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ABSTRACT

Arid and semi-arid locations are increasingly utilizing nontraditional irrigation water including reclaimed wastewater. Human health risk

associated with reclaimed wastewater use was determined by testing reservoir, distribution line and home spigot water (n¼190) and 14

types of vegetables and fruits (n¼90) harvested from 5 home gardens for 7 waterborne pathogens, 47 antibiotic resistance genes and 12

pharmaceuticals and personal care products (PPCPs). Based on surveys of the residents’ use of the reclaimed wastewater, two exposure

routes were modeled: irrigation of fruits and vegetables and drinking from irrigation hoses. Probabilistic quantitative microbial risk assess-

ment indicated that consumption of raw vegetables and fruits exceeded a 0.015 benchmark illness rate due to adenovirus and

enterococci. Chemical risk assessments indicated that consumption of tons of vegetables per day and hundreds to millions of gallons of

water per day would be needed to reach an unacceptable risk among the 10 PPCPs detected in home spigot water, indicating de minimis

risk from PPCPs. Eight different drug resistance gene families were detected in the water samples and crops indicating that antibiotic-resist-

ant organisms are present on foods irrigated with reclaimed water containing pharmaceuticals. These results elucidate the combined risk

from pathogens and PPCPs from reclaimed wastewater irrigation.
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HIGHLIGHTS

• Reclaimed wastewater irrigation presents unacceptable microbial human health risks.

• Reclaimed wastewater used for irrigation fosters antibiotic resistance associated with PPCPs.

• Irrigation with reclaimed wastewater presents de minimis chemical health risk.

• Pathogens and PPCPs accumulate differentially in vegetable skin and flesh.
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GRAPHICAL ABSTRACT

INTRODUCTION

The availability of water and its sustainable management has become a critical issue for many drought-stricken or water

resource-limited communities in the United States. Diminished water supplies have resulted in an increased use of treated
municipal wastewater, commonly known as reclaimed wastewater, for reuse applications. Reclaimed wastewater is a valuable
resource for crop irrigation, in particular in semi-arid and arid climates not only as a water source, but also as a source of

nutrients. State regulatory authorities typically specify a certain level of treatment and monitoring of reclaimed wastewater
to protect public health and the environment, in a fit-for-purpose approach (Chhipi-Shrestha et al. 2017). Water quality regu-
lations for utilizing reclaimed wastewater for irrigation typically specify acceptable log reductions of microorganisms,

physicochemical parameters (e.g., turbidity, oxygen demanding material, chlorine residual), agronomic parameters (e.g., sal-
inity, sodium adsorption ratio, pH), and the number and types of treatment technologies required for the particular reuse
scenario (Shoushtarian & Negahban-Azar 2020). Yet depending on the level of treatment there may still be waterborne patho-
gens or pharmaceuticals and personal care products (PPCPs) present in reclaimed wastewater used for irrigation. In the fit-

for-purpose treatment approach, various engineered and agricultural controls can be utilized to reduce the potential risk to
users irrigating with reclaimed wastewater (Mohr et al. 2020). For example, irrigation methods can be selected to limit risk to
consumers by either limiting the edible portion of the crops exposed to irrigation water (i.e., drip or subsurface irrigation of

lettuce) or only irrigating crops that are cooked prior to eating (i.e., potatoes) (van Ginneken & Oron 2000).
Depending on the level of treatment of reclaimed wastewater, numerous waterborne pathogens have been reported to be

present including various bacteria (e.g., Escherichia coli, enterococci, Staphylococci, Salmonella) (Goldstein et al. 2014b;
Santiago et al. 2018), protozoans (e.g., Giardia and Cryptosporidium) (Ryu et al. 2007; Domenech et al. 2018) and viruses
(e.g., adenovirus, norovirus) (Jjemba et al. 2010; Gonzales-Gustavson et al. 2019). Yet the risk to human health from exposure
to these pathogens in reclaimed wastewater used for irrigation is not always clear. This uncertainty arises from (1) lack of

analysis of pathogens themselves and reliance instead on fecal coliforms which do not always correlate with pathogen abun-
dance (Wu et al. 2011); (2) lack of information on the viability of the pathogens due to reliance on nucleic acid-based
techniques rather than culturing (Whiley & Taylor 2016); (3) lack of studies on persistence of pathogens after irrigation
and (4) left-censored datasets of pathogen concentrations below detection limits (Kato et al. 2013). Furthermore, there are

a limited number of risk assessments of vegetable crops irrigated with reclaimed wastewater where the crops themselves
were evaluated for pathogens. Instead, many quantitative microbial risk assessments (QMRAs) for irrigation of foods are
based on measuring coliforms or pathogens in water that are presumed to be retained on crops (van Ginneken & Oron

2000; Hamilton et al. 2006; Al-Sa’ed 2007; Ryu et al. 2007; Verbyla et al. 2016; Gonzales-Gustavson et al. 2019).
In addition to risks posed by pathogens, PPCPs in reclaimed wastewater used for irrigation may also present human health

risks. There are several review articles on the impacts of PCPPs on vegetable crops irrigated with reclaimed wastewater (Qin
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et al. 2015; Wu et al. 2015; Miller et al. 2016; Fu et al. 2019) and human risk assessment. The emphasis of these studies has

been the uptake and translocation of chemicals of concern into edible roots and above ground tissue of fruit or vegetable
crops. Studies have been conducted using hydroponic systems (Dodgen et al. 2013, 2015; Wu et al. 2013) and greenhouse
(Wu et al. 2010; Goldstein et al. 2014a) or lysimeter studies (Malchi et al. 2014; Mordechay et al. 2018). Few studies have

been conducted under field-irrigation conditions. Field conditions that were studied included drip irrigation (Riemenschneider
et al. 2016; Christou et al. 2017b) or buried drip tape (Wu et al. 2014) for water delivery to the plants in commercial agricul-
ture practices. The use of sprinkler irrigation of home vegetable gardens has not been reported. Studies evaluating risks for
humans consuming fruits and vegetables irrigated with reclaimed wastewater report the risk is de minimis (Prosser & Sibley

2015; Christou et al. 2017b; Liu et al. 2020). Two exceptions are notable. Carbamazepine and its metabolites were detected in
urine of individuals who consumed produce irrigated with reclaimed water (Paltiel et al. 2016) and the metabolites of carba-
mazepine, as genotoxic compounds, were reported to pose a risk through the consumption of the leaves of carrots and sweet

potato and the roots of carrots (Malchi et al. 2014).
Few studies include a comprehensive evaluation of both microbial and chemical risk (Munoz et al. 2010) from irrigation

with reclaimed wastewater in home gardens and evaluate exposure risk to both irrigation water and produce. There is also

evidence to suggest that individuals may use reclaimed wastewater in a variety of ways beyond irrigation. In a survey of com-
munity members in the study area of Hyrum, UT, it was reported that 11.8% of the citizens who had access to reclaimed
wastewater used the water to fill swimming pools, 29.4% for children’s water play, and the 3.7% for infrequent drinks out

of the hose; exposure routes not considered in previous studies (Flint & Koci 2021). Therefore, the overall goal of this project
was to evaluate chemical and microbial risks to residents, primarily using reclaimed wastewater for sprinkler irrigation in
home gardens and infrequently as drinking water. Microbial risk was evaluated using traditional coliform measurements,
quantitative polymerase chain reaction (qPCR) for specific pathogens and antibiotic resistance genes in irrigation water

and associated with fruits and vegetables.

MATERIALS AND METHODS

Water reclamation system description

The Hyrum, UT wastewater treatment plant (WWTP), located at latitude 41 °39019.20″N and longitude 111 °51040.67″W,

treats an estimated 3.8 million L/d of primarily domestic wastewater from a population of 8,200. The unit processes at the
treatment plant include screening, grit removal, anoxic/aerobic basins with membrane separation (via a membrane bio-
reactor, MBR) and UV disinfection. During the months of November to March, the treatment plant discharges to Spring

Creek at latitude 41 °39006″N and longitude 111 °52050″W. From mid-April to October, water is distributed directly to resi-
dents for use as nonpotable irrigation water without post-chlorination. The nonpotable irrigation water distribution line is
stagnant or empty over winter. During early April, the reclaimed wastewater distribution main line is used to fill a small irri-

gation reservoir (Figure 1) with treated wastewater effluent before surface irrigation water is available from a nearby surface
water supply. The volume of reclaimed wastewater is not sufficient to meet irrigation needs, therefore as the irrigation season
progresses, some parts of the city receive blended water containing reuse wastewater from the Hyrum WWTP and surface
water from the irrigation reservoir. Therefore, different parts of the city receive either only reclaimed wastewater (L1, L2

and L3), only surface water (L6, L7 and reservoir at the end of season) or a mixture of reclaimed wastewater and surface
water (L4 and L5) throughout the irrigation season.

Water sample collection and handling

All water samples were collected in separate sterile 4-L amber glass bottles for microbial and PPCP analysis. Details of the

samples collected and dates of collection are shown in Supplementary Table S1. After aseptic collection of samples for
microbial analysis, samples were stored on ice during transport to the laboratory. All water samples for microbial analysis
were stored at 4 °C upon arrival and were processed within 12 h of arrival at the laboratory. The water samples for PPCP

analysis were returned to the laboratory within 4 h and stored at 4 °C.

Vegetable and soil sample collection and handling

Fourteen types of vegetables and fruits (Supplementary Table S1) were collected from five household gardens that were
located close to the WWTP (Figure 1, locations G1 to G5). Vegetables and fruits that are eaten raw, with the exception of
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potatoes, were sampled and analyzed along with soil co-located with the plants. Vegetation and soil collection and processing
methods are detailed in the Supplementary material and Table S1.

Pathogen detection methods

Pathogens in water, soil and vegetables were quantified by both culture and qPCR. Culturing of E. coli and enterococci from

samples was performed following EPA Methods 1603 and 1600, respectively (USEPA 2002a, 2002b). Modified MTEC and
MEI agar (Hardy Diagnostics, USA) were prepared based on the manufacturer’s instructions. Water samples were also fil-
tered through sterile mixed cellulose ester 0.45 and 0.22 μm filters (Fisher Scientific Inc., USA), as necessary. Nucleic

acids were extracted from the filters using the methods described in the Supplementary material. Quantitative PCR was
used to determine the abundance of the uidA gene of E. coli, the 23S rRNA gene of Enterococcus spp. (enterococci), the
invA gene of Salmonella enterica, the mip gene of Legionella pneumophila, the β-giardin gene of Giardia intestinalis, the
polymerase-capsid junction (ORF1-ORF2) of norovirus genotype I and the hexon gene for serotypes human adenovirus ser-
otype 40 and 41. Standard curves were made using a nine-fold serial dilution of plasmids containing uidA, invA or 18S genes
or stabilized Ultramer® DNA oligonucleotides (Integrated DNA Technologies, USA) for L. pneumophila, G. intestinalis,
Norovirus GI and Human Adenovirus 40/41. The thermocycler conditions, primer and probe concentrations and mastermix

used for qPCR are presented in Supplementary Table S2. The abundance of pathogens in samples determined by qPCR in
gene copies/mL water or gene copies/g vegetable or soil were converted to cells per mL or g by dividing by the number
of gene loci per organism. It was assumed that E. coli had five copies of uidA (Metcalf & Wanner 1993); enterococci

have nine copies of 23S rRNA (Chakravorty et al. 2007); Salmonella spp. have five copies of invA (González-Escalona
et al. 2009) and Giardia intestinalis have two copies of β-Giardin P241 (Alonso et al. 2010). Norovirus, adenovirus and Legio-
nella were assumed to have one copy of the gene targeted by qPCR.

Figure 1 | Sample collection locations and distribution line for reclaimed wastewater in Hyrum, UT. L#, distribution line sampling locations;
G#, garden sampling locations.
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Antibiotic resistance profiling

The nucleic acids extracted from the water distribution system lines (n¼12), irrigation reservoir (n¼2), treatment plant efflu-
ent (n¼2) and crops (n¼3 each of cherry tomato, cucumber, lettuce and zucchini) were analyzed for antibiotic resistance

genes at the University of Minnesota. Details of the microfluidic qPCR assay targeting 47 antibiotic resistance genes were
described previously (Ahmed et al. 2018). The resulting concentrations of ARGs were normalized by the mass of DNA
extracted from each sample as measured by a Qubit fluorometer.

Quantitative microbial risk assessment methods

All pathogen concentrations for vegetables and water were aggregated and a Bayesian analysis of the left-centered data was
performed to generate distributions for each exposure route. Details of the Bayesian analysis, R code, distributions of raw data
and model fit parameters are included in Supplementary Figures S1 and S2. The two exposure routes considered for home

gardeners were: (1) direct ingestion through drinking from a hose and (2) eating raw produce irrigated with the reclaimed
water with and without rinsing. The exposure routes were selected based on surveys of the community where 3.7% of respon-
dents indicated drinking from the hose containing reclaimed wastewater and 92% of respondents used the reclaimed

wastewater to irrigate vegetables (Flint & Koci 2020). The daily dose of pathogen ingested through eating vegetables was esti-
mated by Dosevegetables¼Ci*Mveg*Mbody. Furthermore, as many QMRA studies evaluate contaminated water retained on
vegetables as a surrogate for testing vegetables themselves, we also estimated the daily dose of pathogen ingested through

reclaimed wastewater retained on vegetables by Dosewater on vegetables¼Ci*Mveg*Mbody*Vwater retained. The daily dose of patho-
gen ingested during drinking from a reclaimed wastewater hose was estimated by Dosedrinking water ingestion¼Ci*Vdrinking water.
Where Ci is drawn from 10,000 resamplings of the Bayesian transformed distribution for each pathogen in reclaimed waste-
water or on vegetables measured by culture and/or qPCR methods; Mveg is the mass of vegetables consumer per unit body

weight per day; the Mbody is the body weight of an average adult in the United States; Vwater retained is the volume of reclaimed
wastewater retained on lettuce after irrigation and Vdrinking water is the volume of water consumed from a hose. Furthermore,
the Vdrinking water from a hose was assumed to be the volume of cold tap water consumed at home by pregnant women

employed part time or less. While this assumption is less conservative than assuming the total volume of water consumed
in a day comes from the garden hose, it is likely still over estimating the volume of reclaimed wastewater that is consumed
per exposure event from a hose (USEPA 2019).

The annual probability of infection after eating vegetables or drinking water contaminated with E. coli (Powell et al. 2000)
or Salmonella (Ahmed et al. 2010) were estimated using the beta-Poisson model, with enterococci (Tseng & Jiang 2012) and
adenovirus (Teunis et al. 2016) by two different exponential models, and with norovirus (Messner et al. 2014) by the fractional
Poisson model. Details of the exposure models, parameters and assumptions for each organism are shown in Supplementary

Tables S3 and S4. The probability of illness, Pill, was determined by modifying the probability of infection, Pinf, by the model
Pill¼Pinf�Pill|inf. The probability of illness given infection, Pill|inf, for each organism is shown in Supplementary Table S4. The
annual risk of disease, Pann ill, was calculated by Pann ill¼1�(1�Pill)

n, where n represents the number of exposure events per

year (Seidu et al. 2013). In this study, it was assumed that people ate vegetables irrigated with reclaimed wastewater either 15,
30 or 90 days a year and drank reclaimed wastewater from the garden hose once or twice per week during the growing season
or 12–36 days per year. The models did not account for the decay of pathogens on produce after deposition.

The estimated annual probability of illness was compared against two benchmarks. First, residents drinking reclaimed
wastewater from the hoses were compared against the acceptable probability of illness benchmark from the USEPA of a
one-time infection per 10,000 individuals in a given year (abbreviated as 10�4 per person per year or pppy) (Rose &

Gerba 1991). Previous QMRA studies for vegetables irrigated with reclaimed wastewater have commonly applied the drink-
ing water 10�4 probability of infection per year benchmark (Hamilton et al. 2006). This benchmark is highly conservative.
Second, data from the CDC on annual illness originating from pathogen contaminated vegetables reports 9,388,075
annual illnesses from 1998 to 2008 for an average population of 298 million US citizens in 2006 (Scallan et al. 2011).
This results in a 3.15�10�2 pppy or 315 in 10,000 individuals in a given year falling ill from pathogens on produce.

The QMRA distribution fittings, calculations and random sampling for the risk study were conducted with SAS (ver. 9.4;
SAS Institute, Inc., Cary, NC) using PROC UNIVARIATE, PROC COOR and the RAND function. All input parameters were

drawn from 10,000 random samplings of their probability distribution functions (Supplementary Tables S3 and S4). The sen-
sitivity of the estimated probability of infection due to variability in the input parameters was assessed by evaluating the
Pearson correlation between the Pann inf and input parameters (e.g., pathogen concentration, volume of water retained).
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This method was chosen due to its ease of implementation and ability to show nonlinear correlations between parameters as

reported previously (Hamilton et al. 2006; Haas et al. 2014; Verbyla et al. 2016).

PPCP analysis

The analytes used in this study included pharmaceuticals (acetaminophen, carbamazepine, gemfibrozil, sulfamethoxazole

and fluoxetine), hormones (estrone, progesterone and ß-estradiol), personal care products (N,N-diethyl-metatoluamide
(DEET) and triclosan), a fire-retardant (tris-2-chloroethyl phosphate) and caffeine. These compounds were selected due to
their wide usage and varying physical/chemical properties providing representative chemicals of the many the PPCPs com-
monly used. Samples were analyzed for PPCPs using a modified USEPA Method 1694. The selected PPCPs were quantified

using an Agilent 1290 Infinity LC system with an Agilent 6490 Triple Quadrupole MS. Details of sample processing and
analytical methods are given in the Supplementary material.

PPCP risk assessment methods

The two PPCP exposure routes considered for home gardeners were the same as those considered for the microbial risk.
None of the PPCPs evaluated in this study are reported carcinogens, and quantitative risks associated with chemical
PPCP exposure due to the use of reclaimed wastewater was estimated by using the following clinical dose or toxicity end-

points: clinical dose of pharmaceuticals, mg/d; toxic dose low (TDLO), mg/kg and average daily intake (ADI), mg/kg, for
70 kg adult and/or 7 kg infant; no-observed-adverse-effect level (NOAEL), mg/d and the margin of exposure (MOE)¼
NOAEL/Calculated Dose based on 1 L/d water or 336 g/d vegetable intake, which is recommended to be .10 (Coordinators
2017). The values of these clinical doses or toxicity endpoints available for the PPCPs monitored in this study are shown in

Supplementary Table S5. If a clinical dose was available for a compound, the volume of water, Volwater, or mass of vegetable
matter, Massvegetable, that would need to be consumed to reach this clinical dose was calculated by Volwater¼Clinical Dose/Cw

or Massvegetable¼Clinical Dose/Cv, where Cw and Cv are the highest concentration of the compound measured in the paired

garden spigot water (mg/L) and the household garden vegetable samples (mg/g), respectively, from samples collected in 2018.
If a TDLO or an ADI were available, the lowest Volwater or Massvegetable required to reach these doses were calculated by
Volwater¼TDLO or ADI*70 kg/(Cw) for adult exposure [or 7 kg/(Cw) for infant exposure] or Massvegetable¼TDLO or ADI*70

kg/Cv for adult exposure [or 7 kg/(Cv) for infant exposure]. If a NOAEL for a compound was available, an MOE was calcu-
lated based on the ratio of the calculated dose expected from exposure to the highest concentrations for that PPCP detected in
a spigot or vegetable sample collected during the study, and standard 1 L/d water or 336 g/d vegetable intake values. The

MOE was then calculated by MOE¼NOAEL/[(Cw)*(1 L/d)] or NOAEL/[(Cv)*(336 g/d)].

RESULTS AND DISCUSSION

Seasonal PPCP concentrations in treatment plant effluent and distribution line reuse wastewater

The PPCPs included in this study, with the exception of ß-estradiol and estrone, were consistently detected in the wastewater
effluent and in the irrigation reservoir (Figure 2). The concentrations of most PPCPs in the effluent were similar to literature

values (Munoz et al. 2010; Goldstein et al. 2014a; Malchi et al. 2014); however, the concentration of sulfamethoxazole was
consistently an order of magnitude higher (Figure 2) than reported in other studies (Wang & Gardinali 2014; Chitescu et al.
2015). The entire distribution system was initially influenced by the WWTP effluent (Figure 2, spring plots) as effluent is used

to fill the reclaimed water distribution system and irrigation reservoir prior to the availability of surface water supplied by
canal in the spring. However, by the end of the irrigation season, the influence of the WWTP effluent is found primarily
in the northwest sector of the reclaimed wastewater system (Figure 2, line locations L2 and L3) as the wastewater treatment
effluent supplies only a portion (≈14%) of the total irrigation demand during the warmer portion of the summer.

Microbial quality of treatment plant effluent and distribution line reclaimed wastewater

Pathogens were detected by qPCR and culture-based methods in the treatment plant effluent and water from the reservoir and
distribution system (Figure 3, blue bars). Viable cells estimated by culture-based methods for E. coli and enterococci (data not

shown) were typically lower than those estimated by qPCR presented in Figure 3. The range of E. coli and enterococci deter-
mined by culture-based methods in the treatment plant effluent were below typical permitted discharge limits at 0.55+0.07
and 2.4+2.6 CFU/100 mL (average+standard deviation), respectively. The coliforms estimated by qPCR were higher,
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specifically, E. coli and enterococci were 0.66+0.83 and 1.5+1.1 log cells/100 mL (after accounting for numbers of uidA and

23S gene copies per cell). In contrast, the distribution lines had higher culture-based concentrations (199+581 E. coli and
127+216 enterococci CFU/100 mL) as compared to qPCR-based methods (20.9+49.6 and 33.7+134 gene copies/100 mL
for E. coli and enterococci). The geometric mean of E. coli (23 CFU/100 mL) was below the Food Safety Modernization

Act irrigation water limit (126 CFU/100 mL) (FDA 2016). The mean concentrations of pathogens in the reservoir were typi-
cally lower than in the treatment plant effluent and the distribution system (Figure 3). Legionella was detected infrequently
(9 of 29 water samples and quantifiable in 2 samples) and had low concentrations (8.0+15 gene copies/100 mL when

quantifiable). Similarly, Giardia was detected infrequently (1 of 19 water samples). Therefore, Legionella and Giardia
were not tested for in vegetable and soil samples. The antibiotic resistance profiles of the reclaimed wastewater effluent,
reservoir and distribution system indicated the presence of eight different families of drug resistance (Supplementary
Figure S3) and included aminoglycosides, beta-lactamase, chloramphenicol, sulfonamide, tetracycline, macrolides, metal

resistance genes and multi-drug resistance. Typically, the water in the reclaimed wastewater distribution system
contained a larger percentage of multi-drug resistant genes than the reservoir water or the WWTP effluent. It is suspected
that the biofilms in the distribution system are harboring the antibiotic resistance genes and serving as a location

for horizontal gene transfer as reported by others (Garner et al. 2018). Given the persistence of the antibiotics in the
reclaimed wastewater (Figure 2), there is selective pressure to maintain these antibiotic resistance genes within the biofilm
population.

Distribution of pathogens in vegetable and soil samples

Pathogen genomic material was frequently detected on home garden produce and in soils (Figure 3). There was a wide varia-
bility in the pathogen detection frequency with the uidA gene of E. coli (87%) and the 23S gene of enterococci (88%) being

Figure 2 | Concentrations of PPCP in Hyrum City WWTP effluent and sampling locations throughout the reclaimed water distribution system,
(top panel) collected at beginning of irrigation season in spring (April and May) and (bottom panel) at the end of irrigation season in the
fall (August and September). EFF, effluent (n¼6 in fall and n¼12 in spring); RES, reservoir (n¼4 in fall and n¼6 in spring); L2, L3, L4 and L5
(n¼3 each in both seasons) indicate sample locations shown in Figure 1. The 5th and 95th percentiles are indicated by the circles,
medians are indicated by the horizontal lines and while the boxes indicate the interquartile range of concentrations.
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found most frequently, while invA gene of Salmonella (40%), adenovirus 40/41 (42%) and norovirus GI (17%) were detected
less frequently. The highest pathogen concentrations observed were for enterococci ranging from 3.4+2.1 log gene copies/g,
then the uidA gene of E. coli at 2.1+1.2 log gene copies/g, invA gene of Salmonella spp. at 1.3+1.7 log gene copies/g, ade-

novirus 40/41 at 23+69 gene copies/g and norovirus at 15+66 gene copies/g. In all cases, the pathogen genomic material
was in higher concentration in stomached samples as compared to the corresponding vegetable rinse water (Figure 3).

Figure 3 | Abundance of pathogens observed in home garden produce (black and white), soils (green), reuse wastewater (blue) and control
vegetable samples (green). W, wash sample; S, stomacher sample; c. tomato, cherry tomato; GC, gene copies. Numbers in parentheses after
sample names indicate the number of samples tested in each category. Numbers above the figures indicate the number of samples in which
the pathogen genes were detected, the red line indicates the mean, the circles represent the 5th and 95th outliers and the box represents
the interquartile range. Please refer to the online version of this paper to see this figure in colour: https://dx.doi.org/10.2166/wrd.2022.014.
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Culturable enterococci were found more frequently in the stomached vegetable samples (23 of 37 samples) than in the rinse

water (20 of 40 samples) from the vegetables. In contrast, fewer culturable E. coli were detected in stomached vegetable
samples (12 of 37 samples) than in the rinse water (17 of 40 samples). Culturable enterococci (5 of 12 composite samples)
and E. coli (1 of 12 composite samples) were detected in the garden soils, although at low levels (3.4+6.3 enterococci

CFU/g and 0.08+0.29 E. coli CFU/g). Pathogen genomic material was in higher concentration in soils compared to cul-
ture-based results (Figure 3) and ranged from 20 gene copies/g soil to 4 log gene copies/g soil.

Eight antibiotic resistance families were detected in lettuce, cucumber, zucchini and cherry tomatoes (Supplementary
Figure S3). In general, the cherry tomatoes and lettuce were found to have higher abundances of antibiotic resistance

genes than the cucumbers and zucchini. These findings support the studies by others that suggested antibiotic resistance
genes decreased in concentration along the continuum from soil, rhizosphere, roots, leaves and fruits (Cerqueira et al.
2019). In this study, sulfonamide resistance genes made up 7–28% of the antibiotic resistance genes detected in the crops

in which sulfamethoxazole was quantifiable (Table 1 and Supplementary Figure S3), i.e., lettuce, zucchini and cucumber.
Relatively few studies have reported on field trials evaluating the plant uptake of antibiotics from reclaimed water irrigation
(Malchi et al. 2014; Wu et al. 2014; Prosser & Sibley 2015; Christou et al. 2017a). In contrast to the results herein, some

studies did not detect the accumulation of sulfamethoxazole in tissues of vegetables irrigated with water containing 0.28–
250 ng/L of the antibiotic (Goldstein et al. 2014a; Wu et al. 2014), yet others reported accumulation in select crops
(Malchi et al. 2014; Franklin et al. 2016).

Distribution of PPCPs in vegetable and soil samples

The frequency of detection of PPCPs, as well as the maximum concentration detected in various samples collected during the

field study, is shown in Table 1. Samples included home garden spigots, home garden vegetables and soils that were irrigated
with reclaimed wastewater and corresponding samples from the control locations. The spigot water from the Salt Lake City

Table 1 | Frequency and maximum concentration of PPCPs detected in the household spigot, vegetable and soil samples, and corresponding
Margin of Exposure (MOE) and quantities of reclaimed wastewater or produce grown with reclaimed wastewater that would need
to be consumed to reach clinical dose (ACE, CAFF, CARB, FLUO, GEMF, PROG) or toxicity endpoints (DEET, SULF, TRIC, TRIS)

Compounda

Spigot
(ng/L)

Crops
(ng/g)

Soils
(ng/g) MOEb

Quantity of Spigot water
consumed to reach risk thresholdb

Quantity of vegetables
consumed to reach risk thresholdb

ACE 0 of 15 1 of 66
(33.7)

1 of 20
(4.0)

278 (Plant) NA 98 Ton/d

CAFF 7 of 15
(4.3)

4 of 66
(23.9)

3 of 20
(11.2)

21,792 (Plant) 24.6 Mgal/d 18 Ton/d

CARB 14 of 15
(13.5)

18 of 66
(10.9)

10 of 20
(2.3)

31.3 Mgal/d 162 Ton/d

DEET 15 of 15
(104.8)

4 of 66
(27.3)

0 of 20 10,902 (Plant) 0.53 Mgal (TDLO) 0.85 (TDLO) Ton

FLUO 9 of 15
(13.6)

34 of 66
(63.5)

8 of 20
(5.5)

1.2 Mgal/d 1.0 T/d

GEMF 0 of 15 0 of 66 0 of 20 NA NA

PROG 8 of 15
(24.8)

33 of 66
(25.0)

4 of 20
(6.0)

238 (Plant) 1.1 Mgal/d 4.4 T/d

SULF 15 of 15
(284.4)

12 of 66
(44.5)

0 of 20 10.4 Mgal (TDLO) 277 T

TRIC 1 of 15
(11.3)

0 of 66 0 of 20 23,800 gal/d NA

TRIS 5 of 15
(20.4)

0 of 66 0 of 20 444 (Infant) gal/d NA

aACE, Acetaminophen; CAFF, Caffeine; CARB, Carbamazepine; DEET, N,N-diethyl-metatoluamide; FLUO, Fluoxetine; GEMF, Gemfibrozil; PROG, Progesterone; SULF, Sulfamethoxazole;

TRIC, Triclosan; TRIS, Tris-(2-chloroethyl) Phosphate.
bClinical dose or toxicity endpoint tabulated in Supplementary Table S5.
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control site had detectable concentrations of carbamazepine and DEET in all samples, while progesterone and sulfamethox-

azole were detected in one of the three samples collected (Supplementary Table S6).
PPCP detection was generally more frequent and at higher concentrations in the Hyrum household samples compared to

the control location samples (Table 1 and Supplementary Table S6), indicating that the Hyrum WWTP effluent did impact

PPCP concentrations in home garden samples collected in this study (Table 1). All PPCPs that were found in household
spigot water, except triclosan and tris-(2-chloroethyl), were found in fruits and vegetables irrigated with this reclaimed waste-
water. Triclosan (Wu et al. 2013) has been reported to accumulate in plant roots although roots were not analyzed in this
study. Triclosan also biodegrades in soil (Durán-Álvarez et al. 2015) supporting the lack of detection of this compound in

both the irrigated and control soils. In contrast to the results herein, the flame retardant tris-(2-chloroethyl) phosphate was
reported by others to accumulate in strawberries and lettuce up to 200 ng/g dry weight (Hyland et al. 2015a). It was
shown that the accumulation and translocation of tris-(2-chlorethyl) phosphate was primarily due to transport from the

roots to shoots (Hyland et al. 2015b). Therefore, although this flame retardant was detected in 30% of the spigot water
samples, its lack of detection in soils, likely due to biological transformation of the compound in soils (Zhang et al. 2021),
resulted in a lack of accumulation of the compound in vegetables in this study.

DEET and sulfamethoxazole accumulated in the edible portion of plants but were not detected in the soil (Table 1).
Acetaminophen, caffeine, carbamazepine, fluoxetine and progesterone also accumulated in the edible portion of plants
in concentrations 2–13 times greater than found in the adjacent soil (Table 1). Fluoxetine as a cation, sorbs to soil limiting

plant uptake (Wu et al. 2010, 2014) and has limited translocation within plants (Wu et al. 2013). But in this study fluox-
etine was one of the more frequently detected PPCP in vegetable samples (52%) and was found in all vegetable types
(cucumber, tomato, squash, peppers, apples, potato, strawberry) (Supplementary Figure S4). Progesterone was also present
in 50% of the tested vegetables (mean of 10.16+4.57 ng/g) as well as 53% of the spigot water (mean of 4.07+5.84 ng/L)

and in 20% of the tested soil samples (mean of 3.84+1.51 ng/g) (Supplementary Figure S4). Progesterone, however, has
been reported to be naturally present in plant tissue including tomato, apples, potato, peas and beans and functions as
a natural plant growth regulator (Janeczko 2012). Detection of progesterone in control plant samples in this study, includ-

ing tomatoes, onion and potatoes, occurred at a lower frequency (33%) and at a lower average (8.48+3.22 ng/g) but not
statistically different concentration than plants irrigated with reclaimed wastewater. Gemfibrozil was not detected in spigot,
plant nor soil samples despite being consistently detected in the WWTP effluent and distribution line samples (Figure 2 and

Table 1).

Quantitative microbial risk assessment

The annual probability of illness from eating vegetables irrigated with this reclaimed wastewater exceeded the United States
average rate of foodborne illness (Figure 4(a)) when residents ate raw home-grown vegetables more than 90 days of the year.
In particular, the risk of gastroenteritis was estimated to be highest from adenovirus 40/41 and enterococci. Estimates of the

gastroenteritis risk from pathogens measured in water were always lower than the risk estimated from pathogens on veg-
etables not removed by rinsing (i.e., processed by stomaching where the whole vegetable is mashed). The risk estimated
from qPCR-based detection of E. coli and enterococci was always one or two-log greater than the risk estimated from cul-

ture-based concentrations of pathogens. Individuals who drink water from the reclaimed wastewater line had an
unacceptable risk of gastroenteritis (i.e., exceeding 1 in 10,000 risk) regardless of how frequently they drank from the
garden hose (Figure 4(b)). The QMRA estimated annual probability of illness model from exposure to pathogens on food

was found to be most sensitive to pathogen concentration (Pearson’s correlation, r¼0.2–0.82, P,0.0001, n¼10,000, Sup-
plementary Table S7). In contrast, the volume of water consumed tended to be equally as important as the pathogen
concentration for the drinking water exposure route (Supplementary Table S7).

As with all risk assessments, there are uncertainties in the input variables that should be considered when interpreting the

results. The QMRA likely overestimated the risk to consumers as the dose of pathogens was estimated from qPCR results
which include both live and dead organisms. Furthermore, the risk may be overestimated as the decay of pathogens on
the vegetables after irrigation was not considered. Other inputs into the QMRA that could result in over or underestimation

of risk include: the mass of the vegetable consumed, the volume of reclaimed wastewater retained on the vegetable, the indi-
vidual bodyweight, exposure frequency, the volume of reclaimed wastewater consumed from a garden hose and the potential
for population immunity. The role of population immunity in the risk of illness was not considered herein, but it is likely that
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sustained exposure to the pathogens in the reclaimed wastewater used for irrigation may result in fewer annual illnesses in
this exposed population.

PPCP risk assessment

The chemical risk assessment based on clinical dose or toxicity endpoints available for the PPCPs monitored in this study is
shown in Table 1 and is considered negligible for all PPCPs evaluated. The calculated MOE for water or vegetable consump-

tion values were based on the highest concentrations of a given PPCP detected in a spigot or vegetable sample collected
during the study (Table 1), and the volume of water or mass of vegetable matter that would have to be consumed to reach
the NOAEL for that PPCP. The ADI via ingestion by exposure pathway (contaminated food and water) and route (drinking
or eating contaminated food or water) is listed as the water volume (gallons per day) or mass (tons per day of produce) that

would be required to be consumed to reach either the clinical dose, the lowest toxic threshold dose TDLO or the rec-
ommended ADI, whichever was lower. The lowest MOE was determined to be 238 based on a daily consumption of
336 g/d of green beans grown in the garden location with the maximum progesterone concentration of 25 ng/g (Table 1),

compared to the recommended value for the MOE of 100 or more. Risks associated with clinical dose, toxic dose or ADI-
related impacts were found to be even lower based on the excessive daily quantities of water (444 gal/d for infants exposed
to tris-(2-chloroethyl phosphate) to 31.3 MGD for adults exposed to carbamazepine) or vegetables (0.85 T for adult DEET

Figure 4 | Log annual probability of illness from pathogens on (a) vegetables irrigated with reclaimed water and (b) from drinking irrigation
water from garden hoses. EC uidA, uidA gene of E. coli; ENT 23S, 23S gene of enterococcus; CFU, colony forming units; ADE, adenovirus;
NOR, norovirus; SAL, Salmonella spp.; S, pathogen abundance measured on the vegetables by the stomacher method; W, pathogen abun-
dance assumed to be in reclaimed wastewater retained on vegetables, n¼15 or 90 assumes 15 or 90 days of eating raw vegetables during the
summer growing season. Vertical dashed lines indicate the benchmark foodborne illness from produce (15 in 1,000 annual probability of
illness) and from drinking water (1 in 10,000 annual probability of illness). The symbols indicate the mean probability of illness by organism
and exposure frequency and the gray horizontal lines indicate the range of 5th and 95th percentiles of the Monte Carlo simulations.
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exposure to 118 T/d for adult exposure to carbamazepine) that are required to be consumed to reach these levels of human

health concern.
The PPCPs in the irrigation water all represent insignificant risks to the public under worst-case exposure assumptions of

direct ingestion of either reclaimed wastewater itself, or raw foods irrigated with reclaimed wastewater containing low con-

centrations of these PPCPs. The required harmful human threshold consumption rates of water and produce from the private
gardens sampled in this study are not physically possible, which confirms findings from other researchers (Prosser & Sibley
2015; Christou et al. 2017b) that human health risks associated with PPCPs in reclaimed wastewater appear to be de minimis,
although this study did not evaluate degradation products of various PPCPs that may pose higher risk than the parent com-

pound. Risk from PPCPs in reclaimed water via direct water ingestion or ingestion of raw foods irrigated with reclaimed
wastewater does not contribute directly to the overall risk of reclaimed wastewater use in Hyrum, the bulk of which
comes from health risks associated with pathogen exposure.

Limitations in the PPCP risk assessment primarily arise from the small subset of the potential organic chemicals present in
the wastewater treatment system that were identified and quantified in this study. The compounds that were studied were
selected based on their presence in other reclaimed wastewater sources, the range of physical/chemical/biological properties

they represent and the authors’ experience with these compounds in prior and on-going studies. There may be other com-
pounds, i.e., PFAS compounds for example, that were not quantified in this study that could represent a greater human
health risk than those that were studied. In addition, as Malchi et al. (2014) have suggested, metabolites could potentially

represent greater risk than their parent compounds, and these issues warrant further study. Furthermore, lifetime exposure
to PPCPs in home garden vegetables and reclaimed wastewater at low-doses observed in this study could present potential
risks not captured by the clinical dose values available for these compounds.

CONCLUSION

The results presented herein are one of the few studies looking at uptake of PPCPs, pathogens and antibiotic resistance genes

in food crops at a field scale. Overall, the results suggest that after irrigation with reclaimed wastewater: (1) the risks from
pathogens on crops eaten raw exceed benchmark levels of gastroenteritis in the US (Scallan et al. 2011), (2) the risks
from exposure to PPCPs taken into crops or through direct ingestion of reclaimed wastewater is de minimis, but (3) multiple

families of antibiotic resistance genes are present on food crops which may be associated with the presence of antibiotics in
this reclaimed wastewater. Therefore, while the direct chemical risk from exposure to PPCPs is low, antibiotics in reclaimed
water may exert selective pressure on microorganisms on food crops to acquire or maintain antibiotic resistance. When part-
nered with surveys of community members using the reclaimed wastewater (Flint & Koci 2021), this work suggests that

increased outreach to the public is required to ensure community members are not drinking the nonpotable water and
that they are properly washing harvested fruits and vegetables before consumption. Furthermore, the inclusion of a post-
chlorination step should be considered for the reclaimed wastewater that is distributed for irrigation to minimize the

growth and accumulation of biofilms and subsequent antibiotic resistance genes within the secondary water distribution
system. Finally, QMRAs evaluating risk to consumers from irrigation with reclaimed wastewater should consider also
sampling vegetation rather than just water to more accurately reflect the true health risk associated with reclaimed waste-

water reuse.
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