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ABSTRACT

IFAS-MBR with co-precipitation, not yet commonly used in practice, will result in a very compact process for nutrient removal.

The process, based on a combined pre- and post-denitrification IFAS process with membrane separation (IFAS-MBR), was

tested in two parallel small-scale plants. Train A was operated with co-precipitation in order to achieve high removal of total

P (TP). Train B, without co-precipitation, served as a control. Due to the coagulant (Al) addition, the concern was precipitation

on the biofilm carriers in the aerobic reactor in Train A. A small internal air-lift pump proved to be very efficient in controlling

biofilm thickness and removing excess biofilm mass as needed. A coagulant dose equivalent to an Al/TP molar ratio of 1.9 was

necessary to achieve 99% TP removal and 0.10 mg TP/l in the effluent of Train A. Very good removal of total N was achieved in

both trains. Train A had a biofilm nitrification rate of 0.65 g NH4-N/m
2d at 12–13 °C and 5.2–5.6 mg O2/l. The tests demonstrated

that an IFAS-MBR process with co-precipitation and an aerobic suspended biomass SRT of 5–10 days is feasible, and that all the

performance goals set up for the full-scale plant were achieved.
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HIGHLIGHTS

• IFAS-MBR with co-precipitation and combined pre- and post-denitrification for removal of P and N from wastewater.

• Removal of 95% COD, 80% N, 100% SS and 99% P at a dose of 1.9 mol Al/mol P.

• Air-lift pump to control the biofilm biomass and optimize nitrification on the biofilm carriers in the IFAS reactor.

• IFAS-MBR process worked well at suspended biomass aerobic SRTs of 5–10 d.

GRAPHICAL ABSTRACT
INTRODUCTION

The Gardermoen wastewater treatment plant (WWTP), Ullensaker, Norway, needs to expand capacity and meet
new discharge requirements calling for removal of.70% total N (TN) and.98% total P (TP) as annual averages,
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and thermotolerant coliform bacteria (TCB) ,100 CFU/100 ml. Site restrictions require a very compact design
and the stringent P-removal requirement calls for filtration of the final effluent. The primary treated wastewater
in the existing full-scale plant has a low C/N ratio and an external carbon source (glycol) is used, supplied free of

charge from the nearby airport (Rusten & Ødegaard 2007).
One choice for the upgrade would be a traditional activated sludge based membrane bioreactor (MBR), but

since the existing plant is based on moving bed biofilm reactors (MBBRs), it was of interest to analyse the poten-
tial of an IFAS-MBR process where the MBBR-based IFAS (integrated fixed-film activated sludge) would result in

a compact bioreactor and the membrane separation would give a good as well as compact biomass separation
step (Ødegaard 2018). A pre-feasibility study indicated, indeed, that an IFAS-MBR process, shown in the simpli-
fied process flow-sheet in Figure 1, was a potential option.
Figure 1 | Simplified flow sheet for the proposed IFAS-MBR process at Gardermoen WWTP.
Historically, the use of activated sludge processes with membrane separation generated a cost and energy pen-
alty that was only worth paying if the discharge standards were very tight, water reuse was the goal and/or a low

footprint was needed (Jefferson et al. 2018). However, in recent years membrane prices have decreased and fully
optimized MBR energy consumptions of less than 0.4 kWh/m3 treated wastewater have also been demonstrated
(Krzeminski et al. 2017; Yamashita et al. 2019). MBR processes with activated sludge and co-precipitation is an

established technology, and for an effluent TP limit of 0.1 mg/l comparisons have shown MBR with co-precipi-
tation to have favourable total lifecycle costs (capitalþO&M) (Young et al. 2014).

Most of the studies comparing pure moving bed biofilm reactors (MBBRs) followed by membrane separation

(MBBR-MBR) and MBBR-based IFAS processes with membrane separation (IFAS-MBR) go in the favour of
IFAS-MBR (Leyva-Díaz et al. 2017). Most studies that compare the traditional activated sludge-based MBR
and the IFAS-MBR are also in favour of the IFAS-MBR (Duan et al. 2015; Mannina et al. 2018). The IFAS-
MBR is claimed to have the advantage of operating at higher fluxes, being more compact, having better

energy efficiencies and better membrane fouling control (in most papers) than the traditional MBR. Mannina
et al. (2018) also demonstrated lower nitrous oxide emissions. Hence the IFAS-MBR should be the most interest-
ing system, taking advantage of the best qualities of suspended biomass, attached biomass and membrane

separation.
One of the benefits of IFAS is that nitrification can be achieved at less than half of the aerobic solids retention

time (SRT) that is used in traditional activated sludge plants, when the SRT is based on mixed liquor suspended

solids (MLSS) (Ødegaard et al. 2014). Moreover, several studies have shown that, due to the lower SRT, the specific
pre-denitrification rate in IFAS systems is up to twice as high as in conventional activated sludge systems (Rusten
et al. 2003; Onnis-Hayden et al. 2011). Since both the nitrification zone and the denitrification zone can be smaller,

there is potential for the bioreactors in an IFAS-MBR to be significantly smaller than in the conventional MBR.
A comparison by Ødegaard (2018) of a conventional MBR and an IFAS-MBR, both with co-precipitation of

phosphorus, showed that at 10 °C the bioreactor volume for the IFAS-MBR was about 60% of the total bioreactor
volume for the conventional MBR. This made the IFAS-MBR a very attractive process for the expansion of the

Gardermoen WWTP. However, chemical co-precipitation of phosphorus in an IFAS-MBR system had never been
tested. Unpublished observations from previous short-term testing of co-precipitation in MBBR systems showed
a.silverchair.com/wpt/article-pdf/16/4/1091/944392/wpt0161091.pdf
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precipitation on the biofilm carriers, which made the carriers so heavy that they were no longer suspended in the
reactor. Therefore, co-precipitation of phosphorus has not been practiced in full-scale MBBR systems. This led to
legitimate concerns about possible negative interactions from chemical precipitation also on the biofilm carriers

in an IFAS reactor. Consequently, the Ullensaker municipality decided to test this concept in small scale, before
seriously considering an IFAS-MBR process with co-precipitation.

The primary objectives of this research were to:

• Investigate the effect of co-precipitation of phosphorus on the biofilm carriers in an IFAS-MBR process, by run-
ning in parallel one train with co-precipitation and one train without.

• In the case of precipitation on the biofilm carriers, to develop a method for controlling the biofilm thickness

and thus mitigate any negative effects on the nitrifying biofilm carriers from co-precipitation of phosphorus.

Secondary objectives were to:

• Document feasibility and conditions for achieving low effluent TP concentrations (.98% removal) in an IFAS-
MBR. This can only be achieved by adding a coagulant.

• Document membrane fouling and removal of nitrogen at aerobic, suspended biomass SRTs of 5–10 days (based
on biomass in bioreactor).

• Document removal of organic matter, nitrogen, SS and TCB in relation to the effluent criteria for the full-scale

plant.

METHODS

The small-scale test plant (Figure 2) had two parallel trains, where an aluminium based coagulant (Ekoflock 90)

was added downstream from the IFAS-tank in Train A to achieve very low final effluent TP. Train B served as a
reference without coagulant. Spent aircraft de-icing fluid (monopropylene glycol) from the nearby airport was
used as an external carbon source for the post-denitrification (DN) in both trains.
Figure 2 | Flow sheet for one of the two trains in the test plant.
Influent wastewater was primary treated with a drum filter (DynaDrum, 100 μm filter cloth) to protect the

membranes (module: ZeeWeed-10, 0.93 m2 membrane area, 0.04 μm average pore size). The membranes were
operated on a cycle of 9.5 min permeate flow followed by 0.5 min of backflush at twice the permeate flow. For-
ward membrane flux averaged 11.5 LMH (l/m2-h), with a maximum of 14.2 LMH. Membranes were chemically

cleaned about every 80–90 days.
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The IFAS reactors had biofilm carriers (BWT 15, Biowater Technology, Tønsberg, Norway) with a bulk specific
surface area of 828 m2/m3 and a filling fraction of 48.9%. In Train A, the IFAS reactor had a small air-lift pump,
which could be turned on to control biofilm thickness in case of excessive precipitation on the carriers due to

the coagulant addition. The air-lift pump had an inner diameter of 46 mm and a total length of 1.6 m. Both the pos-
ition and air-flow of the air-lift pump were adjustable, with normally 55–60% of the air-lift pipe submerged in the
IFAS reactor.

Total empty bed hydraulic retention time (HRT) in the biological system (excluding membrane tank) averaged

9.3 h (7–10 h range), based on influent flow (Qin). Both recirculation and return sludge pumping were normally at
2.0�Qin, but recirculation was reduced to 1.0�Qin for the last four weeks of the test period in order to reduce
the amount of oxygen returned from the IFAS reactor to the pre-DN reactor. Average design flow rates and reac-

tor sizes for the test plant are shown in Table 1.
Table 1 | Normal flow rates, biofilm carrier filling and reactor volumes for one of the two identical trains

Influent flow 9 l/h; 216 l/d

Recirculation flow 18 l/h

Return activated sludge flow 18 l/h

Pre-denitrification reactor 29 l wet volume

IFAS reactor 45 l wet volume

IFAS biofilm carriers 48.9% (22.0 l) filling fraction of BWT 15

Rapid mixing tank for external carbon source (and coagulant in Train A) 0.66 l wet volume

Post-denitrification reactor 9.2 l wet volume

Membrane tank 9.3 l water volume with membrane installed

Permeate and backflushing tank 1.9 l wet volume
The storage tank for the primary treated wastewater was filled twice a week and initially the temperature in the
tank gradually increased to room temperature after each filling. A cooler was then installed to reduce the temp-
erature in the storage tank to about 4 °C, and after insulating the pilot-plant reactors the temperature in these

reactors gradually came down to between 11 and 12 °C towards the end of the experiments. However, a few
days in the last week of June and first week of July 2019 had higher temperatures than planned, due to problems
with the heat exchangers (see temperatures in Figures 3, 7 and 8).

Monitoring, control, sampling and analyses

Samples of water and suspended biomass were taken as grab samples twice per week, 2 or 3 days after the
storage tank was last filled, so that the samples were representative for the pilot-plant performance with
the wastewater composition in the storage tank. Water samples from each individual reactor were pipetted

directly from the reactor to a gravity pre-filter (Whatman 597 ½, 4–7 μm pore size) and then immediately fil-
tered again with syringe filters (Whatman GF/C, 1.2 μm average pore size). This was done to minimize the
biological activity prior to analyses, which were performed as soon as a sufficient volume of filtered
sample was available.

Influent samples to the pilot-plant (after DynaDrum primary treatment) were analysed for total COD (TCOD),
filtered COD (FCOD), total nitrogen (TN), total nitrogen on filtered sample (FTN), NH4-N, NO2-N, NO3-N,
total phosphorus (TP), total phosphorus on filtered sample (FTP), PO4-P, suspended solids (SS) and alkalinity. Fil-

tered samples from the individual biological reactors and the membrane reactors were analysed for FCOD, FTN,
NH4-N, NO2-N, NO3-N, FTP and PO4-P. The final effluent samples were analysed for TCOD, TN, NH4-N, NO2-N,
NO3-N, TP, PO4-P and SS. Whatman GF/C filters were used for filtration of samples and measurement of SS.

Biomass in each reactor were analysed for total solids (TS) and volatile solids (VS) and were sampled at the
same time as the water samples. Wasted sludge was collected automatically from the return sludge lines, using
solenoid valves. TS and VS were measured on flow proportional weekly samples of wasted sludge. The return

sludge from the membrane tanks was so concentrated that it did not thicken in standard 1,000 ml cylinders.
a.silverchair.com/wpt/article-pdf/16/4/1091/944392/wpt0161091.pdf
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Therefore, a diluted sludge volume index (DSVI) was measured by taking 200–300 ml of return sludge and
diluting it up to 1,000 ml with permeate from the respective train.

Attached biomass on the biofilm carriers was measured as TS at least every two weeks and sometimes more

frequently, using an internal Aquateam COWI laboratory procedure. In this procedure, the dry weight of the car-
riers is measured before and after all biomass has been removed from the carriers. Biomass is removed by soaking
the carriers in a 50% domestic chlorine solution and then rinsing with hot water until no trace of biomass can be
spotted. If necessary, the cleaning process is enhanced by applying sonication and/or using small pipe brushes on

all surfaces of the carriers, followed by additional rinsing.
All analyses were done in the on-site laboratory. Merck Spectroquant Cell Test kits, Merck Spectroquant

Reagent Test kits, a Merck Spectroquant Thermoreactor TR 620 and a Merck Spectroquant Prove 100 Spectro-

photometer (Merck/Millipore-Sigma, USA and Canada) were used for chemical analysis. SS, TS and VS were
analysed according to Standard Methods (2005).

Specific nitrification rate for the biofilm on the biofilm carriers was measured in separate batch tests. From

each IFAS reactor 100 biofilm carriers were carefully removed and placed in separate beakers, which were
then filled with 500 ml effluent from Train B. Train B effluent was chosen because it contained sufficient amounts
of phosphorus. NaHCO3 was added as a buffer and NH4Cl was added to have excess NH4-N concentrations. The

beakers were placed on magnetic stirrers in water baths to provide proper turbulence and a temperature close to
that in the pilot reactors. Air diffuser stones were used to supply oxygen. The tests typically lasted for 3 h and the
decrease in NH4-N concentrations was measured by frequent sampling. Dissolved oxygen (DO) concentrations,
temperature and pH were monitored.

In order to compare specific biofilm carrier nitrification rates, measured at different temperatures and DO con-
centrations, the model presented in Rusten et al. (1995) was used. For temperature correction, a temperature
coefficient (θ) of 1.09 was used. The reduction in the oxygen concentration available for nitrification (due to con-

sumption in the outer, heterotrophic layer of the biofilm) was set at 1.0 mg O2/l. At IFAS reactor concentrations
above 2.5 mg NH4-N/l the rate limiting factor was always the DO concentration. With a fully developed nitrifying
biofilm and a fixed temperature, the nitrification rate will then, as an example, increase by 27% if the DO is

increased from 6 mg O2/l to 8 mg O2/l.
All flow rates were manually measured daily and adjusted if needed. DO, temperature and pH were also

measured daily in every reactor. The test plant was PLC controlled. Settings and run-times for all pumps and
open-shut times for solenoid valves were logged and could be changed over the internet. Values from DO and

temperature probes in IFAS tanks and pH probes in rapid mixing tanks were automatically logged, together
with water levels in membrane tanks and trans-membrane pressure (TMP) over the membranes. The level indi-
cator would automatically stop the feed pump or the permeate pump if the water level in the membrane tank got

too high or too low, and automatically start the pump again when the water level was inside the pre-set limits.
Denitrification loads and removal rates were calculated for NO3-N equivalents, where oxygen (0.35 g

NO3-Neq/g O2) and nitrite (0.6 g NO3-Neq/g NO2-N) were converted to equivalent amounts of NO3-N.

Calculations for pre-denitrification were based on influent flow, internal recycle flow (from IFAS to pre-DN),
return sludge flow (from membrane tank to pre-DN); concentrations of NO2-N, NO3-N and DO in these three
streams; TS, VS and DO in the pre-DN reactor; and NO2-N and NO3-N out of the pre-DN reactor. Calculations

for post-denitrification were based on influent flow, return sludge flow (from membrane tank to pre-DN); NO2-N
and NO3-N out of the IFAS reactor and out of the post-DN reactor; DO in the IFAS reactor; TS, VS and DO in
the post-DN reactor; and the flow and concentration of the external carbon source.
RESULTS AND DISCUSSION

The pilot plant was started on 24 September 2018, with seed sludge from one of the nitrifying biofilm reactors in

the full-scale plant. Chemical precipitation of phosphorus was introduced in Train A on 17 December 2018. Data
presented in this paper are from 2 February to 13 November 2019.

Operating conditions and overall influent concentrations, effluent concentrations and removal efficiencies for the

two parallel trains are shown in Tables 2 and 3, respectively. Both recirculation flows and return sludge flows were
sometimes lower than the intended set-point due to either partially clogged tubes or problems with the pumps. DO
concentrations in anoxic reactors were always low. The aerobic IFAS reactors had DO concentrations in a suitable

range for a nitrifying biofilm process (Rusten et al. 1995). The membrane reactors had very high DO concentrations
a.silverchair.com/wpt/article-pdf/16/4/1091/944392/wpt0161091.pdf



Table 2 | Operating conditions for test plant from 2 February to 13 November 2019

Train A (co-precipitation) Train B (control)

Parameter Average+St. Dev. Median Average+ St. Dev. Median

Influent flow, l/h 9.3+ 0.7 9.0 9.3+ 0.8 9.0

Recirculation flow, l/h 16.4+ 3.8 18.0 16.9+ 2.9 18.0

Return sludge flow, l/h 17.6+ 0.9 17.7 17.5+ 1.5 18.0

DO in pre-DN, mg/l 0.04+ 0.01 0.03 0.04+ 0.09 0.02

DO in IFAS, mg/l 7.3+ 1.1 7.1 6.5+ 1.3 6.3

DO in post-DN, mg/l 0.06+ 0.24 0.02 0.03+ 0.05 0.02

DO in membrane tank, mg/l 8.8+ 0.6 8.9 7.7+ 0.8 7.8

Temperature in IFAS, °C 15.7+ 3.6 14.4 15.9+ 3.6 14.6

Activated sludge in IFAS, mg TS/l 6779+ 1675 7053 5429+ 857 5647

Activated sludge in IFAS, mg VS/l 4556+ 1057 4630 4503+ 697 4720

Biofilm in IFAS, mg TS/l 4499+ 1792 4740 3515+ 1493 3880

Activated sludge in membrane tank, mg TS/l 10160+ 2744 10531 7883+ 1733 8047

Activated sludge in membrane tank, mg VS/l 6850+ 1650 7195 6647+ 1170 6770

Suspended aerobic SRT, da 7.3+ 1.5 7.2 9.3+ 1.8 9.8

Total aerobic SRT, db 13.2+ 4.2 11.4 15.7+ 2.8 15.4

Total SRT, dc 23.8+ 5.8 21.9 28.7+ 4.3 29.6

External C-source, g COD/g TNin biology 2.3+ 0.5 2.3 2.4+ 0.6 2.4

Average Min Max Average Min Max

pH in pre-DN 7.4 6.0 8.3 7.3 6.4 8.3

pH in IFAS 7.0 5.0 8.2 6.9 5.5 8.2

pH in rapid mixing tank 6.6 4.6 7.5 6.9 5.6 7.9

pH in post-DN 6.9 5.2 7.9 7.1 5.5 8.0

pH in membrane tank 7.2 5.3 8.4 7.4 5.3 8.4

aSuspended aerobic solids retention time (SRT), based on activated sludge in IFAS reactor only.
bBased on both suspended biomass and biofilm biomass in IFAS reactor only.
cIncludes biomass in membrane tank.
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due to vigorous aeration being necessary to keep the activated sludge in suspension and create enough turbulence
to avoid sludge cakes on the membrane fibers. Temperatures were similar in the two trains.

Activated sludge concentrations in the reactors were changed over the course of the test to cover different SRTs.

Measured as VS, the concentrations were similar in the two trains. However, due to the addition of coagulant in
Train A, the TS concentrations were significantly higher in Train A than in Train B. The average VS/TS ratios
were 0.67 in Train A and 0.83 in Train B. Suspended biomass aerobic SRTs, based on the IFAS reactor only,

were most of the time about 2 days lower in Train A than in Train B (caused by the extra sludge production from
precipitation). The lowest suspended biomass aerobic SRT was only 3.8 days in Train A and 4.7 days in Train
B. Biomass in membrane tanks are normally not included in the aerobic SRT calculations for MBR plants, even
though the membrane tanks are aerated. Any nitrification in the membrane tanks is considered as an additional

safety factor in the design of these systems. Somewhat higher effluent NH4-N concentrations out of Train A than
Train B were observed in the second half of the test period, as seen in Figure 3. This happened at the same time
(1 July to the middle of August) as the influent NH4-N concentrations increased and the temperatures in the bio-

reactors dropped. Average effluent concentrations in Figure 3 were 4.7 mg NH4-N/l for Train A and 1.4 mg NH4-
N/l for Train B. Median effluent concentrations were 2.1 mg NH4-N/l for Train A and ,0.2 mg NH4-N/l for
Train B. This difference between the two trains was caused mainly by the lower suspended aerobic SRT in Train

A compared to Train B as the temperature dropped, and this will be discussed further in the section on nitrification.
A lower minimum pH in the IFAS reactor in Train A (pH 5.0) vs. Train B (pH 5.5) may also have been a contributing
factor. However, due to the high influent concentrations, the difference in the amount of nitrified nitrogen was only

4% based on average effluent concentrations and 2% based on median effluent concentrations.
a.silverchair.com/wpt/article-pdf/16/4/1091/944392/wpt0161091.pdf



Table 3 | Influent concentrations (after primary treatment), effluent concentrations and removal efficiencies for the test plant
from 2 February to 13 November 2019

Parameter aInfluent, mg/l

Train A (co-precipitation) Train B (control)

Effluent, mg/l Removal, % Effluent, mg/l Removal, %

Total COD Median 366 15.0 95.8 25.5 93.4
Min 126 5 90.3 5 85.8
Max 597 44 98.8 41 98.6

Filtered COD Median 184 – – – –

Min 78 – – – –

Max 354 – – – –

Suspended solids Median 115 0.00 100.0 0.10 99.9
Min 36.0 � 1.5 99.1 � 1.4 99.5
Max 315 0.90 101.6 0.60 101.5

Total P Median 8.3 0.080 99.1 5.5 32.9
Min 3.6 0.016 85.4 3.7 8.4
Max 12.4 1.30 99.8 7.8 53.2

PO4-P Median 5.6 0.060 98.9 5.4 5.2
Min 2.8 ,0.005 73.0 3.7 � 27.3
Max 9.6 1.27 .99.9 7.7 21.7

Total N Median 89.0 16.0 83.1 11.7 86.9
Min 44.0 0.30 42.7 0.50 27.1
Max 126 55.0 99.4 70.0 99.1

NH4-N Median 69.0 2.12 – ,0.20 –

Min 35.7 ,0.20 – ,0.20 –

Max 97.0 25.9 – 18.1 –

NO2-N Median 0.03 0.11 – 0.03 –

Min 0.02 0.01 – 0.01 –

Max 0.06 2.87 – 2.06 –

NO3-N Median 0.50 11.1 – 10.4 –

Min 0.20 0.50 – 0.50 –

Max 1.30 39.4 – 48.0 –

aInfluent to test plant, after primary filtration.

Figure 3 | Influent and effluent NH4-N concentrations for the two trains, together with temperatures in Train A IFAS reactor.
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The influent to the IFAS-MBR had relatively high concentrations of TN and TP but was low in soluble organic
matter. Hence, influent C/N ratios were low, with averages of 4.3 g TCOD/g TN and 2.1 g FCOD/g TN. The over-
all removal of organic matter was excellent in both trains, but slightly better in Train A due to the coagulation of

some of the colloidal organic matter that would pass through the membrane in Train B. As expected, average
removal of SS was 100% in both trains since the membranes had an average pore size of only 0.04 μm. Individual
effluent SS values different to zero were due to the error in the analytical precision of these measurements, result-
ing in some negative values. Phosphorus removal will be discussed later, but removal of TP was excellent in Train

A (co-precipitation) with a median removal efficiency of 99% compared to 33% in Train B (control).
Performance of each biological reactor will also be discussed later, but influent and effluent TN concentrations

are shown in Figure 4. For the entire period, average TN removal efficiencies were 80% for Train A and 83% for

Train B, well above the required annual average removal. Spikes in effluent concentrations around 1 March can
be explained by the plant being stopped for chemical membrane wash shortly before sampling. Increased effluent
concentrations and lower removal efficiencies on some days from July onwards were due to a combination of

lower temperatures (down to 11 °C), increased hydraulic load and insufficient dosing of external carbon
source. The slightly lower nitrification in Train A compared to Train B, previously mentioned, accounts for
the difference in average TN removal efficiencies between the two trains.
Figure 4 | Influent and effluent TN concentrations.
Multiple grab samples showed TCB to always be �20 CFU/100 ml in the final effluent of both trains.
Phosphorus removal

In Train B (control) removal of TP was always low since only particulate P was removed. On some days, the con-

centrations of PO4-P in the effluent were higher than in the influent due to hydrolysis of organic P. Removal of TP
in Train A (co-precipitation) was dependent on the amount of coagulant added. Figure 5(a) shows influent and
effluent concentrations, removal efficiencies and Al/TP molar ratios from day to day. Al/TP molar ratios are

based on the Ekoflock 90 dose and the TP concentration in the influent to the IFAS-MBR pilot plant. From
the beginning of February 2019, the molar ratios were �2.0 and effluent TP concentrations were very low
with removal efficiencies above 98%. Coagulant doses between 3 and 4 mol Al/mol TP were obviously higher

than necessary and resulted in removal efficiencies well above 99% and effluent concentrations well below
0.1 mg TP/l. From the end of June 2019, the coagulant dose was reduced to give removal efficiencies for TP
between 98 and 99%. Close to the end of the testing period, the coagulant dosing was significantly reduced

and at an Al/TP molar ratio below 1.5 there was a sharp increase in effluent TP concentrations and the removal
a.silverchair.com/wpt/article-pdf/16/4/1091/944392/wpt0161091.pdf



Figure 5 | Phosphorus concentrations, removal efficiencies and Al/TP molar ratios for Train A with co-precipitation.
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efficiency decreased to about 85% for TP after a few days with Al/TP molar ratios from 0.7 to 1.1. When the
coagulant dose was increased to above 1.5 mol Al/mol TP the removal efficiency again reached 98% for TP.

From the end of June to the beginning of October 2019, we had a period with very stable coagulant dosing and

an Al/TP molar ratio of 1.9+ 0.3 and this period is highlighted in Figure 5(b). Except for a couple of days, we had
very low effluent concentrations with averages of 0.10 mg TP/l and 0.08 mg PO4-P/l and median values of
0.08 mg TP/l and 0.04 mg PO4-P/l. Average and median removal efficiencies for TP were 98.8% and 99.1%,

respectively.

Pre- and post-denitrification

Conditions and results for pre-DN reactors and post-DN reactors are shown in Table 4. Loads, rates and concen-
trations are given as NO3-N equivalents (NO3-Neq). Due to a higher fraction of inert biomass in Train A (co-

precipitation), average and median specific pre-DN rates, based on biomass as TS in the reactors, were slightly
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Table 4 | Pre-DN and post-DN conditions and results for Train A (co-precipitation) and Train B (control), from 2 February to
13 November 2019

Parameter

Pre-denitrification Post-denitrification

Train A Train B Train A Train B

DN reactor load,
mg NO3-Neq/g TS-h

Average 3.2 4.7 9.8 13
Median 2.6 3.8 7.2 12
Min 0.5 1.6 3.8 6.6
Max 12 12 29 30

DN reactor rate,
mg NO3-Neq/g TS-h

Average 1.2 1.4 5.4 7.7
Median 1.1 1.3 5.2 7.3
Min 0.3 0.2 3.6 3.7
Max 2.9 3.3 8.7 11

DN reactor load,
mg NO3-Neq/g VS-h

Average 4.6 5.6 14 16
Median 3.7 4.5 10 14
Min 0.8 2.0 5.6 7.7
Max 17 14 40 36

DN reactor rate,
mg NO3-Neq/g VS-h

Average 1.8 1.7 7.7 9.1
Median 1.7 1.6 7.6 8.8
Min 0.4 0.2 4.8 4.2
Max 4.0 3.9 12 14

C/N-ratio in to the DN reactor,
g FCOD/g NO3-Neq

a
Average 3.6 3.3 3.6 3.0
Median 3.3 2.4 3.6 3.1
Min 0.8 0.7 2.2 0.2
Max 8.5 11 6.2 4.9

Reactor effluent concentration,
mg NO3-Neq/l

Average 7.9 11 8.8 12
Median 4.7 9.7 5.6 10
Min ,0.5 ,0.5 ,0.5 ,0.5
Max 25 22 35 42

Temperature,
°C

Average 15.7 15.9 15.9 16.0
Median 14.4 14.5 14.6 14.6
Min 11.2 11.4 11.2 11.5
Max 22.4 22.6 22.4 22.6

aBased on FCOD in the primary effluent for the pre-DN reactor and COD in the added external carbon source for the post-DN reactor.
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higher in Train B than in Train A. Based on VS, however, the specific pre-DN rates were slightly higher in Train A
than in Train B. Several factors influence the pre-DN rates, to an extent that they can mask the effect of temp-

erature. This is demonstrated in Figure 6, where high DN rates were observed at the lower temperatures.
Detailed examination of the data showed that in both trains the C/N ratios and the reactor effluent NO3-Neq con-
centrations had the most impact on the pre-DN rates and were more important than the temperature. With

reactor effluent concentrations around 3 mg NO3-Neq/l, typical pre-DN rates in Train A were 1.5–2.0 mg
NO3-Neq/g VS-h, and with reactor effluent concentrations from 12 to 18 mg NO3-Neq/l, pre-DN rates were
2.5–3.5 mg NO3-Neq/g VS-h. From 5 July to 13 November 2019, at the low average temperature of 12.7 °C, the
average pre-DN rate in Train A was 2.1 mg NO3-Neq/g VS-h.

The pre-DN rates observed in this study are in the upper end of corresponding rates on conventional activated
sludge MBR systems (Judd 2006), and even more so considering the very low influent C/N-ratios in this study.

Specific post-DN rates were significantly higher than the pre-DN rates. The main reasons for this were the

easily biodegradable external carbon source and the high NO3-Neq loads. Median C/N ratios based on the
added monopropylene glycol were low, with 3.6 g FCOD/g NO3-Neq in Train A (co-precipitation) and 3.1 g
FCOD/g NO3-Neq in Train B (control). Median post-DN rates were 7.6 and 8.8 mg NO3-Neq/g VS-h in Train

A and Train B, respectively. This difference was mainly due to the much lower median NO3-Neq load and effluent
NO3-Neq concentration in Train A, and thus more data points with very low effluent concentrations. For the
entire test period, the average carbon source consumption was 5.3 g FCOD/g NO3-Neq removed in Train A

and 4.9 g FCOD/g NO3-Neq removed in Train B. Similar to the pre-DN rates, other factors masked the tempera-
ture effect on the post-DN rates as well.
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Figure 6 | Pre-DN rates versus loads for Train A and Train B. Bubble width indicates temperature.
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Even though the specific post-DN rates were 4–6 times higher than the pre-DN rates, about 42% of the nitrogen

removed by denitrification was removed by pre-DN in Train A (co-precipitation) and about 37% was removed by
pre-DN in Train B (control). The reason for this was the much larger volume of the pre-DN reactor compared to
the post-DN reactor.

Nitrification

Effluent NH4-N concentrations and amount of NH4-N removed are shown together with suspended biomass
aerobic SRTs and IFAS-reactor temperatures in Figure 7(a) for Train A and Figure 7(b) for Train B, respectively.
Train A showed some breakthrough of NH4-N in May, at 14–15 °C and 7 d suspended biomass aerobic SRT. This

coincided with some days of higher nitrogen loads, and the amount of NH4-N removed did not drop compared to
April. Train B showed no breakthrough in this period, due to a suspended biomass aerobic SRT above 10 d in
April and which got back up to 10 d SRT in mid-May. As the temperature continued to drop and the

ammonium-load increased in July (ref. Figure 3), both trains saw a breakthrough of NH4-N. In Train A, the
removal of NH4-N actually increased, even though the suspended biomass aerobic SRT was as low as between
3.8 and 4.8 d in mid-July at a temperature of 12–13 °C. Looking at the beginning of October, with a suspended

biomass aerobic SRT below 5.5 d and 11–12 °C, NH4-N removal was steady in the 13–15 g NH4-N/d range.
We believe almost all this NH4-N removal to be due to nitrification on the biofilm carriers in the IFAS reactor,
and that only minimal nitrification took place in the suspended biomass. Train B had suspended biomass aerobic

SRT of 10 d on 1 July, compared to 6 d SRT for Train A. Train B had also significantly shorter periods at low SRT.
Train A was below 6 d suspended biomass aerobic SRT for about 2 months, while Train B was below this value
for only 1–2 weeks. Thus, suspended biomass definitely contributed significantly to the nitrification in Train B,
also at the lowest temperatures, maybe with an exception for the few weeks with suspended biomass SRT

below 7 d at 12–13 °C.
The specific biofilm nitrification rates for biofilm carriers from the IFAS reactors are shown in Table 5. Both

temperature and DO have a huge impact on the nitrification rates (Rusten et al. 1995, 2003). Compensating for

the difference in temperature and DO, using the equations in Rusten et al. (1995), the specific biofilm nitrification
rates in Train A were identical for the batch-tests on 29 March and 24 May. For the subsequent tests, the temp-
eratures were even lower. Nevertheless, the specific biofilm nitrification rates increased in Train A, showing that a

robust nitrifying biofilm had developed on the carriers.
For Train B the specific biofilm nitrification rates were very low for the first two sets of tests. The third test (16

July), however, showed significantly higher nitrification rates in Train B than in Train A. This was mainly due to

the much higher DO in Train B and partly due to the higher biomass and thicker biofilm in Train A. For the last
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Figure 7 | Effluent NH4-N concentrations and amount of NH4-N removed, shown together with suspended biomass aerobic
SRTs and IFAS-reactor temperatures for Train A (a) and Train B (b), respectively.
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three sets of tests the nitrification rates were higher in Train A than in Train B, in spite of slightly higher DO in
Train B. The reasons for these observations are difficult to explain, but it may have to do with the coagulant
agglomerating colloids and fine particles that may influence the biofilm activity.

The specific biofilm nitrification rates were about the same as expected in conventional MBBRs at similar
temperatures and DO concentrations (Rusten et al. 1995).

In an IFAS system for nitrogen removal there will always be some nitrification in the activated sludge, either
due to sloughed nitrifying biofilm circulating in the system or because the aerobic suspended growth SRT is suffi-

ciently long to sustain nitrification. Looking at the NH4-N reduction over the membrane tank on days with
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Table 5 | Results from batch-tests of nitrification rates on biofilm carriers

Date,
2019

Train A (co-precipitation) Train B (control)

Temp.,
°C

DO,
mg/l pH

Biofilm,
g TS/m2

Nitrif. rate,
g NH4-N/m2-d

Temp.,
°C

DO,
mg/l pH

Biofilm,
g TS/m2

Nitrif. rate,
g NH4-N/m2-d

29.03 23.6 5.6 7.9 5.5 1.18 23.4 5.5 8.1 4.1 0.38

24.05 15.5 4.9 7.8 8.5 0.51 15.5 5.3 7.9 7.8 0.31

16.07 12.6 5.5 7.6 14.1 0.56 12.6 6.4 7.7 6.1 0.69

29.08 14.8 5.1 7.7 17.9 0.56 14.9 5.2 7.8 12.9 0.48

13.09 12.4 5.6 7.6 15.5a 0.65 12.2 6.0 7.8 13.8 0.48

24.10 13.5 5.2 7.8 13.5 0.65 13.5 5.6 7.9 10.0 0.57

aAir-lift pump used 6 h/d on work-days for two weeks prior to test, to reduce excessive biomass on carriers.
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surplus NH4-N concentrations in the effluent will give an indication of the suspended growth nitrification rate. A
mass balance approach was then used to find out how much of the NH4-N that was nitrified by the biofilm by

subtracting the amount that was estimated to be nitrified by the suspended growth. Examples of this are
shown in Table 6 for Train A. Only minimal nitrification was taking place in the activated sludge and more
than 90% of the nitrification happened in the biofilm in the IFAS reactor. Compensated for the differences in

temperature and DO, the specific biofilm nitrification rates in Table 6 agreed very well with the batch-test biofilm
nitrification rate in Train A on 24 October.
Table 6 | Examples of distributions of nitrification in activated sludge and biofilm, respectively, for train A (co-precipitation)

Date,
2019

Temp.,
°C

IFAS-reactor
DO, mg/l

Activated sludge Biofilm

Aerobic suspended
SRT, days

Specific nitrification rate,
mg NH4-N/g VS-h

Nitrification
in activated sludge, %

Nitrification in
biofilm, %

Specific
nitrification rate,
g NH4-N/m2-d

4.11 11.6 7.55 10.0 0.12 9.3 90.7 0.75

7.11 11.5 6.61 11.0 0.11 6.9 93.1 0.69
At first sight it is surprising that the suspended biomass is not fully nitrifying at an aerobic SRT of 10 d and 11–
12 °C. However, from Figure 7(a) it can be seen that the suspended biomass aerobic SRT was between 5 and 7.5
days for the eight weeks prior to the data shown in Table 6. Temperatures were between 11.3 and 12.3 °C. These
SRTs and temperatures were obviously too low to sustain suspended biomass nitrification. Even though the SRT

increased to 10 and 11 days, respectively, over the next week and the next two weeks, this was not a long enough
period to grow a significant amount of suspended nitrifying bacteria.

The amount of NH4-N removed from mid-July and onwards in Train A indicates that almost all nitrification

took place on the biofilm carriers. Looking specifically at the data from the last six weeks of testing, the removal
rate was fairly steady, between 13 and 15 g NH4-N/d. Using the measured biofilm nitrification rate in Train A
from October 24 (Table 5) and adjusting to the average temperature of 11.7 °C and average DO of 7.9 mg O2/l

over this six-week period, we get a specific biofilm nitrification rate of 0.79 g NH4-N/m2-d. With a biofilm surface
area of 18.2 m2 this equals an expected removal of 14.4 g NH4-N/d, according to the model developed by Rusten
et al. (1995), thus confirming that almost all nitrification in this period took place on the biofilm carriers.

Biofilm development and control

The development of the biofilm biomass in the IFAS reactors, as g TS/m2, is shown in Figure 8 for both Train A

(co-precipitation) and Train B (control). There was only marginally more carrier attached mass (biomass plus pre-
cipitated mass – here called biomass for simplicity) in Train A than Train B until the middle of June. Then the
biofilm biomass increased a lot in Train A, until it was more than twice the biomass in Train B. However, use

of the air-lift pump in the IFAS reactor for a few hours on regular workdays (shown by the triangles in Figure 8)
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Figure 8 | Biofilm biomass in IFAS reactors in both Train A and Train B, together with corresponding temperatures in Train A.
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brought the biofilm biomass in Train A down to the same level as in Train B within a few days. The turbulence

and shear when the biofilm carriers were transported through the air-lift pipe proved to be an efficient tool for
controlling the biofilm biomass. A biofilm that is too thick may reduce the specific nitrification rate due to the
consumption of oxygen in the outer heterotrophic layer before it can reach the nitrifying part of the biofilm.

Figure 9 shows a photo of a single biofilm carrier from Train A (co-precipitation) and Train B (control), respect-
ively. The carriers were photographed when submerged in water, to prevent the biofilm from collapsing. In these
photos, the biofilm biomass was 13.9 g TS/m2 for Train A and 10.4 g TS/m2 for Train B. These are typical values
for nitrifying biofilms on MBBR carriers. The biofilm thickness was typically 0.2–0.3 mm and slightly thicker in

Train A than Train B.
Figure 9 | Nitrifying biofilm. Biofilm carriers are 14.5 mm wide. (Photo: Nina Værøy, COWI.).
Sludge production and sludge volume index

For the same period as covered in Figure 5(b), with a very stable dose of coagulant added to Train A, the specific
sludge productions in the biological reactors were as listed in Table 7. The higher sludge production in Train A
was caused by the addition of coagulant in this train. Due to the high total SRT and the easily biodegradable exter-

nal carbon source, the specific sludge productions were very low, based on the total TCOD in the influent to the
biological stage plus the COD in the external carbon source.
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Table 7 | Average specific sludge productions for the period from 27 June to 3 October 2019

Train A
(co-precipitation)

Train B
(control)

Sludge production, g TS/g TCOD in influent to biological stage 0.36 0.22

Sludge production, g TS/g TCOD supplied, incl. external C-source 0.25 0.15

Chemical sludge production, g TS/g Al added 4.0 –
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Diluted sludge volume index (DSVI) measurements on the return sludge showed that the sludge from Train A

(co-precipitation) had DSVI from 114 to 151 ml/g TS and settled much better than the sludge from Train B (con-
trol) that had DSVI from 353 to 462 ml/g TS. However, with the membrane separation, the high DSVI in Train B
was not a problem for the performance of the IFAS-MBR process.

Flux, chemical wash of membranes and pressure loss

The median value for the membrane flux was 11.4 LMH, and the highest membrane flux tested was 14.2 LMH.
These fluxes are normal for conventional MBR systems.

Chemical wash of membranes was initiated when the TMP reached 0.2–0.3 bar, corresponding to an in-situ
permeability of about 40–55 LMH/bar. Periods between each chemical wash varied from 78 to 91 days. Washing

with 1000 ppm NaOCl at 35 °C was followed by washing with 2000 ppm citric acid (at between 10 and 35 °C).
The washing solution was slowly pumped through the membranes to ensure good contact with the membrane
pores. After chemical washing, the membrane permeability was tested in clean water at ambient temperatures

between 18 and 24 °C. Permeabilities (average+ standard deviation) were 623+ 213 LMH/bar for the mem-
brane in Train A (co-precipitation) and 662+ 207 LMH/bar for Train B (control). This shows that the
chemical wash was very efficient and resulted in similar permeabilities, as reported by Fleischer et al. (2005)
after successful chemical wash of the same type of membrane. The membrane in Train A always had slightly
lower permeability than the membrane in Train B, even when the clean water permeability was measured on
the new membranes before they were put into service.

An example of TMP over the membranes is shown in Figure 10. This was 28 days after the last chemical wash
and shows that the IFAS-MBR was operated at very low TMPs. During permeate production, the average pressure
drop over the membrane was 0.030 bar (0.30 m water column) for both trains, at a flux of 11.2 LMH and 13 °C.
This corresponds to an in-situ permeability of about 370–375 LMH/bar. It looks like a lot of noise on the logged

pressure signals, but the difference between the minimum and maximum pressure drop during permeate pumping
was only 0.008–0.011 bar (0.08–0.11 m water column), which is actually quite low considering the forceful aera-
tion and high turbulence in the membrane reactors. During backflushing the pressure was between 0.040 and

0.044 bar.
Figure 10 | Example of TMP over the membranes, 28 days after the last chemical wash. Train A (co-precipitation) on the left
and Train B (control) on the right.
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The experience from this test is that it seems as if fouling of the membrane in an IFAS-MBR (at aerobic SRT of
5–10 days – based on suspended biomass in the IFAS reactor) is not more pronounced than in an ordinary MBR
(with typical aerobic SRT of 15–20 days (Judd 2006)). In future studies, one should investigate whether this holds

also for even lower SRTs (,5 days aerobic suspended biomass SRT), since conventional IFAS systems with
enough biofilm surface area have been shown to nitrify even at such low SRTs.

CONCLUSIONS

A combined pre- and post-denitrification IFAS process with membrane separation (IFAS-MBR) was tested in two

parallel small-scale plants, treating primary filtered (by fine sieves) wastewater. The main objective was to evalu-
ate the IFAS-MBR process and investigate the possible negative effect of co-precipitation of phosphorus on the
biofilm carriers. Train A had coagulant addition for co-precipitation and Train B served as a control with no
coagulant addition.

The IFAS-MBR process worked well at aerobic SRTs as low as 5–10 days, based on the suspended biomass in
the biological reactors. Removal of organic matter, nitrogen and suspended solids were very good in both trains.
In Train A (co-precipitation), average removal efficiencies were 95% for TCOD, 80% for TN and 100% for SS.

In Train B (control) average removal of TP was less than 35% since only particulate P was removed. In Train A
(co-precipitation), at an Al/TP-molar ratio of 1.9, effluent concentrations were very low with averages of 0.10 mg
TP/l and 0.08 mg PO4-P/l, and median values of 0.08 mg TP/l and 0.04 mg PO4-P/l. Average and median removal

efficiencies for TP were 98.8% and 99.1%, respectively.
The specific biofilm nitrification rates in the IFAS reactors were about the same as expected in conventional

MBBRs at similar temperatures and DO concentrations. Controlling the biofilm biomass and thickness by inter-

mittent use of an air-lift pump was an efficient tool for optimizing the nitrification on the biofilm carriers in Train
A. With biofilm control specific nitrification rates were typically 0.65 g NH4-N/m2-d at 12–13 °C and 5.2–5.6 mg
O2/l in Train A.

C/N ratios and reactor effluent NO3-Neq concentrations had the most impact on the pre-DN rates and were

more important than the temperature. Specific post-DN rates were significantly higher than the pre-DN rates.
The main reasons for this were the easily biodegradable external carbon source and the high NO3-Neq loads.

Specific sludge production, including the COD added as external carbon source, was 0.25 g TS/g TCOD sup-

plied for Train A (co-precipitation) and 0.15 g TS/g TCOD supplied for Train B (control). The difference was due
to the chemical sludge production in Train A, which was 4.0 g TS/g Al added. Average DSVI was 130 ml/g TS for
Train A and 390 ml/g TS for Train B.

Membranes were operated at a flux of 11.5+ 0.9 LMH. Chemical wash of membranes was initiated when the
TMP reached 0.2–0.3 bar. Clean water permeabilities after chemical wash were typically 600–700 LMH/bar,
which shows that the chemical wash was very efficient and the membranes were fully recovered.

The tests demonstrated that co-precipitation in an IFAS-MBR process is feasible, and that all the performance
goals for the planned full-scale plant were achieved, and hence that this process might be a viable option.
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