption of the non-dominant heavy metal ions
that have been adsorbed through the displacement reaction (Figure 9). It is therefore reasonable to assume
that there is a strong competitive adsorption in the process of APAN micro-nano fiber adsorption heavy metal

ions in the multi- metal system.
Figure 9 | The mechanism of competitive adsorption.
CONCLUSIONS

In this paper, APAN micro/nanofibers were synthesized and utilized to remove Cd(II), Cr(III), Cu(II), Ni(II),
Pb(II) and Zn(II) in a multi-metal aqueous solution system. Initial concentration and contact time have signifi-

cant influence on the adsorption amount, and the adsorption capacity in the multi-metal system was lower
than that in the single-metal system, while the total adsorption capacity was higher. With each metal ion concen-
tration ranging from 20 to 200 mg/L, the qe in the multi-metal system decreased by about 10%–45% compared to

that in the single-metal system. Modified Langmuir isotherm model successfully fitted the competitive adsorption
of Cd(II), Cr(III), Cu(II), Ni(II), Pb(II) and Zn(II) onto APAN micro/nanofibers, and the maximal adsorption
capacities for Cd(II), Cr(III), Cu(II), Ni(II), Pb(II), and Zn(II) were 98, 158, 80, 76, 312 and 58 mg/g, respectively.
The distribution coefficients and selectivity coefficients of Pb(II) and Cr(III) were higher than whose of Cd(II),

Cu(II), Ni(II) and Zn(II) at initial concentrations ranging from 20 to 200 mg/L, which indicated that APAN
micro/nanofibers had higher selectivity for Pb(II) and Cr(III) in the multi-metal system. Desorption and reusabil-
ity of APAN micro/nanofibers were determined by five adsorption-desorption cycles, and the re-adsorption

capacities were up to 76–90% of initial adsorption values after five succeeding cycle operations. These results
show that the APAN micro/nanofibers represent a promising material for treatment of wastewater containing
heavy metal ions. The adsorption behavior in the multi-metal system is a complex process including surface com-

plexation, antagonistic competition and displacement reaction, and the diversities and selectivities in adsorption
of metal ions onto APAN micro/nanofibers are mainly related to the stability constants and their microscopic
coupling mechanism between the heavy metal ions and the functional groups on the fiber surface. This work

highlights competitive adsorption behavior of heavy metals by APAN micro/nanofibers, which is helpful for
us to gain a deeper understanding of their removing and transport in multi-metal polluted environments.
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