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Abstract

The current study was performed to test filtration media system performance on quality of water purification and
to evaluate optical properties, such as reflection, transmission and absorption intensities for filtered water using
a spectrophotometer operating in the range 350–400 nm. Head losses through filtration system at the exper-
iments were equal to 20, 40, and 60 kPa. With the progress of the filtration process and increase in different
head loss (from 20 to 60 kPa), both the content of total suspended solids and turbidity in optical properties inten-
sities for filtrated water increased, together with the water cloudiness. It is shown that the intensity of optical
properties can be considered a reliable indicator that to determine the need for backwashing of the filtration
system.
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Highlights

• Local gravel samples are high quality and easy to use in the Egyptian natural environment.

• Gravel or sand media filters are particularly suitable for water with a high TSS content.

• Optical properties are known to be the best indicator for filtering backwashing.
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INTRODUCTION

Micro-irrigation systems (MIS) (surface drip irrigation and subsurface drip irrigation) are an appealing
choice for saving water in Egypt, where water resources are limited (Puig-Bargués et al. 2010). The
emitter can discharge a large amount of sediment particles, depending on the hydraulic shear force
(Feng et al. 2018).
Filter clogging is a substantial problem, in the case of surface water sources (open channels, rivers

or lakes) for these systems where the irrigation water usually is not found in its pure state, but mostly
with foreign solid particles and other impurities, especially when treated wastewater of low quality is
used because it contains high concentrations of dissolved and suspended solids (Bucks et al. 1979;
Ravina et al. 1997). Solid particles, mainly including impurities, non-organic matters (trash, silt,
sand, leaves, fine clay and rust dust), organic matter (algae, bacteria and protozoa), and other solid
contaminants, are present in irrigation water (Eurodrip 1999; Zhou et al. 2017).
The total amount of suspended solids in Alabaster Misr Bank water samples was less than that of

Ward El-Nile Zaffaran at the same operating pressure. While evaluating the efficiency of the dripper
using suitable filtration media for the first filter, it was found that 94.73, 89.55 and 79.65% of the local
basalt emission uniformity was excellent, good and fair, respectively, and 95.84, 89.66, and 79.57% of
the second Alabaster Misr Bank filter at 20, 40 and 60 kPa EU was excellent (Hassan et al. 2019). The
filtration is an important process that can help avoiding physical clogging of MIS (Kuslu & Sahin
2013; Bounoua et al. 2016). It is the physical management that is used to maintain the closed irriga-
tion system at a satisfactory performance (Oron et al. 1979; El Awady et al. 2001). Screens, discs and
sand-gravel media are the main filter types used in MIS. Sand or gravel filtering followed by screen
and disc filters (Puig-Bargués et al. 2005a) are those that provide MIS with better protection
(Capra & Scicolone 2004; Hamoda et al. 2004; Burt & Styles 2007; Trooien & Hills 2007) because
they exhibit the highest removal efficiency (Er) for total suspended solids (TSS) organic compounds,
phosphorus and microorganisms (Naghavi & Malone 1986; Haman et al. 1994; Capra & Scicolone
2007; Dalahmeh et al. 2012).
In media filters, solids (very fine sand, silt, and clay particles, algae and bacteria) are trapped by the

particles of gravel or sand where particle capture is controlled by both physical and chemical mechan-
isms (Adin & Alon 1986). This process decreases the rate of water flow through the filtration system
because the system is clogged and must be cleaned in order to recover operating conditions through
a backwashing procedure (Shock 2006). Most sand or gravel filters are cleaned automatically by back-
washing frequently (Pitts et al. 1990; Nakayama et al. 2007). Automatic backwashing can be managed
by an operating time and/or by passing water flow at the total pressure drop across the filters of 50 kPa
for sand or gravel filters and 40 kPa for screen and disc filters. Usually, a backwashing time from 20 to
180 s is used (Ravina et al. 1992; Elbana et al. 2012). Both options allow for easy system automation
(Duran-Ros et al. 2009). Unfortunately, during the filtration process, large and interconnected pores
called ‘Rat Holes’ can form in the media leading to decreasing filter performance (Nakayama et al.
2007).
Remote sensing (RS) is usually restricted to methods that detect and measure electromagnetic

energy, including visible and non-visible radiation that interacts with surface materials, and an idea
of providing RS by deriving information on optical properties and the concentrations of substances
from variations in the color of the water. The variables of water quality; that is, TSS, Tu, the content
of humic substances, chlorophyll, and so on, could be estimated by a variety of techniques for remote
and optical sensing (Morel & Prieur 1977; Dekker 1993; Bukata et al. 1995; Rev-Herlevi 2002; Arst
2003; Pozdnyakov & Grassl 2003; Reinart et al. 2004; Gallegos et al. 2008), by interpreting the
received radiance at different wavelengths (Yentsch 1984). TSS is the regulatory positively or nega-
tively correlated indicator of ‘suspended sediment pollution’ (Wang et al. 2010). Besides, water
clarity or Tu is a direct measure of visible distance through water. It is an important indicator of
a.silverchair.com/wpt/article-pdf/16/3/895/908136/wpt0160895.pdf
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the presence of sediments in the water column, and a useful parameter for determining the content of
TSS and dissolved materials (Davies-Colley & Smith 2000). Therefore (Ceccato et al. 2001; Doxaran
et al. 2002; Dolinar 2014), using visible and near-infrared (NIR) wavelength satellite data and multi-
spectral optical sensors and visible to infrared optical sensors, the water composition can be
determined in terms of Tu and TSS by measuring part of the visible light transmitted through them
in a straight line between the light source and the light receiver, or part of the visible or infrared
light that is reflected (Williamson & Crawford 2011).
Optical multispectral sensors give reliable and accurate readings for TSS in the range of 0 to

500 mgL�1 (Al-Yaseri et al. 2013). In addition, it was concluded (Hassan et al. 2020) that 632.8 nm
is a suitable wavelength to study the optical properties of filtrated water over local basalt media
under different head losses through filter media using a He-Ne laser.
Elhegazy & Eid (2020) introduced a review of the research that covered grey-water management. It

provided perspectives on grey-water context in order to frame the breadth and multiple dimensions it
encompasses, to summarize recent activities on selected relevant topics, and to highlight possible
future directions in research and implementation.
PROBLEM STATEMENT AND RESEARCH OBJECTIVE

There is a deficiency in the use of modern technology in the management of irrigation systems, includ-
ing the filtering system used, caused by the lack of reliable data on optical properties of filtrated water,
which is a motivation of the work performed.
MATERIALS AND METHODS

Current assay was conducted between July and December 2019, at the National Irrigation Laboratory
of Agricultural Engineering Research Institute (AEnRI), ARC, and the laboratory of laser applications
in agricultural engineering at the National Institute of Laser Enhanced Science (NILES), Cairo Uni-
versity, to detect optical properties for filtrated water under various operating conditions, using a
spectrophotometer. The filter unit was the main component of the experiment. It had a cylindrical
shape with a diameter of 600 mm, height of 900 mm, depth of 600 mm and surface area of
0.471 m2, maximum volume of 33.9 m3 h�1, and inlet and outlet links with a diameter of 50 mm.
Local basalt gravel media had a bulk density (ρ) of ≈ 1.68 gcm�3, porosity (n) of 43.41%, and pH and

CaCO3 values of 7.3 and 0.5% respectively. Local basalt gravel was sourced from the local market (Abo-
Zaable, Qauibia government) and mainly used for building construction. For this substance, effective
diameters (de) (size opening that will pass 10% by dry weight of a representative sample of the filter
material) were 1.19, 1.75, and 2.32 mm for d10, d30, and d60 respectively. The particle size parameters;
that is, the uniformity coefficient (CU) (ratio of the size of opening that will pass 60% of the sand to the
size of opening that will pass 10%) and curvature 114 coefficients (Cc) were 1.94 and 1.11 respectively.
For filtration experiments, a filtration system with three-filter units was used. This consisted of a

22 kW pump, with a pressure head of 550 kPa (approximately 5.5 bar) and a flow rate of about 100
m3 h�1, which injected Nile water from a concrete reservoir with a capacity of 8 m3. Each filtration
unit had a pressure gauge and valve at the inlet and outlet of the system to monitor head losses
through the hlm filter bed (to increase hlm the inlet flow volume to the filtration system was increased
and the outlet volume of the inlet flow decreased). The experimental setup allowed that all filters were
operating at a time; experiments were carried out, for 80 h, for 4 h day�1. Experimental measurements
to assess filter performance were carried out at the beginning of each 20 h under three hlm (20, 40, and
60 kPa). The effectiveness of a filter (removal efficiency Er was computed by measuring the ability of
a.silverchair.com/wpt/article-pdf/16/3/895/908136/wpt0160895.pdf
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the gravel media filter to remove suspended particles and turbidity from the inlet water. The evalu-
ation of the Er followed the measurements of the TSS and Tu of water samples before and after the
filter unit. Turbidity (Tu) was measured using an HI 93703 handheld turbidity meter (Hanna Instru-
ments, Woonsocket, RI, USA), and TSS were determined in the laboratory by the gravimetric
method. Forty samples (8 samples� five replicates) were taken periodically at the filter inlet and
outlet to calculate the average value through the whole experiment. Additionally, Er was calculated
according to the equation as seen below (ASAE 2005).

Er ¼ Yi � Yo

Yi

� �
� 100

where, Er (%) is the removal efficiency for a physical parameter with Y being TSS (mgL�1) or Tu
(FNU) – Formazin Nephelometric Units – Yi being the physical parameter value before filtering
and Yo its value after filtration.
In addition, the spectrophotometer (Ocean Optics USB650) was used to detect suitable visible

wavelength within the range≈ 350–1,000 nm to measure the peak values for a number of optical par-
ameters. The measurements were of reflection (Ref), transmission (Trans) and absorption (Abs). All
samples were made of particle suspensions contained in a 1-cm quartz cuvette that was placed
inside the integrating sphere. The visible light was focused on one side of the quartz cuvette contain-
ing the sample. The emitted light was collected perpendicularly via a fiber optics connector (SAM 905
to single-strand optical fiber 0.22 NA). Acquisition and analysis of the spectra obtained from the spec-
trophotometer system were accomplished using the commercial SpectraSuite software and further
processed using computer software.
RESULTS AND DISCUSSION

The only parameters whose removal efficiency differed, caused by the different hlm, were TSS (mgL�1)
and turbidity Tu (FNU). This was in agreement with the previous experiments with Nile water (Adin &
Elimelech 1989; Ravina et al. 1997; Elbana et al. 2012), using the same gravel filter.

• They have achieved reducing ‘TSS’ concentration sharply from 249.6 before filtration to 51.66,
115.06 and 129.29 mgL-1 after filtration and Er was about 79.3, 53.9 and 48.2% at hlm ≈20, 40,
and 60 kPa, respectively.

• 10 h of the filtration system operation proved that sand or gravel filtration is the most efficient for
reducing and removing TSS.

• The efficiency of suspended solids was reduced from 11.4 to 48.0% using the sand filter filled with
different media.

• TSS concentration at fw increased slightly with increasing accumulated T (h) at different hlm until
the end of the experiment. The concentration of TSS in fw was increased from 51.67, 115.06, and
129.29 mg L�1 after 10 h from the experiment beginning to 163.49, 226.14, and 268.81 mgL�1 at
the end of the experiment (80 h) under hlm≈ 20, 40, and 60 kPa respectively (Figure 1). In addition,
the outlet concentrations of ‘TSS’ increased logarithmically, linearity at hlm≈ 20, 40, and 60 kPa
respectively, from 10 to 80 h. So, it can be concluded that the solids accumulation in the filter
beds increased logarithmically as the filtration test period progressed.

• Adin & Alon (1986), and Hassan et al. (2020) observed the same results. Figure 2 presents the tur-
bidity Tu removal efficiency, Er (%), computed using Equation (1). The values were measured at the
filter inlet and outlet (just before and after filtering).

• The filter achieved a reduction of about 82.4, 62.1, and 54.79% of Tu in the first 10 h of the exper-
iment at hlm≈ 20, 40, and 60 kPa respectively. These are in agreement with those obtained by
a.silverchair.com/wpt/article-pdf/16/3/895/908136/wpt0160895.pdf
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Figure 1 | Behavior of TSS concentration during filtration process progress.
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(Nakhla & Farooq (2003). Then, Er for Tu tended to decrease at fw with the increase in the filtration
test period. It had a negative relation with accumulated experiment time T (h).

• These relations were exponential at hlm ≈ 20 kPa and linearity with hlm ≈ 40 and 60 kPa, with
correlation coefficient (R) of 0.998, 0.997, and 0.9964. The porous gravel media filter showed
turbidity removals of 37.1, 19.55, and �18.9% at the end of the experiment (after 80 h). These
results could be in agreement with Triphati et al. (2014), Solé-Torres et al. (2019).

• Generally, there was less Tu after the gravel filter at different hlm than there was before for all
experiments except after ≈ 65–80 h with hlm ≈ 60 kPa. Both Tu and TSS concentrations at the fw
were larger than at the inlet, which tended to negative values for Er. Besides, these mean that
the filter was clogged, probably due to filtration cake detachment as mentioned by Neis &
Tiehm (1997) and Puig-Bargués et al. (2005b). Figure 3 shows the regressions plateau between
Tu (FNU) and TSS (mgL-1). Furthermore, Tu had a non-linear correlation with TSS. It was
power-related with TSS at hlm ≈ 20 kPa, and exponential – related at hlm ≈ 40 and 60 kPa.
Figure 3 | Correlation between the Tu and TSS at different hlm.
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Similar results were demonstrated by Wu et al. (2014), who indicated that height agreement was
observed between the Tu and TSS. Water clarity was always 220 positively correlated with TSS
(Bucks et al. 1979; Davies-Colley & Smith 2000; Wang et al. 2010).

The optical properties for fw were scanned in visible light wavelength from 350 to 1,000 nm. In
addition, the curves of optical properties; that is, Ref, Trans, and Abs, (%), were occurring in the
range 350–400 nm. The recorded spectra for some samples of fw with different TSS concentrations
(51.6, 115.06, and 268.8 mg L�1) under various operating procedures hlm (20, 40, and 60 kPa) are
displayed in Figure 4(a)–4(c). After 10 h of running the filters, the TSS concentration reached 51.8
and 115 mgL�1 with Er for TSS≈ 79.3 and 53.9% at hlm 20 and 40 kPa. It follows that the Ref inten-
sity range for fw was decreased from 55.43–99.48% with three peaks at 361, 371, and 378 nm,
to 47.07–56.94% with one small peak at 355 nm. The Trans intensity range decreased from
Figure 4 | Optical properties for fw at different TSS concentrations.
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54.22–99.8% with two peaks at 360 nm, and 371 nm, to 36.87–57.2% with 354 nm. Whereas, the Abs
intensity range for fw with a higher TSS increased from 0.096–0.267% with one peak at 360 nm for
hlm≈ 20 kPa to 0.251–0.382% with one peak also at 355 nm for hlm≈ 40 kPa.
Meanwhile, at the experiment end, with hlm≈ 60 kPa, the Er had a negative value for both TSS

(-7.7%) and Tu (-18.9%); additionally, fw became more cloudy with a greater amount of TSS and
Tu, Consequently, the optical properties (Ref, and Trans) intensity ranges decreased to 16.28–
75.16%, and 13.37–75.86%. In contrast, the Abs. intensity range increased from 0.096–0.267 at
hlm≈ 20 kPa with Er≈ 79.3 and 82.4% for TSS and Tu in the first 10 h of the experiment, to 0.127–
1.127% with �7.7 and �18.9% for TSS and Tu at the experiment end. Of these results, as the filtration
process progresses, the values of Er for both TSS and Tu decreased until the filter was clogged, and the
values shifted to negative values (�7.7, �18.9%) for TSS and Tu at an hlm≈ 60 kPa; this entails an
increase in TSS, Tu and water cloudiness. It follows from the above that for both the Re, and
Trans, the light decreased to 45.72, and 44.61% and there was an increase in the Abs light to
0.63% as a direct result of increasing the TSS concentration of 268.8 mg L�1. Where TSS concen-
trations (composition and size) scatter light efficiently owing to their high refractive index relative
to the water, they influence the scattering, absorption and transmission of light (Wozniak & Stramski
2004; Williamson & Crawford 2011; Al-Yaseri et al. 2013). Meanwhile, Tu causes cloudiness or a
decrease in the transparency of water. The direction of the transmitted light path will undergo
changes, being scattered when the light hits the particles (silt, clay, algae, organic matter and micro-
organisms) in the water column (Sydor 1980; Ziegler 2002).
CONCLUSION

At different head losses the gravel filter reduced both TSS and Tu sharply at the beginning of the
experiment; Er for both had a negative relation with experiment accumulated time until the filter
was clogged, and the values of Er turned to negative values. In addition, the curves of optical prop-
erties for fw occurred in the range 350–400 nm. Furthermore, with the progress of the filtration
process, and increase in head losses (from 20 to 60 kPa), both TSS and Tu in fw increased, leading
to increase in the water suspended solids and pollutants, which is negatively reflected in the decrease
in both Ref and Trans intensity, on the one hand, and the increase in the Abs intensity. So, the optical
properties are considered a perfect indicator that can be relied upon in determining the necessity of
filter backwashing.
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