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ABSTRACT

The Niger basin has experienced historical drought episodes and floods in recent times. Reliable hydrological modelling has

been hampered by missing values in daily river discharge data. We assessed the potential of using the Multivariate Imputation

by Chained Equations (MICE) to estimate both continuous and discontinuous daily missing data across different spatial scales in

the Niger basin. The study was conducted on 22 discharge stations that have missing data ranging from 2% to 70%. Four effi-

ciency metrics were used to determine the effectiveness of MICE. The flow duration curves (FDC) of observed and filled data

were compared to determine how MICE captured the discharge patterns. Mann-Kendall, Modified Mann-Kendall, Pettit and

Sen’s Slope were used to assess the complete discharge trends using the gap-filled data. Results shows that MICE near per-

fectly filled the missing discharge data with Nash-Sutcliffe Efficiency (NSE) range of 0.94–0.99 for the calibration (1992–1994)

period. Good fits were obtained between FDC of observed and gap-filled data in all considered stations. All the catchments

showed significantly increasing discharge trend since 1990s after gap filling. Consequently, the use of MICE in handling missing

data challenges across spatial scales in the Niger basin was proposed.
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HIGHLIGHTS

• Runoff data of the Niger basin has a large amount of missing data.

• The quality of existing runoff data was improved by a multiple imputation technique.

• The effectiveness of the multiple imputation algorithm was influenced by the percentage of missing data.

• Trend analysis of gap-filled data shows significantly increasing trends from the 1990s.

• Modified Mann-Kendall performs better than the original Mann-Kendall test.
INTRODUCTION

West Africa have been ascribed with adverse climate change impacts. In past decades, the region experienced
decline in food security due to warming, changing precipitation patterns, and greater frequency of some extreme
events (IPCC 2019). Climate change has driven decreased discharge and increased drought in the Sahel since
1970, with observations showing that 1984 is the driest year on record (Biasutti 2019). High intensity rainfall

and flood magnitudes were projected to increase in coming decades (Sylla et al. 2015; Aich et al. 2016). An
increasing trend for annual rainfall-runoff erosivity and soil loss is expected in the 21st century (Amanambu
et al. 2019). Water resources are fundamental for several sectors such as hydropower, crop production and fish-

eries (Roudier et al. 2014). Sylla et al. (2018) disclosed that increase in temperature will lead to decrease in the
potential to sustain large dams and irrigated agriculture in West Africa.

TheNiger basin is ascribed as having poorly documented historical hydrological data. There has been a decrease

in the amount of reliable rainfall stations since 1980 (Ali&Lebel 2009; Oyerinde et al. 2015) and discharge stations
since 2000 (Schröder et al. 2019). This has been identified as due to underfunding of data collection agencies, lackof
technical capacity and commitment, inaccessibility of remote gauge stations due to logistical and security chal-

lenges, and equipment malfunction (Ekeu-Wei et al. 2018). Radar altimetry measurements were found to aid in
improving observed discharge data but generating reliable altimetry-discharge rating curves is still unresolved
(Schröder et al. 2019). Temporal resolution of radar altimetry measurements due to satellite passing time also cre-
ates challenges, when there is a consecutively gapped hydrological record (Ekeu-Wei et al. 2018). This has led to
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insufficient research for development inwater resources inWestAfrica (Vahid et al. 2015) and sometimes, contrast-
ing future trends have been reported (Dosio et al. 2020); this makes policy making difficult.

Multiple imputation is now accepted as the best general method to deal with incomplete hydrological data

(Little 1992; van der Heijden et al. 2006; van Buuren & Groothuis-Oudshoorn 2011; Ekeu-Wei et al. 2018;
Sidibe et al. 2018). It was described as the method of choice for complex incomplete data problems (van
Buuren & Groothuis-Oudshoorn 2011). Multiple Imputation performed better in filling missing data when com-
pared to other methods such as: complete case analysis, available case methods, least squares on inputted data,

maximum likelihood and Bayesian methods (Little 1992; van der Heijden et al. 2006). Ekeu-Wei et al. (2018)
compared the performance of radar altimetry and a multiple imputation technique (MICE) on 5 hydrological
stations located in the lower parts of the Niger basin (Nigeria). They concluded that MICE have potentials for

ameliorating missing data challenges on the evaluated 5 catchments. These studies highlighted above have
failed to assess the potential of multiple imputation across different scales on all parts of the Niger basin. The
river basin has different flow regimes from upper, middle and lower parts (Oyerinde et al. 2017c) and it

covers 10 countries. Therefore, this study assesses the efficacy of the Multiple imputation (MICE algorithm) in
filling missing discharge data across different spatial scales on the whole Niger basin. The infilled data were sub-
sequently used to assess complete discharge trends on 22 hydrological stations widely spread across the upper,

middle and lower parts of the Niger basin. The objectives of the study are to:

1. Evaluate the efficacy of MICE in improving observed discharge data across different spatial scales on the
Niger basin.

2. Estimate missing discharge data on 22 hydrological stations from 1980–2013.
3. Assess the effects of missing discharge data on hydrological trend analysis.

Study area

The Niger River basin is the largest river basin in West Africa and it sustains livelihood of most countries in the
Sahel. It covers 2.27 million km2, with the active drainage area comprising less than 50% of the total basin

(Ogilvie et al. 2010). The river has a length of 4,200 km and it is the third longest river in Africa. The basin
has a population of over 100 million people based in ten countries (Algeria, Benin, Burkina Faso, Cameroon,
Chad, Cote d’Ivoire, Guinea, Mali, Niger and Nigeria). The source of the Niger River is in the mountains of
Guinea in an area with very high rainfall. Annual precipitation average over the whole Niger basin is

690 mm/year. This precipitation pattern varies across countries and regions. In the Sahelian parts, annual pre-
cipitation is about 280 mm while at Guinea parts precipitation is up to 1,635 mm. The average temperature
ranges between 22 °C in the south to 27 °C in the northern parts. The basin topography shows high elevation

up to 2,202 meters above sea level (MASL) in the Guinea mountains and lower elevation of 4 MASL at the
basin exit into the ocean (Figure 1). Vegetation ranges from evergreen forests in the south to deserts in the North-
ern parts (Aich et al. 2016).

The Niger River flows Northeast from the source through the Upper Niger basin and enters the Inner Delta in
Mali. During the rainy season, the delta forms a large flood plain of 20,000–30,000 km2, facilitating the cultivation
of rice, cotton and wheat as well as cattle herding and fishing (KfW 2010). The size of the flooded area is subject

to strong annual variations, depending on the discharge of the Upper basin. A large part of the water is lost in the
delta due to evaporation and seepage. Its main tributary, the Benue River, flows from highlands of Cameroon and
joins the Niger at Lokoja, Nigeria, before reaching the Atlantic Ocean at the Gulf of Guinea (Oguntunde &
Abiodun 2013). The Niger has an annual average flow of 1,005.83 m3/s (average 1980–2013) at Koulikoro

(Mali) and up to 5,000 m3/s (average 1980–2013) close to the basin exit at Lokoja, Nigeria (Figure 1). The
World Bank estimates that 30,000 gigawatt hours could be generated in the Niger River and its tributaries,
but only 6,000 gigawatt hours have been developed so far. The Kainji Hydroelectric PLC (Figure 1) generates

22% of total hydroelectricity (KfW 2010). There is potential for increasing hydropower generation in the Niger
basin.

Data

Daily river discharge data used in the study was obtained from the Niger River Basin Authority (NBA). We got
data for 22 stations widely spread across the Niger River basin from 1920 to 2013 (Figure 1). As shown in Table 1
and Figure 2, all the evaluated 22 hydrological stations were established at different times. Two stations
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Figure 1 | Spatial location of the 22 hydrological stations on the Niger basin.

Table 1 | Length of available discharge data

S/N Stations Start End

1 Koulikoro 1921 2013

2 Douna 1923 2005

3 Ansongo 1951 2013

4 Couberi 1952 2013

5 Kompongou 1952 2013

6 Mopti 1952 2013

7 Taoussa 1952 2013

8 Yankin 1952 2013

9 Malanville 1953 2013

10 KeMacina 1954 2013

11 Akka 1961 2007

12 Dire 1961 2013

13 Banakoro 1968 2013

14 Alkongui 1980 2013

15 Baro 1980 2013

16 Garbey kourou 1980 2013

17 Jidere 1980 2013

18 Kakassi 1980 2013

19 Kandadji 1980 2011

20 Lokoja 1980 2013

21 Makurdi 1980 2013

22 Niamey 1980 2013
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Figure 2 | Yearly percentage missing data on the 22 river discharge stations from 1920–2013.
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(Koulikoro and Dire) have data records since the 1920s, eight stations started in the 1950s, three stations were
established in the 1960s while nine stations have records since the 1980s. Clear visual assessments of intra
and inter annual data quality shows most hydrological stations have good data from the 1980s (Figure 2).
Thus, we chose the period of 1980–2013 for this study.
METHODS

MICE algorithm

The MICE algorithm was implemented in the R package MICE (van Buuren & Groothuis-Oudshoorn 2011). The

multivariate imputation process involves three main steps: imputation, analysis and pooling, which are well
described by van Buuren & Groothuis-Oudshoorn (2011), Azur et al. (2011), and Sidibe et al. (2018). The
method has been found to work well in varieties of hydrological applications and to perform better than other

methods (Little 1992; Ekeu-Wei et al. 2018; Sidibe et al. 2018). In line with the study of Sidibe et al. (2018), miss-
ing values were estimated using the Predictive Mean Matching (PMM) approach. The missing data were
simulated multiple times – in this case, five times, which is considered sufficient from the study of Ekeu-Wei

et al. (2018).
The gap filled discharge data Y is a partially observed random sample from the p-variate multivariate distri-

bution P (Y ju). We assume that the multivariate distribution of Y is completely specified by θ, a vector of

unknown parameters. The MICE algorithm obtains the posterior distribution of θ by sampling iteratively from
conditional distributions of the form

P (Y 1jY�1, u1) (1)

..

.

P (YpjY�p , up) (2)

The parameters θ1,…, θp are specific to the respective conditional densities and are not necessarily the product
of a factorization of the ‘true’ joint distribution P (Y ju). Starting from a simple draw from observed marginal dis-
tributions, the tth iteration of chained equations is a Gibbs sampler that successively draws through its relation

with other variables, and not directly. Convergence can therefore be quite fast, unlike many other MCMC
methods. The name chained equations refers to the fact that the MICE algorithm can be easily implemented
as a concatenation of univariate procedures to fill out the missing data (van Buuren & Groothuis-Oudshoorn

2011).
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Calibration and validation of MICE gap filling method

MICE gap filling method was calibrated and validated at three discharge stations (Koulikoro, Dire and KeMa-

cina). The three stations were selected because they have less than 5% missing data from 1980–2013
(Figure 3). The average amount of missing data on the 22 discharge stations was calculated as 27%. The same
amount of missing data was artificially generated into the three discharge stations (Figure 4). Twenty percent dis-
continuous and randommissing data were generated throughout the 3 discharge time series as shown in Figure 4.

The remaining 7% missing gap was added through a continuous means from 1992–1994. Calibration was done by
comparing the observed and inputted discharge data during the continuous missing years (1992–1994). Observed
discharge data and Gap filled discharge data for the whole time series from 1980 to 2013 was used in data vali-

dation. Three efficiency metrics described below were used as an indicator of agreement between observed
discharge and inputted discharge. The 3 metrics have been previously used in the Niger basin (Oyerinde et al.
2016, 2017b; Oyerinde & Diekkrüger 2017; Poméon et al. 2018).
Figure 3 | Percent missing data of 22 river discharge stations from 1980–2013.
(a) Nash-Sutcliffe Efficiency (∞,NSE �1) (Nash & Sutcliffe 1970) (NSE) is commonly used to assess the pre-
dictive power of river discharge. It is defined as:
NSE ¼ 1�

Pn
i¼1

(Oi � Si)
2

Pn
i¼1

(Oi � �O)
2

(3)

Where O is the observed value and S is the predicted value at day i.
An efficiency of 1 corresponds to a perfect match between predicted and observations.

(b) Kling-Gupta Efficiency (KGE) was developed by Gupta et al. (2009) to provide a diagnostically interesting

decomposition of the NSE, which facilitates the analysis of the relative importance of its different
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Figure 4 | Observed vs 27% generated missing data at the three discharge stations.
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components (correlation, bias and variability) in the context of hydrological modeling (Kling et al. 2012).

KGE ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(r � 1)2 þ (b� 1)2 þ (g� 1)2

q
(4)

b ¼ ms

mo
(5)

g ¼ CVS

CVO
(6)

r is the correlation coefficient between predicted and observed discharge (dimensionless), β is
the bias ratio (dimensionless), γ is the variability ratio (dimensionless), μ is the mean discharge in
m3/-s, CV is the coefficient of variation (dimensionless). The KGE has its optimum at unity
(Kling et al. 2012).
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(c) Volumetric Efficiency (VE) was proposed in order to circumvent some problems associated with the NSE,
which is not sensitive to differences in absolute discharge values. It represents the fraction of water deliv-
ered at the proper time; its compliment represents the fractional volumetric mismatch (Criss & Winston

2008).

VE ¼ 1�

Pn
i¼1

jSi �Oij
Pn
i¼1

Oi

(7)
Flow duration curves (FDC)

To evaluate the performance of the gap filling method, FDC was done at a daily timestep between observed data
and filled data. FDC have been widely applied in hydrological studies (Kling et al. 2012; Onyutha & Willems
2013; Abadzadesahraei & Sui 2016; Burgan & Aksoy 2020). It represents the relationship between the magnitude

and frequency of daily, monthly (daily in this article) streamflow for a particular river basin. It provides an esti-
mate of the percentage of time a given streamflow was equaled or exceeded over a historical period. FDC was
used to provide a simple, yet comprehensive, graphical view of the overall historical variability associated with

streamflow in a river basin. It is the complement of the cumulative distribution function (cdf) of daily streamflow.
Each value of discharge Q has a corresponding exceedance probability p, and an FDC is simply a plot of the pth
quantile or percentile of daily streamflow versus exceedance probability p, where p is defined by:

p ¼ 1� P{Q � q} (8)

P ¼ 1� FQ(q) (9)
Trend analysis

Mann-Kendall test (MK)

To analyze for increasing/decreasing trends of river discharge, the Mann-Kendall test was employed. Mann-
Kendall test evaluates the relative magnitudes of data trend and it is widely used in hydrology (Verstraeten

et al. 2006; Meusburger et al. 2012; N’Tcha M’Po et al. 2017; Oyerinde et al. 2017a). The advantage of this
test is that the data need not comply with any particular distribution. Mann-Kendall statistic (S) was computed as:

S ¼
Xn�1

k¼1

Xn
j¼kþ1

sign(xj � xk) (10)

sign(xj � xk) ¼ 1 if xj � xk . 0
¼ 0 if xj � xk ¼ 0
¼ �1 if xj � xk , 0

8<
: (11)

where xj and xk are the annual values in years j and k, respectively and n is the number of years.

For an independent data sample without tied values, the mean and variance of S are given by:

E[S] ¼ 0 (12)

Var(S) ¼ n(n� 1)(2nþ 5)
18

(13)

If tied values are present in the sample, Var(S) is computed by:

Var(S) ¼ n(n� 1)(2nþ 5)�
Xn
i¼1

ti(i� 1)(2iþ 5)

" #
=18 (14)
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Then, the MK test statistic Z for all those cases where n is larger than 10 is given by:

Z ¼

S� 1
s

if S . 0

0 if S ¼ 0
Sþ 1
s

if S , 0

8>>><
>>>:

(15)

The trend was dignified as “no trend” when the change is not significant, ‘an increasing or a decreasing trend’

when S is positive or negative, respectively. Similarly, if Z. 0, it indicates an increasing trend, and vice versa.
Modified Mann-Kendall test by variance correction (MMK)

Study of Yue & Wang (2004) demonstrated that serial correlation in time series alters the variance of the MK

statistic. Their study was able to use modification of variance to limit the effect of serial correlation. In addition,
Chen et al. (2016) recommended the combined use of the MK and MMK tests when there are autocorrelations
above lag 1. Due to these reasons, we assessed and compared the autocorrelation of observed and gap-filled dis-
charge data. The results of the MK statistics before and after variance corrections of gap-filled data by MMK were

also compared. Modified variance V(S)* for computing the MK statistic Z is calculated as:

V(S)� ¼ V(S):
n
n� (16)

where n is the actual sample size of actual sample data, n* is the effective sample size, and n/n* is termed the
correction factor.
Sen’s slope

Besides the magnitude of a time series, trend was evaluated by a simple non-parametric procedure developed by
Sen (Sen 1968; Ali et al. 2019). The trend is calculated by:

b ¼ Median
xj � xi
J � i

� �
, j . i (17)

where β is Sen’s slope estimate. β. 0 indicates an upward trend in a time series. Otherwise the data series pre-
sents a downward trend during the time period (Ali et al. 2019).
Pettit test

To evaluate the difference between the cumulative distribution function before and after a time instant (K), the
Pettit test was applied. The Pettit test detects any significant change in the mean value in a time series (Kliment

et al. 2011). The non-parametric Pettit rank test was reported to have good capabilities in handling outliers (Pettitt
1979; Verstraeten et al. 2006) and it was previously used in hydrological studies in the region (Nka et al. 2015;
Oyerinde et al. 2017a). The significance of the analyzed trends in the dataset was tested at probability level p�
0.05 to show 99.5% experimental precision. It tests the H0: the T variables follow one or more distributions that

have the same location parameter (no change), against the alternative: a change point exists. The non-parametric
statistic is defined as:

KT ¼ maxjUt,T j (18)

where:

Ut,T ¼
Xt

i¼1

XT
j¼tþ1

sgn(Xi �Xj) (19)

The change-point of the series is located at KT , provided that the statistic is significant.
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Table 2 | Efficiency metrics during calibration and validation of MICE gap filling method

Calibration (missing years 1992–1994) Validation (all the time series from 1980–2013)

Koulikoro Dire KeMacina Koulikoro Dire KeMacina

NSE 0.94 0.99 0.94 0.99 0.99 0.99

KGE 0.96 0.98 0.94 0.99 1.00 0.99

VE 0.82 0.93 0.80 0.96 0.98 0.96

Figure 5 | Complete vs. filled data at the 3 discharge stations.

Water Practice & Technology Vol 16 No 3, 969

Downloaded from http://iwa.silverchair.com/wpt/article-pdf/16/3/961/908097/wpt0160961.pdf
by guest
on 25 April 2024



Water Practice & Technology Vol 16 No 3, 970

Downloaded from http://iw
by guest
on 25 April 2024
RESULTS

Calibration and validation of MICE gap filling method

The MICE gap filling method was evaluated at three discharge stations (Koulikoro, KeMacina and Dire), which
had less than 5% missing data (Figure 3). There was high efficiency metrics between the inputted data and
observed data during both continuous missing years (1992–1994) and the randomly created missing data in all

the time series from 1980 to 2013 (Table 2).
From Figure 5, visual assessments show that the MICE gap filling method well reproduced the observed sea-

sonality of flow at the three discharge stations. The observed low and high flows were well reproduced in the gap

filled discharge data.

Flow duration curves (FDC)

FDCs were plotted for all the 22 hydrological stations to show the fitness between the gap-filled and observed
discharge data (Figures 6–8). The FDC of inputted and observed data nearly indicated a perfect fit at all stations.
Figure 6 present FDCs that shows good fitness of observed and inputted data at selected stations on the main

Niger River at the Upper parts (Banakoro (11% missing data)), Inland Delta parts at Mopti (7% missing data),
Middle parts at Malanville (34% missing data) and the lower parts at Lokoja (19% missing data). From Figure 7,
Figure 6 | Comparison of FDC of Filled and observed discharge at selected stations on the Main Niger River.
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Figure 7 | Comparison of FDC of Filled and observed discharge at selected tributaries of the Niger River.
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there was an excellent fit between the FDC of inputted and observed discharge data at selected head water catch-

ments at Couberi (30% missing data), Makurdi (35% missing data), Douna (30% missing data) and Kakassi (45%
missing data). We assessed the FDC of four hydrological stations with highest percentage of missing data as
shown in Figure 8 (Kompongou (72% missing data), Garbey Kourou (50% missing data), Baro (46% missing

data) and Alkongui (63% missing data)). The pattern of flow of the observed was adequately reproduced by
the inputted, although there was slight over estimation at Baro while slight underestimation was observed at
Kompongou, Garbey Kourou and Alkongui.
Discharge trends

Figure 9 shows the autocorrelation plots for filled and observed discharge data of the 22 catchments using lags 1 to
10. Observed discharge data has very high autocorrelation values that range from 0.67 to 1.00 for all the 22 dis-
charge stations. The gap-filled data however had decreased and more diverse autocorrelation values (�0.2 to

0.77).We compared theMK tests statistics before and afterfilling themissing data (Table 3).Missing data decreased
the magnitude of S and Z statistics due to decreased sample size while this problem was corrected in the gap-filled
MK test. Sen’s slope p value indicates that six discharge stationswith high amounts ofmissing data (Alkongui (63%),

Banakoro (11%), Couberi (30%), Douna (30%), Kompongou (70%) and Makurdi (35%)) show no significant trend
a.silverchair.com/wpt/article-pdf/16/3/961/908097/wpt0160961.pdf



Figure 8 | Comparison of FDC of filled and observed discharge at stations with the highest amount of missing data.
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before gap filling. However, all the six catchments show significant increases after gap filling. The significant levels

and magnitude of the Sen’s slope were improved across all 22 catchments after gap filling.
We compared results obtained from MK and MMK tests on gap-filled data of the 22 catchments and the results

are shown in Table 4. MMK made substantial improvement of the Z and variance. The MK has a problem with

variance computation due to autocorrelation after gap filling (Figure 9). Constant variance value of 4550.33 was
computed by MK across the 22 stations while MMK was able to correct the problem.

A rapidly increasing trendlinewas observed in the graphical presentation shown in Figure 10. Pettit tests presented
in Table 5 show that all the 22 catchments witnessed significant increasing river discharge with break points of 14

catchments in 1993, four catchments had breaks in 1994, three catchments in 1997 and one in 1987 (Table 5).
Figure 11 presents the spatial map of the Sen’s slope for 22 stations in the Niger basin after gap filling. Most

(15) of the discharge stations showed significant increasing discharge at p� 0.001. Five discharge stations have

been increasing since 1980s at p� 0.01 while two stations increased at p� 0.05.
DISCUSSION

The study shows that missing data is a major challenge in the Niger basin. Twenty-one discharge stations have

missing values and incomplete records. This was due to the earlier discussed observed decrease in rainfall and
a.silverchair.com/wpt/article-pdf/16/3/961/908097/wpt0160961.pdf



Table 3 | Effects of missing data on Man-Kendall (MK) and Sen’s slope statistics

Observed Filled

Trend tests
MK test Sen’s slope MK test Sen’s slope

Test statistics S Z sen.slope p.value Sig.Level S z sen.slope p.value Sig.Level

Akka 134 2.63 14.28 8.6E-03 0.01 237 3.50 13.13 4.7E-04 0.001

Alkongui 46 0.84 0.32 4.0E-01 NS 177 2.61 0.51 9.1E-03 0.01

Ansongo 231 3.41 13.39 6.5E-04 0.001 277 4.09 11.25 4.3E-05 0.001

Banakoro 59 0.86 4.58 3.9E-01 NS 141 2.08 7.80 3.8E-02 0.05

Baro 133 2.91 62.99 3.6E-03 0.01 305 4.51 43.25 6.6E-06 0.001

Couberi 103 1.82 0.52 6.9E-02 NS 189 2.79 0.51 5.3E-03 0.01

Dire 215 3.17 10.01 1.5E-03 0.01 253 3.74 10.58 1.9E-04 0.001

Douna 41 0.88 2.95 3.8E-01 NS 207 3.05 5.77 2.3E-03 0.01

Garbey_kourou 168 2.71 1.80 6.8E-03 0.01 219 3.23 1.20 1.2E-03 0.01

Jidere 209 3.08 13.24 2.0E-03 0.01 271 4.00 16.23 6.3E-05 0.001

Kakassi 203 3.60 1.09 3.1E-04 0.001 225 3.32 0.56 9.0E-04 0.001

Kandadji 202 3.26 10.80 1.1E-03 0.01 285 4.21 11.67 2.6E-05 0.001

KeMacina 171 2.52 9.79 1.2E-02 0.05 185 2.73 10.89 6.4E-03 0.01

Kompongou 24 0.95 0.62 3.4E-01 NS 223 3.29 0.47 1.0E-03 0.001

Koulikoro 191 2.82 12.32 4.9E-03 0.01 191 2.82 12.32 4.9E-03 0.01

Lokoja 191 2.82 87.71 4.9E-03 0.01 261 3.85 83.51 1.2E-04 0.001

Makurdi 95 1.68 46.03 9.4E-02 NS 221 3.26 31.03 1.1E-03 0.01

Malanville 117 1.97 10.59 4.9E-02 0.05 245 3.62 11.92 3.0E-04 0.001

Mopti 128 1.97 8.70 4.9E-02 0.05 227 3.35 11.52 8.1E-04 0.001

Niamey 305 4.51 12.19 6.6E-06 0.001 317 4.68 13.38 2.8E-06 0.001

Taoussa 221 3.26 18.73 1.1E-03 0.01 253 3.74 9.62 1.9E-04 0.001

Yankin 100 2.31 1.13 2.1E-02 0.05 227 3.35 0.70 8.1E-04 0.001

Figure 9 | Auto-correlation (ACF) Plots of the observed and gap-filled discharge data.
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discharge observation stations in West Africa (Lebel & Ali 2009; Schröder et al. 2019). The problem of missing
data often hinders precise forecast of extreme events and sustainable policy interventions. Ekeu-Wei et al. (2018)
disclosed that incomplete hydrological data hinders flood management in many developing regions. Researchers
a.silverchair.com/wpt/article-pdf/16/3/961/908097/wpt0160961.pdf



Table 4 | Comparison of Man-Kendall (MK) and modified Man-Kendall (MMK) tests for the 22 discharge stations

N/N* MK Z MMK Z MK variance MMK variance

Akka 2.21 3.50 2.35 4,550.33 10,053.99

Alkongui 0.64 2.61 3.27 4,550.33 2,899.36

Ansongo 3.44 4.09 2.21 4,550.33 15,641.67

Banakoro 2.18 2.08 1.41 4,550.33 9,908.12

Baro 1.65 4.51 3.51 4,550.33 7,496.05

Couberi 0.71 2.79 3.30 4,550.33 3,245.08

Dire 2.85 3.74 2.21 4,550.33 12,947.53

Douna 1.07 3.05 2.96 4,550.33 4,854.94

Garbey kourou 0.76 3.23 3.71 4,550.33 3,445.16

Jidere 1.53 4.00 3.23 4,550.33 6,971.60

Kakassi 2.25 3.32 2.21 4,550.33 10,260.67

Kandadji 2.90 4.21 2.47 4,550.33 13,201.15

KeMacina 1.69 2.73 2.10 4,550.33 7,708.06

Kompongou 0.94 3.29 3.40 4,550.33 4,262.18

Koulikoro 1.72 2.82 2.15 4,550.33 7,835.35

Lokoja 1.26 3.85 3.43 4,550.33 5,732.18

Makurdi 1.53 3.26 2.64 4,550.33 6,948.59

Malanville 1.92 3.62 2.61 4,550.33 8,736.60

Mopti 1.34 3.35 2.89 4,550.33 6,103.43

Niamey 2.18 4.68 3.17 4,550.33 9,927.89

Taoussa 3.44 3.74 2.02 4,550.33 15,635.95

Yankin 0.66 3.35 4.12 4550.33 3,015.10

Figure 10 | Annual mean discharge trends at 22 stations of the Niger basin.
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Table 5 | Results of the Pettit test for the 22 discharge stations

S/N Stations K P Significant Levels n

1 Akka 1993 7.59E-05 0.001 34

2 Alkongui 1997 4.49E-02 0.05 34

3 Ansongo 1994 4.37E-05 0.001 34

4 Banakoro 1993 1.89E-04 0.001 34

5 Baro 1993 2.53E-04 0.001 34

6 Couberi 1993 1.64E-02 0.05 34

7 Dire 1993 4.04E-05 0.001 34

8 Douna 1993 1.98E-03 0.01 34

9 Garbey kourou 1997 2.89E-03 0.01 34

10 Jidere 1993 5.55E-05 0.001 34

11 Kakassi 1987 8.45E-03 0.01 34

12 Kandadji 1994 2.29E-05 0.001 34

13 KeMacina 1993 4.50E-04 0.001 34

14 Kompongou 1993 2.25E-03 0.01 34

15 Koulikoro 1993 1.40E-04 0.001 34

16 Lokoja 1993 3.38E-04 0.001 34

17 Makurdi 1993 8.98E-04 0.001 34

18 Malanville 1993 8.98E-04 0.001 34

19 Mopti 1993 1.20E-04 0.001 34

20 Niamey 1994 4.37E-05 0.001 34

21 Taoussa 1994 5.13E-05 0.001 34

22 Yankin 1993 4.18E-03 0.01 34

Figure 11 | Spatial Sen’s slope and significant levels; *** Significant at p� 0.001, ** Significant at p� 0.01 and * Significant at
p� 0.05.
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such as Badou et al. (2016) have to exclude some important locations where inadequate data are recorded. These
drives incomplete important information that will be useful for sustainable river basin management.

MICE gap filling method shows promising results for 22 river discharge stations widely spread in the Niger

basin. Gap-filled discharge data have high efficiency metrics when compared with observed during both continu-
ous and discontinuous missing discharge time series. These findings are all in agreement with previous studies
where MICE was evaluated for filling missing river discharge data (Little 1992; Ekeu-Wei et al. 2018; Sidibe
et al. 2018). Little (1992) reported that the use of regression-based approaches in filling missing data doesn’t

account for errors in the imputations, thus leading to small standard errors. MICE overcome this challenge by
drawing values from the predictive distribution and then repeating complete-data analyses. Ekeu-Wei et al.
(2018) found out that MICE outperformed radar altimetry when filling continuous missing data and MICE

filled data gives good similarity to natural floods. Sidibe et al. (2018) disclosed that MICE estimate missing
data better than the random forest at discharge stations with high amounts of missing data in West and Central
Africa. The use of hydrological models in simulating missing discharge data has been promising but poor

observed meteorological data required for hydrological model calibration and validation have made setting up
such models difficult (Poméon et al. 2017).

We evaluated the performance of MICE in all 22 catchments by comparing FDC of inputted data with the FDC

of observed. There were perfect fits for all the 22 stations evaluated in the river basin and MICE captures both low
and high flows on the basin. These will enable MICE-enhanced hydrological records to be applicable in extreme
hydrological applications (Ekeu-Wei et al. 2018). FDC of stations with a high amount of missing data captured the
observed river discharge patterns with slight under and over-estimation. This shows that MICE should be applied

with precautions in stations with daily missing data percentage that is more than 70%. Barnes et al. (2006) found
that small sample size constrains the generalization potential of the MICE, thus resulting in uncertain missing
data estimates.

Gap-filling of missing discharge data with MICE decreased autocorrelation and significantly improved the MK
statistics and Sen’s Slope. The MK test has been reported to perform worse when there is autocorrelation (Chen
et al. 2016). Yue & Wang (2004) have demonstrated that the existence of negative serial correlation will decrease

the possibility of rejecting the null hypothesis of no trend. We compared the performance of the MK and MMK
statistics and discovered that MK had challenges at variance computation in the Niger basin. This happens
because negative serial correlation reduces the variance of the MK statistics, and hence a smaller number of
samples falls in the critical regions (Yue & Wang 2004).

All the 22 discharge stations evaluated in the Niger basin show significant increasing trend since the 1980s with
a break point at the 1990s for most of the stations. This result corroborates the findings of Amogu et al. (2010),
who attributed the increases in discharge in Sahel catchments to land use changes. Descroix et al. (2018) also
attributed the increases in discharge from 1990s in the Sahel to recovery from the great drought of West
Africa (1968–1990). The authors also explained that increasing discharge is due to lower soil infiltration rate com-
pared to the pre-drought era (Bichet & Diedhiou 2018; Descroix et al. 2018). Some authors found direct

relationship among the trends in discharge, flood and some extreme rainfall indices (Nka et al. 2015; Adeyeri
et al. 2019). They attributed the rainfall factors as a major factor aggravating increase in runoff coefficients in
the Sahelian region (Nka et al. 2015).
CONCLUSIONS

The challenge of missing discharge data has hindered reliable flow prediction and forecast in West Africa, thus
hindering sustainable river basin management. This study assessed the multiple benefits of the MICE gap filling
method in ameliorating the challenges posed by high amounts of missing discharge data in the Niger basin. We

evaluated the percentage of missing data for 22 discharge stations. The MICE gap-filling method was assessed and
used in filling missing data gaps for the discharge stations. It was observed that the basin has a high percentage of
missing data across different stations, which has significant impacts on trend analysis. All the discharge stations

show high negative autocorrelations before gap filling. Comparison of autocorrelations of the observed and gap
filled data reveals gradual reduction in the degree of autocorrelation after gap filling. The performance of the MK
and MMK statistics were compared on the gap-filled data and results showed very poor performance of the MK as

compared to the MMK due to autocorrelation. Significantly increasing discharge trends were observed in all the
a.silverchair.com/wpt/article-pdf/16/3/961/908097/wpt0160961.pdf
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discharge stations after gap filling from 1990s. Further studies should assess the possibility of using MICE to
increase the efficiency of hydrological models and decrease modelling uncertainties.
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