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ABSTRACT

To analyze the spatial distribution characteristics of water resource value in the agricultural system of the Yellow River Basin,

this paper takes the Yellow River Basin as its research object and studies the spatial distribution characteristics and influencing

factors of water resource value in the agricultural system using the emergy theory and method, the spatial autocorrelation

analysis method, and the spatial regression model. The results show the following. (1) The value of water resources in the agri-

cultural system ranges from 0.64 to 0.98 $/m3, and the value in the middle and lower reaches of the basin is relatively high.

(2) The Moran index of the water resource value in the agricultural system is 0.2772, showing a positive spatial autocorrelation

feature. Here, ‘high-high (high value city gathering)’ is the main aggregation mode, which is mainly concentrated in the middle

and lower reaches of the basin. (3) The spatial error model, moreover, has the best simulation effect. The cultivated land area,

total agricultural output value, agricultural labor force, and total mechanical power have a significant positive impact on the

agricultural production value of water resources in the Yellow River Basin; the altitude, annual average temperature, and agri-

cultural water consumption have a negative impact. Overall, this study shows that guiding the distribution of water resources

according to their value and increasing agricultural water use in the middle and lower reaches of the basin will help improve the

overall agricultural production efficiency of water resources in the basin.
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HIGHLIGHTS

• Spatial distribution analysis provides a basis for the formulation of water resources management policies.

• Water resource value in the agricultural system is quantified based on the emergy theory.

• The spatial autocorrelation analysis method is used to analyze the spatial distribution of water resources value.

• The spatial regression model is used to identify the main influencing factors of water resources value.
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GRAPHICAL ABSTRACT

1. INTRODUCTION

Water resource allocation is an important means to realize the effective and equitable distribution of water
resources among different regions and water users and thereby achieve the sustainable utilization of water
resources (Kama & ECONOMIX, 2001; Wu et al., 2019b). The water resource values in different regions and
different water users are the main parameters used to guide the allocation of water resources, as the water con-

sumption of a water user will produce different values in different regions (Wu et al., 2018; Di et al., 2019;
Sánchez-Martín et al., 2020). Therefore, the different values and influencing factors of the same water department
in different regions can be used to improve the efficiency of water resource allocation. The agricultural system is

the main body of water resource allocation. Reasonable distribution of the agricultural water used in the river
basin affects the fairness and efficiency of overall water resource allocation (Tian et al., 2020; Zhang et al.,
2020). Therefore, it is of great significance to study the spatial distribution of the water resource value in the agri-

cultural system and analyze the influencing factors to ensure the optimal allocation of water resources in the river
basin.
There are many methods used to estimate the value of water resources, such as the shadow price method (He

et al., 2007; Liu et al., 2009), marginal opportunity cost (Pulido-Velazquez et al., 2013), the CGE model (Nechifor

& Winning, 2017), the fuzzy mathematics method of water resource value (Jia et al., 2018), etc. These methods
usually make it difficult to consider the natural circulation of water resources, energy conversion, and other natu-
ral attributes; they are also unable to objectively and scientifically explain the hydrological cycle process and self-

value of natural water resources (Wu et al., 2019a, 2019b). In recent years, Buenfil applied emergy theory to the
field of water resources and used the emergy analysis method to simulate and optimize the water allocation of the
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three main departments of urban, agriculture, and environment in Florida (Buenfil, 2000). Wu Zening et al. used
the emergy analysis method to construct an emergy analysis framework for the ecological economic value of
regional water resources, which realized a unified measurement of the economic, social, and ecological environ-

ment value of water resources and provided a theoretical basis and technical methods for the rational utilization
and value accounting of water resources (Wu et al., 2019a). Agriculture is the main water sector of the social
economy, and many studies have been conducted around the value of water resources in agricultural systems
to analyze the most beneficial composition and accounting method for agricultural water resources (Wang &

Wang, 2005). Some studies calculated the water resource value of the Yellow River Basin in four sections via
the shadow price method (Di et al., 2019, 2020) but did not analyze the influencing factors underlying the differ-
ences in the water resource value of each section. Current research on the value of water resources in agricultural

systems mostly ignores the natural attributes of water resources in terms of content and focuses instead of
research into provincial (municipal) administrative districts based on time sequences, while studies on the spatial
distribution and quantitative identification of the main influencing factors of water resource value in the agricul-

tural system based on the watershed level remain relatively uncommon. The spatial distribution of water resource
value and its influencing factors in the basin’s agricultural system, therefore, needs further study.

The Yellow River Basin is the second largest basin in China. With 2% of the national river runoff, the Yellow

River encompasses 15% of the country’s cultivated land area and 12% of the population’s water supply tasks.
With the development of the social economy, the contradiction between supply and demand of water resources
in the Yellow River Basin has intensified year by year. To rationally and efficiently use limited water resources,
the optimal allocation of water resources in space has become a long-term goal in the Yellow River Basin. The

accurate evaluation and determination of the value and spatial distribution of water resources in the Yellow
River Basin is the foundation of the optimal allocation of water resources.

In this research, the uniformly measurable emergy theory of water resource value in the agricultural system and

spatial autocorrelation analysis method are combined to study the spatial distribution characteristics and influen-
cing factors of agricultural water resource value in the Yellow River Basin. To begin with, the value of water
resources in the agricultural system is quantified based on the actual agricultural water consumption data of

cities in the Yellow River Basin in 2015. Secondly, the emergy analysis method and spatial autocorrelation analy-
sis method are combined to analyze the spatial distribution and aggregation characteristics of water resource
value in the agricultural system of the Yellow River Basin. Finally, the spatial regression model is used to identify
the main influencing factors of water resource value in the agricultural system, which provided the decision-

making basis for water resources management and rational allocation.

2. METHODS AND MATERIALS

2.1. Research method

2.1.1. Emergy theory and method

Emergy refers to the amount of another type of energy contained in flowing or stored energy, which is essentially
a type of coating energy. The amount of solar energy that forms the direct or indirect application of any resource,
product, or labor service is its ‘solar emergy’ (EM) (Odum, 1996), whose unit is the solar Joule (seJ). The calcu-

lation formula for EM is as follows:

EM ¼ t� B (1)

where EM is the solar emergy (seJ); τ is the emergy conversion rate (seJ/J or seJ/g); and B is the energy or mass of
the substance (J or g).
 http://iwa.silverchair.com/wp/article-pdf/23/4/1044/924663/023041044.pdf
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The value of water resources in an agricultural system is defined as the contribution of unit water resources to
agricultural production in the form of currency (Lv & Wu, 2009). The greater the value of the water resources in
the agricultural system is, the higher the benefit of unilateral water to agricultural production. The calculation

formula is as follows:

EM$PA ¼ EMAW � EMAY

EMAU �WA � EDR
(2)

where EM$PA is the value of water resources in the agricultural system ($/m3); EMAY is the agricultural output
solar emergy (seJ); EMAW is the agricultural water solar emergy (seJ); EMAU is the agricultural input solar emergy
(seJ); WA is the agricultural water consumption (m3); and EDR is the emergy/currency ratio (seJ/$).

2.1.2. Spatial autocorrelation analysis

The spatial autocorrelation analysis method has a unique advantage in revealing the correlation between the
value of regional water resources and the value of water resources in neighboring areas (Iman et al., 2017).
The value of water resources in an agricultural system is closely related to natural factors, such as topography,
climate, crop type, etc. and is also affected by social–economic conditions, such as the irrigation level and
mode of operation. The above factors generally show geographical similarities. In addition, the Yellow River is

the main source of irrigation water for agricultural production in the Yellow River Basin, which is another
reason for the spatial correlation in the value of water resources in the basin’s agricultural system.
Global spatial autocorrelation is used to analyze the overall spatial correlation degree of the water resource value

in the agricultural system of the Yellow River Basin and determine whether there is spatial agglomeration. Moran’s
index I is commonly used for such characterizations, and the calculation formula is as follows (Yongxiu et al., 2018):

I ¼

Pn
i¼1

Pn
j¼1

vij(xi � x)(xj�x)

S2
Pn
i¼1

Pn
j¼1

vij

 ! (3)

where I is Moran’s index, xi is the value of the agricultural system water resources of city i in the river basin, n is the
number of provinces (regions), and wij is the spatial weight matrix: If i is adjacent to j, the weight is set to 1; otherwise,
it is 0. I . 0 indicates apositive correlationwithapositivehomogeneous spatial agglomerationeffect; the closer the result

is to 1, the more obvious the spatial agglomeration effect is. If I¼ 0, there is no correlation (no spatial correlation). I, 0
indicates anegative correlation, demonstrating that there are significant differences in thewhole; the closer the result is to
�1, the more significant the spatial differences are. x is the average value of the water resource value of the basin’s agri-

cultural system, and S2 is the variance of the water resource value of the basin’s agricultural system.
Local spatial autocorrelation mainly investigates the spatial agglomeration degree of the water resource value

of the agricultural system in a certain city and neighboring cities in the basin. Using local spatial autocorrelation
analysis, we can determine the spatial aggregation type and location of the water resource value in the agricul-

tural system of the Yellow River Basin, which is usually characterized by the local Moran’s index I (Taghipour
et al., 2014). The calculation formula is as follows:

Ii ¼
(xi � x)

Pn
j¼1

vij(xi � x)

S2
(4)

where Ii represents the local Moran’s index, and other symbols and meanings are the same as before.
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In practical research, Moran scatter plots and local indicators of spatial associations (LISA) agglomeration map
are often used for local spatial autocorrelation analyses (Iman et al., 2017). In this study, the four quadrants of the
Moran scatter plot correspond to the spatial connection form of the water resource values of the agricultural sys-

tems in various cities in the river basin. The Moran scatter diagram is divided into four quadrants. The first
quadrant is the ‘High–High (H-H)’ correlation mode – that is, a cluster of the high-value cities; the second quad-
rant is the ‘Low–High (L-H)’ correlation mode – that is, the high-value cities that surround the low-value cities;
the third q is the ‘Low–Low (L-L)’ correlation mode – that is, a cluster of the low-value cities, and the fourth is the

‘High–Low (H-L)’ correlation mode – that is, the low-value cities that surround the high-value cities.
Unlike the global Moran’s index, a Moran scatter plot can identify the spatial aggregation patterns of the water

resource values of agricultural systems in different cities in the basin, while the LISA aggregation map can show

the location of spatial aggregation (Srikanta et al., 2020).

2.1.3. Spatial regression model

The spatial lag model (SLM) and the spatial error model (SEM) are two basic spatial regression models (Tobler
et al., 2015) used to ensure that the parameter estimation of the classical regression model (SLRM) is not biased

and inconsistent when the agricultural production value of water resources in the Yellow River Basin has a spatial
effect that cannot be ignored. The SLM adds the spatial lag term of the water resource value in the agricultural
system of the Yellow River basin into the general panel data model, indicating that the influencing factors of the

water resource value of the agricultural system in a certain city are affected by the influencing factors of the neigh-
boring cities; the spatial error model (SEM) adds the error term of the spatial correlation; that is, the error term of
a certain city model is affected by the error term of the neighboring city model. Further, the intensity affected by

neighboring cities is expressed by the spatial weight matrix. The SLM and SEM for the water resource value in the
agricultural system of the Yellow River Basin are as follows (Peili & Lijie, 2015):

Y ¼ rWy þ bXþ d (5)

where Y represents the agricultural production value of water resources ($/m3), r is the spatial lag regression coef-

ficient, Wy is the spatial lag factor with weight; X is the influencing factor, b is the regression coefficient, and d is
the independent error term.

Y ¼ aXþ 1 (6)

1 ¼ l � 1W1 þM (7)

where X and Y have the same meaning as formula (5), a is the coefficient of influencing factors, 1 is the random

error term, l is the regression coefficient of the spatial error term, 1W1 is the spatial error term, W1 is the spatial
weight matrix of the error term, and M is the random error vector.

2.1.4. Research framework

The objective of this paper is to analyze the spatial distribution characteristics and influencing factors of water

resource value in the agricultural system of the Yellow River Basin. According to the above research methods,
the research framework of this paper is constructed as shown in Figure 1. Firstly, the economy, society, and
water consumption data in the Yellow River Basin are collected, and the emergy analysis table of water resource

value in the agricultural system is compiled. The spatial distribution map of water resource value of the agricul-
tural system in the Yellow River Basin is drawn by ArcGIS 10.6 software. Then, the calculation results of water
 http://iwa.silverchair.com/wp/article-pdf/23/4/1044/924663/023041044.pdf



Fig. 1. | Research framework of study on the spatial distribution of water resource value in the agricultural system of the Yellow
River Basin.
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resource value of the agricultural system in the Yellow River Basin are input into Geoda1.14 software in the form

of data. Using the global spatial autocorrelation model (see Section 2.1.2), the global Moran index I of water
resource value in the agricultural system of the Yellow River basin can be obtained. As the global Moran
index can only reflect the spatial agglomeration of water resource value in the agricultural system of the
Yellow River Basin, in order to further explore the clustering and heterogeneity of water resource value in the

local space of the agricultural system in the Yellow River Basin, the local spatial autocorrelation model of
Geoda1.14 software is used to obtain the local aggregation characteristics of water resource value in the agricul-
tural system of the Yellow River Basin. Finally, the regression model based on spatial weight matrix (including

SEM and SLM) is used to analyze the influencing factors of water resource value in agricultural system of the
Yellow River Basin by using Geoda1.14 software.
2.2. Study area

The Yellow River Basin is located in the north central part of China. The altitude difference in this area is large, as

is the temperature difference. The average annual precipitation of the basin is 445.8 mm. At the same time, the
Yellow River contains the greatest amount of sediment in the world. Therefore, limited water resources must
also undertake the sediment transport tasks that the general clear water river does not have, which further

reduces the amount of water that can be used for economic and social development. Moreover, the shortage
of water resources is serious. The water resources of each province in the Yellow River Basin also vary greatly,
and the spatial distribution of water resources is uneven. The Ningmeng Hetao irrigation area in the upper

reaches, Fenwei River Valley irrigation area in the middle reaches, and Yellow River Diversion irrigation Area
in the lower reaches are important agricultural areas in China. The effective irrigation area is 5,176,400 hm2,
the irrigation rate of cultivated land is 31.9%, and the per capita irrigation area in rural areas is 0.0753 hm2

(Figure 2). The main crops are corn, wheat, cotton, oil, etc. Agricultural production is a major water user in

the Yellow River Basin. The presence of less water and more sand, the interruption of tributaries, and the
overexploitation of groundwater have produced adverse effects on agricultural production in the Yellow River
Basin. In addition, the population growth, accelerated urbanization, and rapid industrial development in the

area have caused the proportion of agricultural water consumption in the Yellow River Basin to decrease year
by year, resulting in increasingly more serious water shortages.
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Water Policy Vol 23 No 4, 1050

Downloaded from
by guest
on 24 April 2024
2.3. Data sources

Considering the consistency of regional space and the availability of data, this paper defines its research scope as
59 cities in the Yellow River Basin. The research’s time period encompasses the year 2015. The water consump-
tion data required for this study come from the ‘China Water Conservancy Statistical Yearbook 2016’ (Lv & Wu,

2009), ‘Water Resources Bulletin 2015 of the Yellow River Basin’, and municipalities ‘Water Resources Bulletin
2015’. The data required for the quantification of emergy come from the ‘China Agricultural Statistical Yearbook
2016’, the provincial ‘Statistical Yearbooks’, and the ‘Statistical Yearbooks’ of various cities. The emergy/cur-
rency ratio comes from the literature (Di et al., 2019, 2020; Wu et al., 2019a).

According to the quantitative formula for the emergy of water resources, the value of water resources in an agri-
cultural system is related to water consumption, the emergy/currency ratio, and the input and output of each
economic system. Therefore, it is necessary to consider two major indicators of agricultural water consumption

and total agricultural output value when selecting the main influencing factors. Based on a summary of the exist-
ing relevant research, combined with the basic principles for the selection of influencing factors, the agricultural
production conditions of the Yellow River Basin and the availability of data, the altitude (X1), annual average

temperature (X2), cultivated land area (X3), agricultural water consumption (X4), total agricultural output
value (X5), labor force (X6), total mechanical power (X7), and chemical fertilizer (X8) are selected as influencing
factors.

3. RESULTS AND ANALYSIS

3.1. Quantification of the water resource value in the agricultural system

Agricultural production is inseparable from water. To analyze the transfer and transformation process of water
resources in agricultural systems, it is necessary to clarify the input and output of energy and materials in the
 http://iwa.silverchair.com/wp/article-pdf/23/4/1044/924663/023041044.pdf
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process of agricultural production. According to the collected raw data and corresponding emergy conversion
rates (Lan et al., 2002), the emergy of various ecological flows can be quantified. Taking Zhengzhou in Central
China as an example, an emergy analysis table of the agricultural system is shown in Table 1.

In 2015, the total energy input of Zhengzhou was 1.58� 1021 seJ, where the agricultural water input was 5.77�
1019 seJ. The total emergy output was 1.86� 1021 seJ. Agricultural products with the largest share of emergy
output included wheat, eggs, mutton, vegetables, and oilseeds; their emergy outputs were 9.49� 1020 seJ,
7.34� 1020 seJ, 1.93� 1020 seJ, 1.82� 1020 seJ, and 1.59� 1020 seJ, respectively. Among them, wheat contributed

the largest share, accounting for 51.02% of the total emergy output. In 2015, the emergy output of the Zhengzhou
agricultural system was greater than its input, thereby ensuring the ongoing cycle of the system. The main emergy
indicators of the water resource value for the Zhengzhou agricultural system in 2015 are summarized in Table 2.

The value of water resources in the Zhengzhou agricultural system is quantified as 0.76 $/m3 by bringing the
calculation results of Tables 1 and 2 into formula (2). The values of the water resources of agricultural systems in
other cities of the Yellow River basin can then be obtained, and the results are shown in Table 3.
Table 1. | Emergy analysis of water resource value of Zhengzhou agricultural system in 2015.

Items Raw data (J m3, g) Emergy conversion rate (seJ/J m3, g) Solar emergy (seJ)

Emergy input Total 1.58� 1021

1.1 Solar energy 4.21� 1019 1.00� 100 4.21� 1019

1.2 Wind energy 6.28� 1016 6.23� 102 3.92� 1019

1.3 Agricultural water 9.55� 107 6.04� 1011 5.77� 1019

1.4 Loss of topsoil 6.92� 1015 7.40� 104 5.12� 1020

1.5 Electric power 3.55� 1015 1.59� 105 5.64� 1020

1.6 Nitrogenous fertilizer 6.67� 109 3.80� 109 2.53� 1019

1.7 Compound fertilizer 2.21� 1010 2.80� 109 6.19� 1019

1.8 Pesticides 4.25� 1010 1.60� 109 6.80� 1019

1.9 Diesel oil 1.95� 1014 6.60� 104 1.28� 1019

1.10 Machinery 4.35� 1011 7.50� 107 3.03� 1019

1.11 Manpower 7.18� 1012 3.80� 105 2.73� 1018

1.12 Animal power 1.44� 1012 1.46� 105 2.10� 1017

Emergy output Total 1.86� 1021

2.1 Wood 3.55� 1015 3.49� 104 1.24� 1020

2.2 Wheat 1.39� 1016 6.80� 104 9.49� 1020

2.3 Corn 1.19� 1015 2.70� 104 3.21� 1019

2.4 Beans 2.97� 1014 6.90� 105 1.00� 1020

2.5 Oilseeds 1.84� 1015 8.60� 104 1.59� 1020

2.6 Cotton 4.73� 1013 1.90� 106 8.99� 1019

2.7 Vegetables 6.73� 1015 2.70� 104 1.82� 1020

2.8 Fruits 9.49� 1013 5.30� 104 5.03� 1018

2.9 Beef 2.04� 1013 4.00� 106 8.14� 1019

2.10 Mutton 9.64� 1013 2.00� 106 1.93� 1020

2.11 Dairy products 6.68� 1013 2.00� 106 1.34� 1020

2.12 Honey 1.62� 1014 8.49� 104 1.38� 1019

2.13 Eggs 4.29� 1014 1.71� 106 7.34� 1020

2.14 Fishery products 3.39� 1012 2.00� 106 6.78� 1018

The raw data come from Zhengzhou Statistical Yearbook 2016, Henan Water Resources Bulletin 2015 and Zhengzhou Water Resources Bulletin 2015.
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Table 3. | Summary of agricultural production value of water resources in all cities of the Yellow River Basin in 2015 unit: $/m3.

Cities Value Cities Value Cities Value Cities Value

Hainan 0.69 Gannan 0.69 Tongchuan 0.75 Lvliang 0.75

Haidong 0.71 Lanzhou 0.74 Baoji 0.64 Jinzhong 0.66

Haibei 0.69 Wuzhong 0.76 Xianyang 0.73 Linfen 0.79

Huangnan 0.68 Shizuishan 0.68 Weinan 0.98 Yuncheng 0.93

Guoluo 0.67 Zhongwei 0.70 Yulin 0.91 Taiyuan 0.73

Yushu 0.68 Guyuan 0.74 Shangluo 0.72 Anyang 0.83

Haixi 0.66 Yinchuan 0.77 Yangling 0.75 Kaifeng 0.67

Xining 0.72 Hohhot 0.87 Hancheng 0.76 Luoyang 0.94

Wuwei 0.65 Baotou 0.83 Xi’an 0.96 Puyang 0.84

Linxia 0.73 Wuhai 0.69 Shuozhou 0.69 Xinxiang 0.91

Baiyin 0.78 Ulanqab 0.78 Datong 0.65 Jiaozuo 0.86

Dingxi 0.82 Bayannur 0.91 Yangquan 0.75 Sanmenxia 0.85

Tianshui 0.87 Alxa League 0.68 Changzhi 0.66 Jiyuan 0.64

Pingliang 0.86 Ordos 0.83 Jincheng 0.78 Zhengzhou 0.76

Qingyang 0.84 Yan’an 0.85 Xinzhou 0.70

Table 2. | Summary of main emergy indicators of agricultural production value of water resource in Zhengzhou in 2015.

Emergy indicators Solar emergy

Emergy input (EMAY) 1.58� 1021 seJ

Emergy output (EMAU) 1.86� 1021 seJ

Agricultural water emergy (EMAW) 5.77� 1019 seJ

Agricultural water consumption (EMA) 9.55� 107 m3

Emergy/currency ratio 2.39� 1010 seJ/$
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There are differences in the value of water resources in the agricultural systems in cities across the Yellow River

Basin. To analyze the spatial distribution characteristics of the water resource values in these agricultural systems,
a spatial distribution map of the water resource value is provided (Figure 3).

The water resource value in the agricultural system of the Yellow River Basin is in the range of 0.64–0.98 $/m3.

Here, Weinan City has the highest value, and Baoji City has the lowest value. There is a large gap in the value of
water resources in the agricultural systems of all cities. From the perspective of the river basin, the spatial distri-
bution of the water resource values in the agricultural system is unbalanced. The value of water resources in the
middle and lower reaches is higher, and the value in the upper reaches is lower. The reasons for the high value of

water resources in the middle and lower reaches of the river basin are as follows: (1) the middle and lower
reaches have better water and heat conditions, rich land resources, fertile soil, and are suitable for crop
growth; (2) the water-saving irrigation technology is relatively advanced, and a large number of mechanized oper-

ations improve agricultural production efficiency; (3) the economy is relatively developed, resulting in the
development of agricultural production. The reasons for the low value of water resources in the agricultural
 http://iwa.silverchair.com/wp/article-pdf/23/4/1044/924663/023041044.pdf



Fig. 3. | Spatial distribution of water resource value in the agricultural system of the Yellow River Basin.
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system in the headwaters of the river basin are as follows: (1) the headwaters of the river basin belong to the

alpine region with a high altitude and low temperature, and the grain production in the area is greatly affected
by natural conditions, so the output is low; (2) the land is sparsely populated, the labor force is insufficient,
and the agricultural production efficiency is low. Moreover, transportation is inconvenient, thereby increasing
the cost of the grain output; (3) the regional economy is underdeveloped, the level of agricultural modernization

is low, and the proportion of natural resources invested in agricultural production is significant.

3.2. Spatial autocorrelation analysis of the water resource value in the agricultural system

The water resource values in the agricultural system of cities in the Yellow River Basin in Table 3 are input into
Geoda1.14 software in the form of SHAPE file and by using the formula (3), the global Moran’s Index I of the
water resource value for the agricultural system in the Yellow River Basin can be calculated as 0.2772, indicating

that the water resource value of the agricultural system in the Yellow River Basin has a strong spatially positive cor-
relation. However, since the global Moran’s index can only reflect the overall spatial concentration of the water
resource value of the agricultural system, to further investigate the clustering and heterogeneity of the water resource
value of the agricultural system in a local space, it is necessary to carry out a local spatial autocorrelation analysis of

the water resource value of the Yellow River Basin. The results are shown in Figures 4 and 5.
There are 28 cities in the first quadrant of the Moran scatter plot, and 13, 9, and 9 cities in the second, third, and

fourth quadrants, respectively. According to the method in Section 2.1.2 Spatial autocorrelation analysis, the

value of water resources in the agricultural system of the Yellow River Basin mainly assumes the form of ‘H-H
(a cluster of the high value cities)’, with a small amount of the L-L (a cluster of the low value cities)’ type,
 from http://iwa.silverchair.com/wp/article-pdf/23/4/1044/924663/023041044.pdf
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Fig. 4. | Moran scatter plot of water resource value of the agricultural system in the Yellow River Basin.

Fig. 5. | LISA agglomeration map of water resource value of the agricultural system in the Yellow River Basin.
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‘L-H (the high value cities that surround the low value cities)’ type, and ‘H-L (the low value cities that surround
the high value cities)’ type. This is consistent with the estimation results of the global Moran’s index, and the

water resource value of the agricultural system is positively correlated in space. Figure 5 shows that the ‘H-H’

aggregation area is mainly located in the middle and lower reaches of the Yellow River Basin, the ‘L-L’ aggrega-
tion area is mainly concentrated at the source of the Yellow River Basin, and the ‘H-L’ aggregation areas are
scattered in the upper and middle reaches of the Yellow River.

3.3. Analysis of the main influencing factors of water resource value in the agricultural system

The agricultural production value of water resources in the Yellow River Basin is positively correlated in space.
According to the input–output situation of the agricultural system in the emergy analysis table, the premise that
 http://iwa.silverchair.com/wp/article-pdf/23/4/1044/924663/023041044.pdf
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the dependent variable is not spatially independent should be fully considered when choosing to model that vari-
able, and the inter-regional relationship should also be introduced into the model. Thus, a regression model based
on the spatial weight matrix is used. The Geoda1.14 software was used to test the spatial effect of the water

resource value of the agricultural system in the Yellow River Basin. The results are shown in Table 4.
According to Table 4, the P values of LMLAG and LMERR are 0.0487 and 0.0165, respectively, both of which

are significant at a level of 5%. However, the statistic for R-LMERR is 6.2621, which is larger than the 3.8974 of R-
LMLAG, making it more appropriate to build the SEM model. In the simulation process, since the test results of

fertilizer consumption are not significant, the regression results of the SEM model are shown after elimination
(Table 5).
It can be seen from Table 5 that the spatial regression coefficient λ is significantly positive, indicating that the

agricultural production value of water resources in the Yellow River Basin is significantly affected by the agricul-
tural production value of water resources in neighboring cities. The agricultural production value of water
resources in the Yellow River Basin has obvious spatial spillover. Thus, for every 1% change in the agricultural

production value of water resources in neighboring cities, the value of the local city will change by 0.4722% in the
same direction.
The regression coefficients of altitude (X1) and annual average temperature (X2) are�0.2974 and�0.4633, respect-

ively, at a 1% level of significance, indicating that the agricultural production value of water resources in the Yellow
River Basin is negatively correlated with altitude and annual average temperature. Altitude and temperature are
important factors that reflect the distribution of moisture and heat in a certain place. The topography of the
Table 4. | Spatial effect test of agricultural value of water resources in the Yellow River Basin.

Test statistics Statistics P value

Lagrange multiplier (lag) 0.3970 0.0487

Robust LM (lag) 3.8974 0.0484

Lagrange multiplier (error) 2.7617 0.0165

Robust LM (error) 6.2621 0.0123

Table 5. | Regression results of spatial error model.

Variable Correlation coefficient P value

λ 0.4722* 0.0000

X1 �0.2974* 0.0000

X2 �0.4633* 0.0085

X3 0.0405*** 0.0809

X4 �0.1009* 0.0008

X5 0.2007** 0.0357

X6 0.0261** 0.0355

X7 0.2158*** 0.0905

C 0.1404** 0.0368

*, **, ***, respectively, are significant at 1, 5 and 10% levels.
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YellowRiver Basin is complex. The altitude of theQinghai–Tibet Plateau in the first step is 3,000–5,000 m. Except for
the valley in the southeast of the plateau, the average annual temperature is mostly lower than 5°C. The elevation of
the impact plain in the third step is mostly below 100 m, and the average annual temperature is 11–14°C. The altitude

difference in the basin is large, as is the temperature difference. The higher the altitude is, the colder the climate is, and
themore unfavorable it becomes for the growth of crops. A lack of heat, strongwind, etc., will also affect the output of
crops, thus affecting the agricultural production value of water resources in the basin.

The unit contribution rate of cultivated land area (X3) in the model is only 0.0405. With the advancement of

science and technology, agricultural production no longer involves extensive cultivation. We can increase
grain production by increasing the yield per micrometer instead of engaging in large-scale sowing.

At a 1% significance level, for every 1% increase in agricultural water consumption (X4), the agricultural pro-

duction value of water resources in the Yellow River Basin will decrease by 0.1009%, which presents a negative
correlation. For certain agricultural output benefits, the greater the water consumption is, the lower the efficiency
of water resource utilization, and the lower the value of water resources.

Under the condition of a 5% significance level, for every 1% increase in total agricultural output value (X5), the
agricultural production value of water resources in the Yellow River Basin will increase by 0.2007%, which indi-
cates a positive correlation. The total agricultural output value is the wind vane of regional agricultural economic

development. The higher the output value is, the lower the emergy/currency ratio is, and the higher the contri-
bution of unit water resources to production becomes, which can be seen in formula (4).

The influence of labor force (X6) and total mechanical power (X7) on the agricultural production value of water
resources in the Yellow River Basin (0.0261 and 0.2158, respectively) conforms to the characteristics of agricul-

tural production mechanization. In the process of agricultural modernization, pumps, seeders, harvesters,
sprayers, tractors, and agricultural vehicles are widely used in irrigation, sowing, harvesting, field management,
agricultural product transportation, and other various operations, making agricultural production mainly rely

on machinery rather than manpower. Agricultural mechanization not only saves labor but also greatly improves
labor production efficiency and obtains a higher agricultural production value from the water resources.

After introducing the spatial lag term, the absolute values of the correlation coefficients of X1, X2, X3, and X4

can be seen to decrease from the values before the introduction, while X5, X6, and X7 increase from the values
before the introduction. Under the synergistic effect of space, the influence of social and economic factors on
the agricultural production value of water resources is greater than that of natural geographical factors. This
occurs because agricultural modernization has overcome the limitations of natural geographical conditions on

agricultural production, greatly improving the efficiency of agricultural production, as well as the value of the
agricultural production of water resources.

4. CONCLUSION

1. Emergy theory gives us a new way to understand the water resource value in the agricultural system of the

Yellow River basin. The emergy analysis method is used to quantify the value of water resources in the agri-
cultural system of the river basin, which solves the problem of the low values caused by neglecting the basin’s
natural attributes (found in most previous studies on water resources). In this paper, the spatial autocorrelation
analysis method and spatial lag regression model were used to determine the influence of spatial geographical

characteristics on the spatial distribution of the water resource value from the perspective of the entire river
basin, which surpasses the limitations of previous studies on water resource value, which mostly concentrated
on the provincial administrative region or the municipal administrative region.

2. This study has practical guiding significance for water distribution in the Yellow River Basin. The cities with a
high value of water resources in the basin’s agricultural system are mainly concentrated in the middle and
 http://iwa.silverchair.com/wp/article-pdf/23/4/1044/924663/023041044.pdf
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lower reaches of the basin. Taking the value of water resources in the agricultural system as a guide, properly
increasing the distribution of agricultural water in the middle and lower reaches of the basin will contribute to
the efficient utilization of water resources and improve production efficiency in the basin’s agricultural system.

3. This paper demonstrates the feasibility studying the value and spatial distribution of water resources in the
agricultural system of the Yellow River Basin using emergy and spatial autocorrelation analyses. Combining
emergy value theory with spatial autocorrelation analysis method to analyze the spatial distribution and aggre-
gation characteristics of water resource value is also applicable to other regions and other basins. However,

this study only analyzed the spatial changes and main influencing factors of the water resource value for
the agricultural system in the Yellow River Basin during 2015. Thus, further studies are needed to investigate
the trends of changes in the water resource value and analyze the main influencing factors from the time

dimension.

ACKNOWLEDGEMENTS

This research was funded by the National Key R&D Program of China (No. 2016YFA0601503 and No.
2017YFC0404404-01), the Postdoctoral Sustentation Fund of Yellow River Engineering Consulting Co., Ltd
(2019BSHZL02), and the National Natural Science Foundation of China (No. NSCF-51509223 and NSCF-

51879242).
DATA AVAILABILITY STATEMENT

All relevant data are included in the paper or its Supplementary Information.
REFERENCES

Buenfil, A. (2000). Emergy evaluation of water supply alternatives for Windhoek, Namibia. In Population Development
Environment in Namibia: Background Readings, Vol. 87. Fuller, B. & Prommer, I. (eds.). International Institute for
Applied Systems Analysis, Laxenburg, Austria, p. 202.

Di, D., Wu, Z., Guo, X., Lv, C. & Wang, H. (2019). Value stream analysis and emergy evaluation of the water resource eco-
economic system in the Yellow River basin. Water 11(4), 710.

Di, D., Wu, Z., Wang, H. & Huang, S. (2020). Optimal water distribution system based on water rights transaction with
administrative management, marketization, and quantification of sediment transport value: a case study of the Yellow
River basin, China. Science of the Total Environment 722, 137801.

He, J., Chen, X., Shi, Y. & Li, A. (2007). Dynamic computable general equilibrium model and sensitivity analysis for shadow
price of water resource in China. Water Resources Management 21(9), 1517–1533.

Iman, R., Mehdi, D., Esmaeil, H., Hamid, R. & Parvane, Y. (2017). Analysis of spatial autocorrelation patterns of heavy and
super-heavy rainfall in Iran. Advances in Atmospheric Sciences 34, 9–14.

Jia, Y., Shen, J. &Wang, H. (2018). Calculation of water resource value in Nanjing based on a fuzzy mathematical model. Water
10(7), 920.

Kama, A. & ECONOMIX (2001). An economic evaluation of water resource allocation during water shortage using a multi-
regional computable general equilibrium model. Nature 414(6864), 648–652.

Lan, S. F., Qin, P. & Lu, H. F. (2002). Emergy Analysis of eco-Economic System. Chemical Industry Press, Beijing.
Liu, X., Chen, X. & Wang, S. (2009). Evaluating and predicting shadow prices of water resources in China and its nine major

river basins. Water Resources Management 23(8), 1467–1478.
Lv, C. & Wu, Z. (2009). Emergy analysis of regional water ecological–economic system. Ecological Engineering 35(5), 703–710.
Nechifor, V. & Winning, M. (2017). Projecting irrigation water requirements across multiple socio-economic development

futures – a global CGE assessment. Water Resources & Economics 20, 16–30.
 from http://iwa.silverchair.com/wp/article-pdf/23/4/1044/924663/023041044.pdf

024

http://dx.doi.org/10.3390/w11040710
http://dx.doi.org/10.3390/w11040710
http://dx.doi.org/10.1016/j.scitotenv.2020.137801
http://dx.doi.org/10.1016/j.scitotenv.2020.137801
http://dx.doi.org/10.1016/j.scitotenv.2020.137801
http://dx.doi.org/10.1007/s11269-006-9102-7
http://dx.doi.org/10.1007/s11269-006-9102-7
http://dx.doi.org/10.3390/w10070920
http://dx.doi.org/10.1038/414648a
http://dx.doi.org/10.1038/414648a
http://dx.doi.org/10.1007/s11269-008-9336-7
http://dx.doi.org/10.1007/s11269-008-9336-7
http://dx.doi.org/10.1016/j.ecoleng.2008.11.003
http://dx.doi.org/10.1016/j.wre.2017.09.003
http://dx.doi.org/10.1016/j.wre.2017.09.003


Water Policy Vol 23 No 4, 1058

Downloaded from
by guest
on 24 April 2024
Odum, H. (1996). Environmental Accounting: Emergy and Environmental Decision Making. John Wiley & Sons, New York.
10.2307/1127803.

Peili, D. & Lijie, Q. (2015). Spatiotemporal correlations between water footprint and agricultural inputs: a case study of maize
production in Northeast China. Water 7, 4026–4040.

Pulido-Velazquez, M., Alvarez-Mendiola, E. & Andreu, J. (2013). Design of efficient water pricing policies integrating basinwide
resource opportunity costs. Journal of Water Resources Planning and Management 139(5), 583–592.

Sánchez-Martín, J. M., Sánchez-Rivero, M. & Rengifo-Gallego, J. I. (2020). Water as a tourist resource in extremadura:
assessment of its attraction capacity and approximation to the tourist profile. Sustainability 12(4), 1659.

Srikanta, S., Zhang, Q. & Francesco, P. (2020). Responses of ecosystem services to natural and anthropogenic forcings: a spatial
regression based assessment in the world’s largest mangrove ecosystem. Science of the Total Environment 12, 715.

Taghipour, J., Malekmohammadi, B. & Mokhtari, H. (2014). Application of geographically weighted regression model to
analysis of spatiotemporal varying relationships between groundwater quantity and land use changes (case study:
Khanmirza Plain, Iran). Environmental Monitoring & Assessment 186, 3123–3138.

Tian, F., Zhang, Y. & Lu, S. (2020). Spatial-temporal dynamics of cropland ecosystem water-use efficiency and the responses to
agricultural water management in the Shiyang River Basin, northwestern China. Agricultural Water Management 237,
106176.

Tobler, R., Hermisson, J. & Schlötterer, C. (2015). Parallel trait adaptation across opposing thermal environments in
experimental Drosophila melanogaster populations. Evolution; International Journal of Organic Evolution 69, 7–13.

Wang, Y. & Wang, H. (2005). Sustainable use of water resources in agriculture in Beijing: problems and countermeasures.
Water Policy 7(4), 345–357.

Wu, Z., Guo, X., Lv, C., Wang, H. & Di, D. (2018). Study on the quantification method of water pollution ecological
compensation standard based on emergy theory. Ecological Indicators 92, 189–194.

Wu, Z., Di, D., Wang, H., Wu, M. & He, C. (2019a). Analysis and emergy assessment of the eco-environmental benefits of rivers.
Ecological Indicators 106, 105472.

Wu, Z., Di, D., Lv, C., Guo, X. & Wang, H. (2019b). Defining and evaluating the social value of regional water resources in
terms of emergy. Water Policy 21(1), 73–90.

Yongxiu, H., Fengtao, G. & Meiyan, W. (2018). The efficiency of electricity-use of China and its influencing factors. Energy
163(15), 258–269.

Zhang, X., Kong, Y. & Ding, X. (2020). How high-quality urbanization affects utilization efficiency of agricultural water
resources in the Yellow River basin under double control action? Sustainability 12(7), 2869.

First received 29 August 2020; accepted in revised form 4 June 2021. Available online 30 June 2021
 http://iwa.silverchair.com/wp/article-pdf/23/4/1044/924663/023041044.pdf

http://dx.doi.org/10.3390/w7084026
http://dx.doi.org/10.3390/w7084026
http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000262
http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000262
http://dx.doi.org/10.3390/su12041659
http://dx.doi.org/10.3390/su12041659
http://dx.doi.org/10.1007/s10661-013-3605-5
http://dx.doi.org/10.1007/s10661-013-3605-5
http://dx.doi.org/10.1007/s10661-013-3605-5
http://dx.doi.org/10.1016/j.agwat.2020.106176
http://dx.doi.org/10.1016/j.agwat.2020.106176
http://dx.doi.org/10.1111/evo.12705
http://dx.doi.org/10.1111/evo.12705
http://dx.doi.org/10.2166/wp.2005.0022
http://dx.doi.org/10.1016/j.ecolind.2017.09.052
http://dx.doi.org/10.1016/j.ecolind.2017.09.052
http://dx.doi.org/10.1016/j.ecolind.2019.105472
http://dx.doi.org/10.2166/wp.2018.103
http://dx.doi.org/10.2166/wp.2018.103
http://dx.doi.org/10.3390/su12072869
http://dx.doi.org/10.3390/su12072869

	Study on the spatial distribution of water resource value in the agricultural system of the Yellow River Basin
	INTRODUCTION
	METHODS AND MATERIALS
	Research method
	Emergy theory and method
	Spatial autocorrelation analysis
	Spatial regression model
	Research framework

	Study area
	Data sources

	RESULTS AND ANALYSIS
	Quantification of the water resource value in the agricultural system
	Spatial autocorrelation analysis of the water resource value in the agricultural system
	Analysis of the main influencing factors of water resource value in the agricultural system

	CONCLUSION
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY STATEMENT
	REFERENCES


