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A decision support system for indirect potable reuse

based on integrated modeling and futurecasting

A. G. Lodhi, A. N. Godrej , D. Sen, R. Angelotti and M. Brooks
ABSTRACT
Optimal operation of water reclamation facilities (WRFs) is critical for an indirect potable reuse (IPR)

system, especially when the reclaimed water constitutes a major portion of the safe yield, as in the

case of the Occoquan Reservoir located in Northern Virginia. This paper presents how a reservoir

model is used for predicting future reservoir conditions based on the weather and streamflow

forecasts obtained from the Climate Forecast System and the National Water Model. The resulting

model predictions provide valuable feedback to the operators for correctly targeting the effluent

nitrates using plant operations and optimization model called IViewOps (Intelligent View of

Operations). The integrated models are run through URUNME, a newly developed integrated

modeling software, and form a decision support system (DSS). The system captures the dynamic

transformations in the nutrient loadings in the streams, withdrawals by the water treatment plant,

WRF effluent flows, and the plant operations to manage nutrient levels based on the nitrate

assimilative capacity of the reservoir. The DSS can provide multiple stakeholders with a holistic view

for design, planning, risk assessments, and potential improvements in various components of the

water supply chain, not just in the Occoquan but also in any reservoir augmentation-type IPR system.
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INTRODUCTION
Reliable and optimal operation of a water reclamation

facility (WRF) is a fundamental risk management com-

ponent for an indirect potable reuse (IPR) system. It

requires timely and informed decision-making in response

to fluctuating operational conditions, such as weather

patterns, plant performance, and water demand. Futurecast-

ing of IPR systems consists of modeling different near-term

future scenarios supplemented by medium- to long-range

weather forecasts, which provides useful feedback to

decision-makers. Such predictive analyses can aid in

alleviating future risks associated with water availability
and quality without the need to install and maintain large

standby capacities.

Over the years, the interest in integrated water resource

management (IWRM) has increased significantly. IWRM

takes a comprehensive approach to water management by

viewing the water supply, drainage, and sanitation systems

holistically. To develop design and management tools for a

better understanding of these integrated systems and their

complex behaviors, an integrated modeling approach is

required. According to Rauch et al. (), the concept of

integrated modeling was proposed as far back as 1970.

The first integrated urban drainage model was applied in

1980, though the concept did not become widely adopted

until the 1990s (Mitchell et al. ). Since then, there

have been many applications of IWRM modeling focused
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on the simulation of entire urban water systems (Schütze

et al. ; Coombes & Kuczera ). Similar approaches

have also been used in integrated watershed management.

Wu et al. () implemented a watershed runoff model

HSPF (Hydrological Simulation Program – Fortran) coupled

with a reservoir model CE-QUAL-W2 for the Swift Creek

watershed in Virginia. A more complex model of seven

HSPF and two CE-QUAL-W2 applications has been used

for the Occoquan Watershed in Northern Virginia (Xu

et al. ). Integration of different models to simulate an

IPR system, however, has not been reported in the literature

to the best of the author’s knowledge.

There are several approaches to integrated modeling.

Some software applications provide built-in integration to

simulate a coupled system, where the models for different

sub-systems are either contained within the software or

are linked automatically. Coupled models are based on

integrating different standalone models that simulate var-

ious components of the target system individually (e.g.

watershed, reservoir and treatment plants). Integration of

such models is carried out using different levels of sophisti-

cation: from manual coupling to fully automated systems.

Coupled models are commonly operated sequentially

(Schütze et al. ; Rauch et al. ; Xu et al. ). This

loosely coupled modeling approach is unidirectional and

flow paths are configured as a tree-like structure. Although

this approach seems relatively simple, there is voluminous

data input, output, and transfer between the models (Azmi

& Heidarzadeh ). In addition, some of these models

are not very user-friendly, take a significant amount of

time to run, and require a significant level of familiarity

with the model structure to operate. A more advanced coup-

ling approach called iterative coupling, on the other hand,

relies on the tight coupling of sub-systems to create model

synchronization based on back-and-forth data transfer for

each timestep using either a standard or custom protocol.

An example of one such standard framework is OpenMI

(Open Modeling Interface) (Moore & Tindall ).

Futurecasting involves strategic planning by evaluating

system dynamics, predictive analysis, and a variety of

other strategies to help develop an insightful vision of the

future. Shah et al. () examined short- to medium-range

forecast data (7–45 days) to study water and agriculture

resource management in India using the GEFS (Global
om http://iwa.silverchair.com/jwrd/article-pdf/9/3/263/599174/jwrd0090263.pdf
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Ensemble Forecast System) and CFS v2 (Climate Forecast

System). By using forecast data as an input to simulate fore-

casted runoff and soil moisture, they were able to show that

their methodology could provide timely information in

decision-making for farmers and water managers. A near

real-time drought monitor was also developed to estimate

the severity and extent of agricultural and hydrologic

droughts (Shah & Mishra ).

The overarching goal of this research is to develop a

futurecasting application based on the integration of various

in-house and weather forecast models and historical data

sources. The outputs can provide useful feedback for plant

operators to identify and analyze strategies to manage the

WRF performance dynamically in response to future

reservoir conditions. This paper will discuss the develop-

ment and implementation of the integrated modeling

application and will demonstrate its effectiveness as a

decision support system (DSS) to inform and improve the

reliable operation of the IPR system.

Study area

The Occoquan Reservoir is located in Northern Virginia

and is one of the two major water supply sources (the

other being the Potomac River) for several municipalities

in the region. The reservoir spreads over an area of

6.9 km2 and its drainage basin, the Occoquan Watershed

(Figure 1), and spans across 1,484 km2 (573 square miles).

The reservoir has a full pool volume of 3.1 × 107 m3, an

average water depth of 5.1 m, and a maximum water

depth of approximately 19 m close to the dam. The reservoir

has a full pool elevation of around 37 meters above mean

sea level (MAMSL), and mean hydraulic residence time is

approximately 20 days (Xu et al. ). The mainstream

of the Occoquan Reservoir is formed by the confluence

of the Occoquan River and Bull Run tributaries, 14 km

upstream of the Occoquan dam. The headwaters of the

reservoir extend well up into these two arms of the reservoir

which are called the Occoquan River Arm and the Bull Run

Arm, respectively. The Upper Occoquan Service Authority

(UOSA) WRF discharges into the free-flowing stream

above the Bull Run Arm, upstream of stream station ST45.

The WRF has a total design capacity of 204,412 m3/day

(54 mgd) and currently operates at an average of



Figure 1 | Occoquan Watershed.
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121,133 m3/day (32 mgd). The contribution of the WRF to

the reservoir’s inflow routinely varies throughout the year,

usually going up to 50% of the total inflow during the late

summers and early fall and, in some extreme cases, com-

prises up to 80% of the reservoir inflow. Fairfax Water’s

Griffith Water Treatment Plant (WTP) withdraws water

from the tail end of the reservoir close to the dam, resulting

in IPR of the reclaimed water.

The Occoquan Watershed Monitoring Laboratory

(OWML) is responsible for monitoring the watershed

water quality. Over the years, OWML has established

monitoring stations throughout the watershed to measure

the flow and water quality in different streams (currently

operational: ST00/01, ST10, ST25, ST30, ST45, ST50,

ST60, and ST70). Continuous flow measurements are

carried out at all the stations, and data are logged and trans-

mitted to the OWML’s database servers on an hourly basis.

To monitor the water quality, grab samples are taken from

each station at different frequencies ranging from once a

month to four times a month. During storm events, flow-

weighted composite samples are collected using autosam-

plers to evaluate the average concentration of different

constituents. Grab samples are also collected from seven
://iwa.silverchair.com/jwrd/article-pdf/9/3/263/599174/jwrd0090263.pdf
locations (RE02, RE05, RE10, RE15, RE20, RE30, and

RE35) on the Occoquan Reservoir for quality monitoring

(Figure A1, available with the online version of this

paper). Temperature, dissolved oxygen (DO), nitrate, pH,

oxidation–reduction potential, and conductivity data are

collected in situ at different water depths (usually at 1.5 m

intervals, starting at 0.3 m from the surface) at frequencies ran-

ging from once a month to three times a month. Many other

constituents (such as nitrogen and phosphorus forms and total

organic carbon) are measured, via sample retrieval and trans-

port to the laboratory for analysis, at the top and bottom of the

reservoir stations. OWML also operates a weather station

located close to the WRF (called OWML weather station at

UOSA), which measures different meteorological parameters

including rainfall, air temperature, solar radiation, wind speed

and direction, and humidity, which are transmitted on an

hourly basis to OWML’s database servers.
METHODS

Regulation of nitrate in reclaimed water throughout the year

is a unique operational challenge at UOSA. Its operating



266 A. G. Lodhi et al. | Decision support system for indirect potable reuse based on integrated modeling Journal of Water Reuse and Desalination | 09.3 | 2019

Downloaded fr
by guest
on 24 April 202
permit limits the total annual nitrogen load to 6.0 × 105 kg

(1.316 × 106 lb). More than 90% of this load is discharged

in the form of oxidized nitrogen, mainly as nitrate (NO3).

Although the MCL (maximum contaminant level) for nitrate

in drinking water is 10 mg/L as nitrogen, the Occoquan

Policy (VSWCB ) specifies a Water Quality Objective

(WQO) of 5 mg/L at the dam. The WRF is, therefore,

required by permit to reduce its nitrate discharge concen-

tration when the nitrate concentrations at the drinking

water intakes rise above 5 mg/L.

It has been observed that during thermal stratification and

extremely low hypolimnetic oxygen concentrations in the

summer, the supply of nitrate from UOSA actually benefits

the reservoir. Under these conditions, microbes in the sedi-

ment utilize nitrate as an electron acceptor in the absence of

oxygen, advancing the denitrification process. As a result,

the release of phosphorus (P) and other less preferential elec-

tron acceptors, Mn2þ and Fe2þ, into the water column is

inhibited. The reservoir overturns at the beginning of fall

and remains well-mixed throughout the winter and early

spring. The mixing redistributes oxygen across the entire

water column and restores the aerobic conditions, thereby

diminishing the denitrification capacity of the reservoir.

A nitrate discharge optimization study (Bartlett )

concluded that the total nitrogen load delivered into the

reservoir by the WRF can be more effectively distributed

each month based on the reservoir’s denitrification capacity.

Based on these recommendations, UOSA changed its oper-

ational strategy by reducing the degree of denitrification in

summer to ensure a higher concentration of nitrate in the

effluent and then transitioning back to increased denitrifica-

tion just before reservoir turnover, generally in early fall.

Using the optimized load distribution provided in that

study, average monthly concentrations were calculated

using the average monthly flows from the last 5 years

(2013–2017) compared to the observed average monthly

concentrations during the same time period, as shown in

Table 1. The results indicated that the WRF is unable to

meet the low nitrate loads recommended during winters

mostly due to various operational constraints, including lim-

ited organic carbon and low water temperatures which

hinders denitrification. During at least one winter drought

in the past, UOSA reportedly had to add methanol under

emergency conditions to improve the denitrification process
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when exceedance of the WQO was imminent. On the other

hand, in the summer months, there is insufficient total Kjel-

dahl nitrogen (TKN) in the raw influent to generate desired

nitrate loads. Although there is underutilized Occoquan

Reservoir denitrification capacity in the summer, several

in-house studies have shown that certain storm events at

low pool elevations may still briefly increase nitrate concen-

trations to levels above the WQO due to high nitrate loads

from the WRF.

As also noted by Bartlett (), these optimized loads

cannot be used as a fixed allocation schedule for the WRF

due to the dynamic nature of the system. In winter

months, the optimized nitrate load distribution is quite con-

servative, as it is calculated based on the worst-case scenario

using extremely low natural streamflows (winter drought).

The effect of any change in the discharged load from the

WRF on the nitrate concentrations at the dam is based on

the hydraulic retention time of the reservoir, which may

vary from a few days to months, depending on the inflows.

Therefore, many factors including the pool elevation,

volume and quality (temperature and background nitrate

concentration) of stream inflows, withdrawal by Griffith

WTP, and weather forecast can all affect the future con-

ditions of the reservoir and consequently its denitrifying

capacity. Hence, selecting the desired monthly nitrate con-

centration for the effluent is still a trial-and-error process,

largely based on the operator’s judgment.

The growing water demand caused by urbanization

complicates this process further. The safe yield of

drinking water from the Occoquan Reservoir, including

the reclaimed water, is 3.0 × 106 m3/day (79 mgd). UOSA’s

contribution to the inflows has been steadily increasing

over the years and, based on the current projections, will

exceed 50% of the safe yield after 2025. In reference to

Table 1, this corresponds to an optimized effluent nitrate

concentration of around 3.5 mg/L for winters, which is

unachievable based on the existing operational capability.

Moreover, WRF plants are always subject to perturbation

due to maintenance issues and/or system outages which

can temporarily compromise plant performance. UOSA’s

operation is regulated by the Occoquan Policy which

requires increasing the plant’s standby capacity and engin-

eered storage to address worst-case scenarios which results

in significant financial obligations.



Table 1 | Optimized load distribution

Average monthly flows Optimized
loads

Optimized
concentrations

Actual
concentrations

Month mgd m3/d kg mg/L mg/L %Diff

Jan 33.4 126602 17327 4.4 9.0 50.8

Feb 34.5 130731 17327 4.7 9.2 48.5

Mar 35.1 132892 17327 4.2 7.7 45.6

Apr 33.5 126710 17327 4.6 6.9 33.7

May 35.5 134432 76566 18.4 13.9 -32.3

Jun 33.0 124957 76566 20.4 15.2 -34.2

Jul 32.6 123243 76566 20.0 16.3 -23.0

Aug 30.5 115635 73210 20.4 17.7 -15.2

Sep 28.7 108604 73210 22.5 14.6 -53.9

Oct 30.3 114627 17327 4.9 10.4 53.1

Nov 29.8 112953 17327 5.1 9.1 43.9

Dec 33.5 126626 17327 4.4 8.0 44.6

Total 497410

Source: Bartlett (2013).
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Various models have been used by stakeholders to

understand and improve the water quality of the Occoquan

Watershed.

Intelligent View of Operations Model

UOSA is currently using a wastewater and reuse process

simulation software IViewOps (Intelligent View of

Operations) as a day-to-day tool for simulating changes to

operation and effect of assets out of service for mainten-

ance (Sen et al. ). IViewOps is a multi-layer model

that analyzes and optimizes the plant on three levels:

(1) biochemical process modeling, (2) asset’s condition

and capacity, and (3) hydraulic configuration and bottle-

necks in each possible operating configuration. It reads

data directly from SCADA (Supervisory Control and

Data Acquisition system), LIMS (Laboratory Information

Management System), and CMMS (Computerized Main-

tenance Management System) to run the most recent

operational configuration. Although IViewOps is a very

helpful tool for plant operators, a more comprehensive

methodology is needed to understand the effect of

various nitrate concentrations on the current and future

reservoir conditions in order to reevaluate the operational

strategy if required. For instance, it would be helpful
://iwa.silverchair.com/jwrd/article-pdf/9/3/263/599174/jwrd0090263.pdf
to know: (1) the target effluent nitrate concentration,

(2) the effect of higher WRF contribution during droughts,

(3) the length of time available before the WQO is

exceeded, if the WRF effluent nitrate concentration

increases due to any operational constraint, and (4) the

effect of an expected rain event, especially after a long

dry period.

Climate Forecast System – Weather Model

The National Oceanic and Atmospheric Administration

(NOAA) Climate Forecast System (CFS) is a climate

model which provides medium- to long-range numerical

weather predictions. The atmospheric component of the

model has a horizontal spectral triangular truncation of

126 waves (T126), equivalent to ∼100 km grid resolution.

The long-range (∼9 months) hourly forecast consists of

four cycles per day at 00:00, 06:00, 12:00 and 18:00 UTC

(Saha et al. ). Forecasts for a specific location can

be extracted from the model output by either simply using

the value from the nearest grid point or using some form

of interpolation between the surrounding grid points

(WMO ).

CFSv2 reforecast data are available for 29 years (1982–

2010), from every January 5th, on the same horizontal
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and vertical resolution as the operational configuration.

Bias correction is used to calibrate the raw forecast data

from CFS. This method assumes that model error stays

constant in time, i.e., the relationship between the

distributions XOBS (historical observed) and XREF (CFS

reforecast) is the same as the relationship between distri-

butions XFOR (CFS raw forecast) and XCAL (calibrated

forecast) (Ho et al. ). Assuming the exact distributions

of XOBS and XFOR are unknown; quantile mapping can

be used to match the statistical moments of the observed-

to-simulated data. In this method, cumulative distributive

functions (CDFs) of XOBS and XFOR are generated,

for each meteorological parameter, using Weibull

plotting position XCAL and is calculated by the following

equation:

XCAL ¼ F�1
OBS [FREF(XFOR)]

where FREF is the CDF for XREF and FOBS
�1 is the inversed

CDF for XOBS.
National Water Model

The NOAA National Water Model (NWM) is a hydrological

model that forecasts streamflows across the continental

United States and has been operational since August 16,

2016. A long-range 16-member ensemble forecast is

produced every day going out to 30 days in the future.

There are four ensemble members in each cycle, each

forced with a downscaled and biased-corrected CFS

model. The core component of NWM is the Weather

Research and Forecasting Hydrologic (WRF-Hydro) model

by the National Center for Atmospheric Research (NCAR).

WRF-Hydro is configured to use the Noah-MP land surface

model (LSM) to simulate land surface processes in NWM

(Niu et al. ). At present, NWM provides reforecast data

and there is no archive available for old forecasts (only 2

days of forecast data are maintained on the FTP server at

any point in time). Therefore, the raw forecast is used

without any calibration in this model. It must, however, be

noted that the current version of the NWM does not include

the operation and management of lakes and reservoirs

within the model.
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Occoquan Reservoir Model

The Occoquan Reservoir is modeled using the U.S. Army

Corps of Engineers software CE-QUAL-W2, a two-

dimensional longitudinal/vertical hydrodynamic and water

quantity model (Cole & Wells ). It is an open-source

model written in Fortran which simulates the water quality

in a waterbody, using longitudinal segments and vertical

layers while assuming complete lateral mixing (appropriate

for long, narrow, riverine reservoirs such as the Occoquan).

The reservoir is modeled using four branches and 69

longitudinal segments (Figure A2, available with the online

version of this paper). Branch 1 is the mainstream of the reser-

voir, starting from the Occoquan River and extending up to

the dam. Branch 2 is the Bull Run Arm, discharging from

the northern part of the watershed and the WRF to Branch

1. Branch 3 and Branch 4 are Sandy and Hooes Run, respect-

ively, which are relatively small tributaries.

The major boundary conditions for CE-QUAL-W2 are (1)

flow and water quality parameters for each branch and the

reservoir periphery (i.e. distributed flows), (2) meteorological

data, and (3) any water withdrawals (e.g. Griffith WTP).

Time series for these parameters are entered for a simulated

time period in various fixed-width text files using Julian days.

Each branch and distributed flow in the model requires a sep-

arate input for flows (m3/s), constituent concentrations (TSS,

OP, NH3-N, NOX-N, and DO) (mg/L), and water tempera-

tures (�C). Additional precipitation data are required for each

branch including rainfall intensity (m/s), constituent concen-

trations (mg/L), and temperature (�C). A separate text file is

used to input the meteorological variables for the entire water-

body, including air temperature (�C), dew point temperature

(�C), wind speed (m/s), wind direction (radian), cloud cover

(0–10), and radiation (W/m2). The discharge from the WRF

is modeled as a point source to Branch 2. Water withdrawal

from the Griffith WTP is inputted as Branch 1 outlet flows

using a separate file. At the start of each model run, initial

water level and constituent concentrations are also required.

All the major input parameters required for the CE-QUAL-

W2 model run are summarized in Figure 2.

Hypolimnetic Oxygenation System Model

A Hypolimnetic Oxygenation System (HOS) has been oper-

ational in the Occoquan Reservoir since 2012. It primarily



Figure 2 | Integrated model inputs for Occoquan Reservoir.
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consists of a line diffuser (Figure A3, available online) that

runs from the dam to the deepest section of the reservoir

along the original stream channel, almost equally divided

between segment 47 and 48 of the model. The system is gen-

erally started at the end of spring, gradually increases the

oxygen flow rate to its maximum during August and Septem-

ber, throttles back to its minimal flow, and then is stopped

sometime during fall.

Since CE-QUAL-W2 cannot simulate complex bubble-

plume dynamics, oxygen mass rate (kg/day) must be indivi-

dually inputted for each layer and mixing must be simulated

using a vertical mixing coefficient. This method is an over-

simplification of complex bubble-plume dynamics and

therefore is usually unable to predict the correct oxygen con-

centrations and temperatures caused by mixing in the water

column. A dedicated line diffuser model was proposed by

Singleton () to simulate a linear two-dimensional or

planar bubble plume governed by the differential equations

for mass, momentum, and heat. This linear plume model
://iwa.silverchair.com/jwrd/article-pdf/9/3/263/599174/jwrd0090263.pdf
(LPM) uses the discrete bubble approach to simulate the

oxygen distribution and mixing in the vertical layers of the

water column. It requires the boundary conditions, such

as temperature and oxygen distribution, along the water

column to compute oxygen transfer rates and mixing flows.

An iterative coupling approach is required to apply LPM

to the reservoir model. By default, CE-QUAL-W2 is com-

piled into an executable file which cannot be accessed by

any external software. It was, therefore, reprogrammed

into a Dynamic Link Library (W2Model.dll). A number of

new subroutines were added to the existing code that can

be accessed externally to (1) initialize the model, (2) run a

single timestep, and (3) read and write different configura-

tional and simulated data. A new software, called

W2Coupler, was developed in C#.NET to iteratively solve

the plume model and transfer data back and forth between

the reservoir model and LPM at each timestep. A new

graphical user interface (GUI) was developed in W2Cou-

pler, which replaced the default CE-QUAL-W2 Form
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(screen showing the run progress) and incorporated

additional information including the depth of maximum

plume rise (DMPR) and oxygen mass rates and entrainment

flows for each layer. The GUI contains options for entering

LPM parameters and setting properties of the oxygenated

segments. The time series for the oxygen flow rate (N-m/

min) of each segment is inputted into W2Coupler using a

separate text file, oin_x.npt, where postfix ‘x’ is the segment

number.

The coupler first runs the reservoir model for each user-

defined timestep and reads the simulated boundary

conditions, including the temperature and oxygen depth

profiles, for each oxygenated segment in the reservoir. It

then solves the LPM’s nonlinear differential equations

using the fourth-order Runge–Kutta method to calculate

the oxygen transfer and entrainment flow for each layer,

as well as the DMPR. To simulate mixing, W2Coupler auto-

matically adds dynamic pumps (a feature in CE-QUAL-W2

to model pumps in the reservoir) to the reservoir model

equivalent to the number of layers in each of the oxygenated

segments. Each pump is set to withdraw water from its

associated layer, equal to the entrainment flow, and

discharge it at the DMPR layer. The calculated parameters

are then inputted back into the reservoir model for

the next timestep. This iterative process is carried out

throughout the simulation until the end of the run. The

source code for W2Coupler and the modification in

CE-QUAL-W2 are provided in the Supplement Material of

this paper for free distribution and reuse.

Decision support system

URUNME software application

A new software application, called URUNME, is developed

in C# language for model integration and automation (Lodhi

et al. ). This application works as a thin layer between

the users, models, and data sources, practically hiding

the mechanics of the modeling process. It provides a user-

friendly GUI based on drag-and-drop functionality and

uses simple flowchart-type diagrams for project configur-

ation (saved as a .urm file). A single diagram is called

a process, which consists of different functions and/or sub-

processes interconnected through links. Each function is
om http://iwa.silverchair.com/jwrd/article-pdf/9/3/263/599174/jwrd0090263.pdf
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used to accomplish different tasks including running

external models, reading and writing data from different

formats (database, text files, excel, netCDF, and WDM),

uploading and downloading from web servers, statistics

(Built-in R support), time series transformation (aggregation

and missing data infilling), querying database (SQL),

and expression evaluator (Excel-style built-in formulas).

URUNME contains an embedded SQLite database for stor-

ing data (saved as a .db file). Data generated by functions are

saved in the embedded database and are represented as

vector and scalar variables, shown as nodes in the project

explorer. These variables support various engineering units

and conversions, and can be dragged and dropped onto

other functions as an input (e.g. writing to a file) or onto

other GUI items for data visualization. URUNME employs

a powerful graphics engine for creating insightful and

information-rich dashboards for data visualization. Multiple

views can be used in the application to create different

screens for users. Creating a dashboard is as simple as

adding a GUI element (chart, pivot table, gauge, map,

grid, image, text, and event manager) on the screen and

dragging and dropping variables onto these panels for data

binding. These GUI elements are automatically updated in

case of any change to the underlying data (e.g. after a

model run). One of the key features of URUNME is the

capability of creating and running multiple scenarios of

the model using different inputs. Any function parameter

(e.g. file name) can be made local (specific to that scenario)

to run a different condition (e.g. input different meteorologi-

cal data). Furthermore, different scenarios and processes

can be run in a batch mode manually or by using the

Scheduler feature, which allows runs to be scheduled at

different times or on a periodic basis.

Operational configuration

The DSS was set up using two separate projects in URUNME.

The first project (model.urm) is responsible for running the

integrated model and stores all the simulated and observed

data in its embedded database (model.db). The database file

is automatically uploaded to a dedicated FTP server after

every model run. The second project (dashboard.urm) is cre-

ated as an interactive dashboard, containing various menus

and visual elements (charts, tables, and diagrams) to show
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the most up-to-date futurecasting results and historical trends

(Appendix B, available online). The dashboard project updates

its elements directly from the model.db file. URUNME,

installed on the computer of different users, uses the dash-

board project to download the most recent data from the

server to update the outputs on a periodic basis. This structure

allows multiple users to run the DSS dashboard application

independent of the model implementation.

URUNME reads from various data sources dynamically

(data being continuously updated in a different database)

and performs extensive data analysis and manipulation

before feeding it to the model as inputs or storing it as histori-

cal trends. All the operations carried out during the entire
Figure 3 | Data flow diagram for the integrated model.

://iwa.silverchair.com/jwrd/article-pdf/9/3/263/599174/jwrd0090263.pdf
simulation process are fully automated and use hundreds of

functions in various process flow diagrams. The overall data

flow path to operate the model is shown in Figure 3.

Calibration scenario

The calibration scenario, called ‘base’, is used to evaluate

the current model calibration using the last 3 years of

observed data. Note that for the Occoquan case described

in this paper, these choices on data and simulation length

are those taken for the Occoquan model application

and are not limitations imposed by URUNME. As long as

there is sufficient storage space and memory available,
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URUNME has no documented limits on the size of the pro-

blem it is called upon to run. For this Occoquan run, inflows

for all the branches and distributed areas were calculated

from observed flows at ST10 and ST45. These flows are con-

verted to model branch inputs by scale factors (Table A2,

available online) obtained by dividing the drainage area of

each branch by the drainage area of the associated stream

station. Water quality data for these stations are read separ-

ately for base and storm flows from the laboratory database.

Base flow concentrations, measured intermittently at these

stations, are interpolated to create a time series for each

input constituent and water temperature. The constituent

values are then replaced by storm flow concentrations for

the duration of each storm event. The meteorological data

from the UOSA weather station are read from a text file

updated hourly. HOS oxygen flow rates and water withdra-

wal by the WTP are provided by Fairfax Water through

email and read into the embedded database. All the data

are formatted and written to different model input text files.

The first step after the base run is to validate whether

the simulated pool elevations, temperature, and different

constituents are consistent with the values observed during

the calibration period. In case of unsatisfactory calibration

performance for any water quality parameter, recalibration

has to be done manually before running the remaining

forecast scenarios. It must, however, be noted that after

successful initial calibration, frequent changes in model per-

formance are not expected. Both graphical and statistical

techniques are employed to keep track of the model’s

calibration performance. After every model run, time

series plots of observed vs. simulated data are created by

the DSS to provide an overview of the calibration and to

identify the differences in time and magnitude of the data

visually. Generally, an agreement between observed and

simulated frequencies indicates an adequate model perform-

ance (Moriasi et al. ). Four different statistical indices

are used for evaluating the model calibration including

(1) Nash–Sutcliffe efficiency (NSE), (2) percent bias

(PBIAS), (3) root mean square error, and (4) coefficient of

determination (R2). NSE is a dimensionless normalized

statistic that determines the relative magnitude of residuals

compared to the measured data variance (Nash & Sutcliff,

). It ranges between –∞ and 1, with NSE¼ 1 as optimal.

Moriasi et al. () have recommended some guidelines for
om http://iwa.silverchair.com/jwrd/article-pdf/9/3/263/599174/jwrd0090263.pdf
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acceptable NSE values for water quality calibration where

NSE> (0.5, 0.65) is considered ‘satisfactory’, NSE> (0.65,

0.75) as ‘good’, and NSE >0.75 as ‘very good’. Although

these recommendations are based on monthly means,

the thresholds can still provide a reasonable basis for

comparison for daily data. PBIAS is an error index, which

measures the average tendency of the simulated data in

comparison with the observed values (Gupta et al. ).

The optimal value of PBIAS is 0. It can be either positive or

negative, indicating under- or overestimation bias, respectively.

Similar to NSE, Moriasi et al. () has recommended guide-

lines for acceptable PBIAS for water quality based on a

monthly timestep, where PBIAS<±(70%, 40%) is considered

‘satisfactory’, PBIAS<±(40%, 25%) as ‘good’, and PBIAS

<25% as ‘very good’. RMSE is also an error index which is

the average magnitude of calibration error. Moriasi et al.

() have provided guidelines only for RMSE normalized

by standard deviation but not for standalone RMSE values.

R2 describes the proportion of variation in observed data

explained by the model. It ranges from 0 to 1, with 1 being

optimal. It is very commonly used for model evaluation. Simi-

lar to the RMSE, no accepted guidelines are available for R2.

Forecast scenarios

To run the forecast scenarios, the latest CFS operational

forecast GRIB2 files are automatically downloaded from

the NOAA website for the four selected grid points closest

to the UOSA weather station (Table A1, available online).

The data are first interpolated for the UOSA weather station

using the Inverse Distance Method (Flitter et al. ) and

then bias-corrected before storing into the embedded data-

base. To estimate streamflows, the four most recent

ensembles are downloaded from the NWM website. There

are a total of 120 netCDF files in every ensemble, each con-

taining data for one timestep of 6 h. Forecasted flows are

read from these files as a ‘streamflow’ variable (m3/s) using

a feature_id key to identify the required stream’s reach. Files

for each ensemble are combined, and flow rates for ST10 (fea-

ture_id: 22339083) and ST45 (feature_id: 22339527) are

extracted from each ensemble using a scale factor of 0.01

(as indicated in the metadata of the netCDF files).

A total of 24 forecast scenarios were created using var-

ious combinations of boundary conditions including (1)
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natural streamflows, (2) WRF discharge, (3) WRF effluent

nitrate concentrations, and (4) WTP withdrawal. These

user-defined time series include two possible natural stream-

flows (Q1 and Q2 [m3/day]), two possible UOSA discharge

flow rates (D1 and D2 [m
3/day]), three possible UOSA efflu-

ent nitrate concentrations (N1, N2, and N3 [mg/L Nitrate-

N]), and two possible WTP’s withdrawal flow rates (W1

and W2 [m3/day]). Future stream temperatures and water

quality constituents are calculated using historical trends.

Monthly averages for the base (Cb) and storm flow (Cs) con-

centrations are calculated from the last 5 years for ST10 and

ST45. In addition, average monthly base flows (Qb) are cal-

culated for the same period to identify any storm events in

the forecasted flows. Time series for stream concentrations

are created using Cb, unless forecasted flow for a given day

is greater than Qb, in which case Cs is used.

Two different forecasts are produced by the DSS. A 30-

day forecast is based on NWM streamflows going out 30

days in the future. Q1 and Q2 are calculated using the aver-

age and either of the maximum or minimum flows for each

day in the four ensembles for ST10 and ST45. Long-range

90-day forecast, on the other hand, is used as a What-If
Figure 4 | Execution path of the integrated model.

://iwa.silverchair.com/jwrd/article-pdf/9/3/263/599174/jwrd0090263.pdf
analysis to simulate any worst-case scenario. For winter

months, this forecast is generally used to simulate an

extended drought period and its effect on the reservoir.

Such droughts have been observed in the past, during both

winter and summer, the worst of which lasted for around 9

months in 1977. Such a scenario potentially increases the

WRF’s contribution to the inflows of the reservoir, which

may lead to high nitrate concentrations, especially during

winters. The 90-day forecast is simulated after the first 30-

day forecast for all the 24 scenarios. The expected stream-

flows during a drought condition for these 90 days are

calculated using low-flow frequency analysis (discussed later).

The overall execution flow path of the model is shown in

Figure 4. First, the base scenario is run for the last 3 years.

Using the restart feature in CE-QUAL-W2 v4.1, the bound-

ary conditions are saved in a file at the end of the run for

the last day of simulation. Data for each of the forecast scen-

arios are created and inputted to the model by URUNME

before it is run, from the present day to 120 days in the

future. All 24 scenarios are run sequentially using the pre-

sent-day boundary conditions from the saved file, and the

output data are saved into the embedded database.



Figure 5 | Calibrated pool elevation, temperature, dissolved oxygen, and nitrate (as nitrogen) (solid lines are simulated and dots are observed values). Temperature, dissolved oxygen, and

nitrate are bottom values.

274 A. G. Lodhi et al. | Decision support system for indirect potable reuse based on integrated modeling Journal of Water Reuse and Desalination | 09.3 | 2019

Downloaded fr
by guest
on 24 April 202
RESULTS AND DISCUSSION

The results presented in this section are for RE02, extracted

from the DSS output generated on October 10, 2018. RE02

is located at around 0.5 km from the dam and is the closest

sampling station to the WTP intakes (Figure 2).
Calibration of the coupled model

The base scenario was run for the last 3 years starting from

January 1, 2015 to October 10, 2018. Observed and simu-

lated time series plots of pool elevation, temperature,

dissolved oxygen, and nitrate concentrations are shown in

Figure 5. The temperature and concentration plots contain
Table 2 | Calibration performance indices

Parameter

Calibration Reservoir stations

Index Unit RE02 RE05

Temperature NSE 0.88 0.84
PBIAS % 7.7 9.8
RMSE �C 1.9 2.1
R2 0.92 0.90

Dissolved oxygen NSE 0.80 0.76
PBIAS % �6.3 �13.
RMSE mg/L 1.7 1.8
R2 0.83 0.87

Nitrate-nitrogen NSE 0.54 0.55
PBIAS % 7.1 6.3
RMSE mg/L 0.4 0.46
R2 0.62 0.65
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the actual data collected from the reservoir bottom (shown

as dots) along with the simulated model output (shown as

solid lines) from the bottom-most layer. The calibration indi-

ces for all the reservoir stations, as calculated by the DSS are

shown in Table 2.
Temperature

Due to inadequate hypolimnetic mixing, initial runs of

the model underpredicted the bottom water temperatures

at RE02. The poorer mixing was caused by a lower

value of plume rise (DMPR) computed by the LPM than

the observed value of plume rise caused by hypolimnetic

aeration.
RE10 RE15 RE20 RE30 RE35

0.73 0.86 0.83 0.97 0.80
12.6 2.2 �3.6 �2.0 �5.6
2.8 2.0 2.4 1.0 2.7
0.85 0.90 0.92 0.98 0.91

0.8 0.71 0.79 0.63 0.7
5 �9.5 1.1 �14.5 9.1 �4.7

1.8 2.1 2.1 2.37 2.5
0.86 0.78 0.82 0.7 0.73

0.51 0.5 0.48 0.76 �0.92
6.2 18.7 26.9 8.1 �27.0
0.63 0.93 1.26 1.2 0.59
0.51 0.53 0.57 0.78 0.02
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The DMPR is most influenced by the initial bubble

radius and entrainment coefficient (α) in addition to the

oxygen flow rate (Singleton ). The value of α was

decreased from the recommended value of 0.11–0.05. An

initial bubble radius of 0.75 mm was used (which is the

average of the manufacturer specified bubble radius of 0.5–

1 mm). This fine-tuning increased the average DMPR and

consequently the bottom water temperatures at RE02. The

final calibration results for water temperature show NSE

values between 0.73 and 0.97 for the bottom layer at all the

reservoir stations. The PBIAS for all the reservoir stations

remained within ±10%. RMSE values remained between

1.0 and 2.8 �C, while R2 ranged from 0.85 to 0.98.

Dissolved oxygen

The initial calibration runs showed higher DO concen-

trations in the oxygenated segments of the model than

those observed. Bryant et al. () have demonstrated

that the mixing induced by hypolimnetic oxygenation at

the sediment–water interface increases the sediment

oxygen demand (SOD). However, the reservoir model was

set up with a constant zero-order SOD for each segment

and provides no built-in mechanism to increase the SOD

dynamically during a simulation. Therefore, modifications

were made in the CE-QUAL-W2 code to enable the

W2Coupler to read the current SOD from the reservoir

model at each timestep and rewrite it back to the model

after correction. A new option was created in the W2Cou-

pler to enable the user to modify the SOD dynamically by

entering any empirical equation as a function of SOD and

an oxygen flow rate. A text editor is provided to separately

enter the equation for each segment using SOD and Q

with segment id as postfix (e.g. Q47 and S47 represent the

current oxygen flow rate and SOD for segment 47). With

this new capability, the model was run a number of

times with different empirical formulations. Finally, the fol-

lowing equation provided the best calibration performance

at f¼ 0.07 for both segments 47 and 48:

SODnew ¼ (1þ fi ×Qi) × SODi

where fi is a calibration factor, SODi is the temperature-

corrected SOD, and Qi is the oxygen flow rate in N-m3/h
://iwa.silverchair.com/jwrd/article-pdf/9/3/263/599174/jwrd0090263.pdf
for segment i at the current timestep. An f value of 0.07

corresponds to a 6.6 times increase in SOD at a maximum

oxygen flow rate of 80 N-m3/h for each segment. NSE

values shown in Table 2 indicate ‘good’ to ‘very good’ per-

formance for dissolved oxygen with the exception of RE30,

where NSE for dissolved oxygen is 0.63 (‘satisfactory’). The

PBIAS for all the reservoir stations remained within ±15%

which is considered ‘very good’. RMSE values remained

between 1.7 and 2.5 mg/L and R2 between 0.7 and 0.87.

Nitrates

The nitrate calibration has shown mostly ‘satisfactory’ NSE

values, with the exception of RE20 and RE35 which are

‘unsatisfactory’. Bartlett () observed similar results due

to high nitrate spikes at RE35 during low flows caused by

the backflow from Branch 2 (Bull Run Arm) to the Branch

1 (Occoquan River Arm) of the model. This phenomenon

is known to occur in the reservoir during summer and is

poorly predicted by the model due to its inability to simulate

an extended period of continuous bottom-layer anoxia

upstream of RE35. This condition also affected the cali-

bration of RE20 where NSE is slightly below 0.5. The

PBIAS, however, has ‘good’ to ‘very good’ for all the stations.

RMSE values remained within 0.4–1.26, where higher values

are for stations close to Branch 2 (i.e. RE20 and RE30) due to

higher inflow nitrate-nitrogen concentration from WRF. R2

ranged from 0.51 to 0.78 excluding RE35.

Bias correction for CFS

To determine the effectiveness of the bias correction in

improving the forecasting skill, the method was first trained

for 10 years, between 2006 and 2015, and then applied to

the raw forecast data for 2016 and 2017 for validation.

Figure 6(a) indicates a good correlation between observed

and reforecasted air temperatures in the training period

(R2¼ 0.73, NSE¼ 0.67, and PBIAS¼ 11.5%). However,

the CDF of these datasets plotted together in Figure 6(b)

shows a significant bias, where the reforecast air tempera-

tures are underpredicted in the entire range in general and

at lower values in particular. After applying the bias correc-

tion to the validation period, the R2, NSE, and PBIAS

between observed and reforecast data improved from 0.72,



Figure 6 | (a) Linear regression between observed and reforecasted air temperature. (b) CDF for observed (dashed line) and reforecasted (solid line) air temperatures.
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0.63, and 15.5% to 0.73, 0.71, and 3.6%, respectively. Other

parameters were also tested using the same method (not

shown), although the improvements in the forecasting skill

were not significant for some parameters.

Futurecasting

As explained earlier, different combinations of boundary

conditions (Q, N, D, and W ) are used to create forecasting

scenarios. Most of these scenarios are selected in consul-

tation with the stakeholders and are reviewed periodically

based on different factors including time of the year, plant

performance, and water demand.

For the 30-day forecast, the natural streamflows, Q1 and

Q2 at ST10 and ST45, were obtained using the average and

minimum of the four ensembles in the NWM forecast,

respectively. The plant’s effluent nitrate-N concentration

was set to 13.6 mg/L as N (N2), the last 7-day average

from the date of model run. Upper and lower values for

the effluent nitrate concentrations, i.e. N1 and N3, were set

to 0.75 and 1.25 of N2, respectively. The WRF effluent

discharge D1 was taken from the projections for September

and October (Table 1). To simulate higher than projected

discharge conditions, D2 was set to 149,524 m3/day

(39.5 mgd) which is approximately 15% higher than average

D1 for the year. Due to unavailability of the projected

withdrawals from the WTP for 2018, W1 for the forecast

was taken from the average monthly withdrawals in the

last 5 years, i.e. 2013–2017 (Table A3, available with

the online version of this paper). Finally, W2 was set to the

safe yield of the reservoir, i.e. 299,048 m3/day (79 mgd), to

simulate the highest possible withdrawals from the reservoir.
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Low-flow frequency analysis (Gustard & Demuth )

was carried out to develop the streamflows during the

drought conditions simulated in the 90-day forecast. A

10-year return period (T ) is used for this analysis, which is

considered as an acceptable standard to calculate drought

conditions. For instance, a commonly used term ‘7Q10’

in low-flow analysis represents the minimum 7-day flow

expected to occur every 10 years. Historical daily flow data

from USGS (US Geological Survey) and the OWML data-

bases were obtained for ST10 and ST45 from 1968 and

1973 onwards, respectively. First, an n-day (where n¼ dur-

ation) centered moving average is passed through the daily

data to calculate the time series for the duration of 7, 15,

30, 60, 90, and 180 days. Annual minima were then derived

for each duration by selecting the lowest flow every year. A

CDF was developed using the yearly minimum flows and

low flows were then calculated by selecting the exceedance

probability (p) of 0.1 (T¼ 1/p) on the CDF (Figure 7). Low

flows for 90Q10 were selected corresponding to the forecast

duration of 90 days. Using these flows, UOSA contribution

for 90-day forecast would remain close to 62.5% of the total

reservoir inflows. For effluent nitrates, N2 was set to 10 mg/

L based on the average effluent nitrate concentration from

October to January (Table 1). N2 and N3 were set at

7.5 mg/L and 12.5 mg/L, respectively. Discharge and with-

drawal scenarios were set similar to 30-day forecast.

The forecasted bottom-layer water temperature profiles

are shown in Figure A4 (available online). The predicted

values are consistent with the observed water temperatures

during the forecasted months and therefore indicate an

acceptable model performance. The nitrate profiles were

outputted for the middle layer (Figure 8), which is around



Figure 7 | Low-flow frequency analysis for different n-moving averages using 10-year return period.
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the same level from where most of the water is withdrawn

by the WTP. These results are for the streamflows in Q1

scenario followed by 90Q10 drought flows (there was no

significant difference between the output from Q1 and Q2).

The model run showed no significant change in the nitrate

during the 30-day forecast (shown with green background)
Figure 8 | Nitrate profiles for different scenarios at RE02. (D1¼ projected monthly WRF discharg

last 5 years of monthly averages, W2¼ fixed at 299,048 m3/day (79 mgd), N1, N2, an

://iwa.silverchair.com/jwrd/article-pdf/9/3/263/599174/jwrd0090263.pdf
and concentrations remained well below 1 mg/L. NWM

predicted relatively higher streamflow for the 30 days

which reduced the UOSA contribution to the total

inflows to the reservoir to around 11% on average. The

dilution caused by the higher streamflows kept the

nitrate levels below 3 mg/L at ST45 during all the N
e, D2¼ fixed WRF discharge at 149,524 m3/day (39.5 mgd),W1¼WTP withdrawals based on

d N3 are WRF effluent nitrate-N set at 7.5, 10, and 12.5 mg/L).
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scenarios. Additionally, the reservoir denitrification capacity

remained significantly high during September due to

relatively higher water temperatures causing low nitrate

concentrations.

For D1W1 (Figure 8(a)), the nitrate concentrations at

RE02 reached a maximum of 1.7, 2.3, and 2.9 mg/L for

N1, N2, and N3, respectively, at the end the forecast. A draw-

down of 0.63 m (2.1 ft) in the pool elevation was simulated

by the model due to higher WTP withdrawals compared to

the total inflows to the reservoir on average. Although D2W1

(Figure 8(b)) scenarios were simulated with higher effluent dis-

charge corresponding to 15% additional nitrate-N load to the

reservoir, the results did not show any significant changes in

nitrate concentrations compared to D1W1. This can be attrib-

uted to the lower drawdown in this scenario (0.4 m) due to

higher WRF contribution. The relatively higher hydraulic resi-

dence time (HRT) in this scenario is counteracting the effect of

higher nitrate loads. This signifies that in severe drought con-

ditions, the higher WRF effluent flows would actually be

beneficial for the reservoir, delaying the increase in nitrate

levels at RE02 due to higher HRT. In both D1W2 and D2W2

scenarios (Figure 8(c) and 8(d), respectively), the nitrates at

RE02 increased faster when the withdrawal was increased

from W1 to W2 (299,048 m3/day). A higher effluent nitrate-

N from UOSA (N3¼ 12.5 mg/L Nitrate-N) resulted in

3 mg/L nitrates at RE02 after approximately 79 days. Again,

the main reason was higher drawdowns, 1.5 m and 1.25 m

for D1W2 and D2W2, respectively, which essentially lowered

the capacity of the reservoir to resist change.

The nitrate levels shown in the above results remained

under the WQO limit in all the 12 scenarios. This would

indicate that an extended winter drought based on 90Q10

is not going to adversely affect the reservoir. However, it

must be noted that these results are based on a single

model output where the boundary conditions were highly

conducive for such favorable results. Due to higher than

average precipitation in summer and early fall of 2018, the

reservoir was already at full pool at the start of the 90-day

forecast. The starting HRT of the reservoir was calculated

to be approximately 120 days based on the withdrawal at

the time. In addition, the background concentrations were

significantly low (∼0.5 mg/L). Even at the lower denitrifying

capacities of the reservoir during the winter months, the

higher HRT provided better resiliency against any abrupt
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increase in nitrate at RE02. The relatively higher simulated

nitrate concentrations for scenarios involving W2 are only

because of the reduction in HRT due to higher drawdown

caused by more withdrawals.

As elaborated in the above discussion, the initial pool

elevation and, hence, the HRT of the reservoir play a crucial

role in the outcome of the forecast. To understand the effect

of how lower pool elevations can affect the nitrate concen-

trations in the reservoir, a hypothetical condition was

considered where an already existing drought condition in

the fall was extended into winter (the simulation was only

done for this study and is not a part of regular DSS forecast).

All the 12 scenarios were rerun by creating an artificial draw-

down of 2 m just before the start of the 90-day forecast, which

corresponds to a reduction of 33% in the reservoir volume

(Figure 9). It can be seen that in all the scenarios, the

higher effluent nitrate concentration of 12.5 mg/L (N3) will

eventually push the nitrates to the WQO limit in the fore-

casted period. The worst-case scenario remains D1W2

where the nitrate reaches 5 mg/L at RE02 in around 77 days.

The above results presented how the dynamic nature of

the system can affect the reservoir based on different bound-

ary conditions. Different meteorological parameters can also

have significant effects on the outcome. For instance, colder

than normal air temperature in fall or winter can also

increase the nitrate concentration at RE02 by reducing the

denitrification capacity of the reservoir. On the contrary,

any significant rain event can washout the entire reservoir

diluting the nitrate concentrations to much lower levels.

Process optimization

Every week, the DSS moves forward in time by predicting

the reservoir water quality based on the most recent initial

and future boundary conditions. When the forecasted

water quality going out 30–60 days is above the 3 mg/L

Nitrate-N threshold, the DSS automatically runs an

optimization routine on IViewOps to determine means to

reduce the nutrient discharge from the UOSA plant by

simultaneously adjusting asset availability (changing main-

tenance schedules to bring unavailable assets such as

reactors, clarifiers, and pumps back online) and oper-

ational setpoints. Sen et al. () have discussed the

nitrate optimization in detail for winter by using different



Figure 9 | Nitrate profiles for different scenarios at RE02 using 2-m initial drawdown.
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combinations of process configuration (tanks in service),

mixed liquor recycle, DO setpoints, wasting, and sup-

plement carbon, while specifying the constraints on the

effluent quality.

The DSS can help the plant operators to decide the extent

of denitrification, especially during the winter months. Instead

of running the plant at full throttle to maximize denitrification,

the operators can target a more realistic effluent nitrate con-

centration based on the existing condition of the reservoir.

Less denitrification means potential cost savings due to the

following:
• Reduced amount of carbon required for denitrification

and therefore more BOD (biochemical oxygen demand)

available for the digesters to increase biogas production

for heating and electricity generation.

• Less supplemental carbon (methanol and MicroC)

required for denitrification.

• Less anoxic zone mixing requirements and reduce nitrate

recycle pumping rates.

• Lower anoxic volumes reduce undesired luxury bio-P

uptake resulting in less soluble phosphate release and

consequently lower struvite formation in digesters. This
://iwa.silverchair.com/jwrd/article-pdf/9/3/263/599174/jwrd0090263.pdf
reduces the potential cost of descaling of the centrifuge

system and struvite control chemical feed.
CONCLUSION

This paper presented the development and implementation

of a DSS for the Occoquan IPR system to forecast and regu-

late the nitrate concentrations in the augmented reservoir.

The entire DSS application is powered by newly developed

software, called URUNME, to fully automate the operation

of the integrated reservoir and process models, forecasting

products, and various data sources. URUNME was also

used to develop information-rich and user-friendly interac-

tive dashboards to output the updated historical data and

forecasting results for the stakeholders.

The reservoir model is operated once every week,

running multiple future scenarios based on different combi-

nations of natural stream inflows, plant effluent flows and

nitrate concentrations, and water withdrawal by the WTP.

The future weather conditions are simulated using the fore-

casts obtained from the CFS. A 30-day forecast predicted the

reservoir conditions based on the NWM streamflow forecast

going out 30 days. A 90-day forecast, on the other hand, is
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used as a What-If analysis to simulate the effects of any poss-

ible future winter drought.

The forecasted nitrate-N concentrations under different

scenarios can be used by the WRF to identify and analyze

operational strategies dynamically in response to the reservoir

future conditions. In the event that nitrates going out 30–60

days exceeds 3 mg/L, the DSS can be used to run different

optimization routines on IViewOps to determine the means

to reduce the nutrient discharge. Even when the target nitrates

effluent concentrations are difficult to achieve due to oper-

ational constraint, the DSS output provides a fair estimate of

the time it would take for the reservoir to reach unacceptable

nitrate levels. This provides valuable feedback to the plant

managers for contingency planning, e.g. rescheduling the

maintenance of certain assets, adding supplemental carbon

chemicals, and changing plant configuration, to avoid any

future emergency conditions. As the DSS progresses forward

in time, the optimization of the WRF is revisited every 7

days with updated outputs due to the dynamic nature of the

system. For instance, any significant rain event can partially

or completely wash out the entire reservoir, diluting the nitrate

concentrations to much lower levels.

The file transfer system makes it easier for the WRF to

run the simulations based on reservoir model runs done at

OWML. Each week, URUNME is run to generate a data-

base file that is sent to the WRF via FTP. The plant uses

the URUNME interface to run this together with IViewOps

and populate relevant data in a screen that is a sister screen

to SCADA. The operations and maintenance staff can then

make decisions about how to optimize the plant and what

the future conditions would be with optimization.

Future applications of URUNME-based DSS

Integrated modeling using the URUNME system provides a

comprehensive approach to environmental management by

evaluating different components of a system in a holistic

manner. It can be used as an effective tool for design, plan-

ning, and risk assessments, and can facilitate informed

decision-making, enhancing the transparency and collabor-

ation between different stakeholders. Moreover, it can be

used for simulating, understanding, and managing a combi-

nation of wastewater, drinking water, and groundwater

interaction, such as the following:
om http://iwa.silverchair.com/jwrd/article-pdf/9/3/263/599174/jwrd0090263.pdf

4

1. IPR applications in Southern California (Orange County).

2. Wastewater treatment, discharge to a reservoir, extrac-

tion for drinking water supply, and drinking water

treatment (IPR, Wichita Falls, Texas).

3. Raw water supply from a reservoir, water treatment, and

sludge disposal to the wastewater treatment plant (WSSC

(Washington Suburban Sanitary Commission), Maryland).

Although developing a reservoir model from scratch is a

major undertaking that requires a significant amount of data

for setting up and calibrating the model. However, there are

certain components of this DSS which can be reused for

similar applications without any major modification:

• Downloading the data, reading the binary file formats

(GRIB2, NetCDF), and calibrating the forecasts from

the CFS and NWM.

• Obtaining data from different data sources (stream

stations, reservoir stations, and weather stations), manip-

ulating and transforming data, and writing the boundary

conditions and input parameters to the reservoir model.

• Open-source HOS model developed for CE-QUAL-W2.

• Different screens created as part of the DSS dashboard.

The use of a DSS driven by URUNME can be used in

various systems in addition to water resources. These can

include chemical and biological engineering systems and

their models, manufacturing and supply chain management

systems and their models. URUNME is available free of cost

for academic use (www.urunme.com).
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