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ABSTRACT

Hydrophobic metakaolin-based flat sheet membrane was developed via phase inversion and sintering technique and modified through

1H,1H,2H,2H-perfluorooctyltriethoxysilane grafting agents. The prepared membrane was characterized by different techniques such as

XRD, FTIR, SEM, contact angle, porosity, and mechanical strength. Their results indicated that the wettability, structural, and mechanical prop-

erties of the prepared membrane confirm the suitability of the material for membrane distillation (MD) application. The prepared metakaolin-

based flat sheet membrane acquired hydrophobic properties after surface modification with the water contact angle values of 113.2° to

143.3°. Afterward, the membrane performance was tested for different sodium chloride aqueous solutions (synthetic seawater) and various

operating parameters (feed temperature, feed flow rate) using direct contact membrane distillation (DCMD). Based on the findings, the pre-

pared membrane at metakaolin loading of 45 wt.% and sintered at 1,300 °C was achieved the best performance with.95% salt rejection and

permeate flux of 6.58+ 0.3 L/m2 · h at feed temperature of 80 °C, feed concentration of 35 g/L, and feed flow rate of 60 L/h. It can be con-

cluded that further optimization of membrane porosity, mechanical, and surface properties is required to maximize the permeate flux and

salt rejection.

Key words: desalination, direct contact membrane distillation, flat sheet, hydrophobic, metakaolin, phase inversion and sintering

HIGHLIGHTS

• The flat sheet ceramic membrane was synthesized for DCMD.

• The sintering process was a much more influential factor in the membrane shrinkage.

• The flat sheet ceramic membrane was successfully grafted with PFAS molecules.

• Effect of operating variable on the permeate flux and salt rejection.

• It was found that the feed temperature was the most significant operating variable affecting the performance of the DCMD.
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GRAPHICAL ABSTRACT

1. INTRODUCTION

Water is essential for all socio-economic development in many areas (Brusseau et al. 2019; Gomez et al. 2019). In recent
years, the scarcity of safe and clean drinking water is among the main global challenges. This is due to higher standards

of living, population growth, rapid industrial growth and advancement, and climate change (Brusseau et al. 2019; Kumari
et al. 2021; Zulfiqar et al. 2021). To provide a sufficient amount of safe and clean drinking water, both thermal (non-mem-
brane) and membrane-based water desalination techniques are required (Zewdie et al. 2021a). Thermal-based water

desalination technologies include multi-effect distillation (MED), multistage flash (MSF) distillation, and vapor compression
distillation (VCD) (Nafey et al. 2006; Baten & Stummeyer 2013; Gude 2018; Feria-Díaz et al. 2021). Membrane-based water
desalination technologies include reverse osmosis (RO), electrodialysis (ED), pervaporation (PV), forward osmosis (FO),

membrane distillation (MD), and hybrid membrane system (Sanmartino et al. 2016; Aliyu et al. 2018; Zewdie et al.
2021a). Membrane-based water desalination technologies are more energy-efficient, economic, and sustainable than ther-
mal-based water desalination technologies (Baten & Stummeyer 2013; Roy & Ragunath 2018; Zewdie et al. 2021a).
Among membrane-based water purification techniques, membrane distillation represents an emerging and promising

approach for desalination and wastewater treatment application (Sanmartino et al. 2016; Alkhudhiri & Hilal 2018;
Ashoor et al. 2018; Hussain et al. 2021; Saavedra et al. 2021; Tai et al. 2021). Membrane distillation is a hybrid separation
technique combining thermal-driven distillation and membrane separation processes (Belessiotis et al. 2016; Ghaffour et al.
2019). Based on the type of configuration, membrane distillation is classified into direct contact membrane distillation
(DCMD), sweeping gas membrane distillation (SGMD), vacuum membrane distillation (VMD), air gap membrane distillation
(AGMD), and permeate gap membrane distillation (PGMD) (Gugliuzza & Basile 2013; Eykens et al. 2016a; Mahmoudi et al.
2018; Parani & Oluwafemi 2021).

Polymeric membranes (polypropylene (PP), polysulfone (PSF), polytetrafluoroethylene (PTFE), and polyvinylidene fluoride
(PVDF)) (Shirazi et al. 2013; Ravi et al. 2020; Parani & Oluwafemi 2021) and ceramic membranes (alumina, titania, zirconia)

have been widely studied for membrane distillation application (Hubadillah et al. 2019a; Bandar et al. 2021). As compared to
polymeric membranes, ceramic membranes can withstand extreme conditions/harsh environments due to their excellent
mechanical strength, biocompatibility, high thermal stability, high chemical stability, long lifetime, energy efficiency, avail-
ability, and sustainability (Fang et al. 2012; Arumugham et al. 2021). Ceramic membranes are known to have better

antifouling and easy cleaning properties, which allows for repeated reuse (multiple uses) (Wang et al. 2018; Yang & Tang
2018). Ceramic membranes have the possibility to remove part of contamination (deposition and/or adsorption of solutes)
from the pores by regeneration using various chemical agents (HCl, NaOH, NaClO, H2O2) and nano air bubbles (Hakami

et al. 2020), however, the initial membrane performance and separation efficiency may not be restored (Kim & Jang 2016).
In this study, locally available and inexpensive Ethiopian kaolin was used as the primary raw material for the preparation of

metakaolin-based flat sheet membranes. Some researchers prepared kaolin-based flat sheet membranes by various fabrication
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methods such as combining phase inversion and sintering (Hubadillah et al. 2016a, 2018a), and dry pressing and sintering

(Sahnoun & Baklouti 2013). Their results indicated that a thin flat sheet of kaolin-based membranes was difficult to
handle during installation and application (Hubadillah et al. 2016a, 2016b, 2018a, 2018b). These negative consequences
include easy break (brittleness) and high crack sensitivity features which have hindered a thin flat sheet of kaolin-based mem-

branes for membrane distillation application. Thus, for addressing some of these shortcomings, the current study was
proposed to develop metakaolin-based flat sheet membranes by phase inversion and sintering technique. Metakaolin is
one type of calcined clay mineral and a well-known material for producing high mechanical strength (compressive and tensile
strength) of silica-based ceramic membrane and, high-performance concretes (Dinakar et al. 2013; Hubadillah et al. 2016c;
Khatib et al. 2018). A metakaolin-based flat sheet membrane is expected to be hydrophilic due to the presence of hydroxyl
groups (OH) on its surface. This hydrophilicity is not suitable for the membrane distillation process (Kujawa et al. 2014a,
2016; Hubadillah et al. 2019a; Twibi et al. 2021). To improve the hydrophobicity of a ceramic membrane, it is necessary

to modify the surface of membranes. There are three ways commonly used methods of surface modification of polymeric
and ceramic membrane, which are chemical modification, surface morphology modification, and combination of chemical
and morphology modifications (Khemakhem et al. 2013, 2014; Usman et al. 2021). Among these methods, grafting with per-

fluoroalkylsilanes (PFAS) is the most commonly applied, especially in membrane distillation applications, because the
molecules of the modifiers are covalently attached to the surface as well as inside the porous structure of the ceramic mem-
branes/materials (Kujawa et al. 2014a, 2014b, 2016; Abu-Zeid et al. 2015; Zuo & Chung 2016; Hubadillah et al. 2019a; Twibi

et al. 2021).
This study aims to fabricate a metakaolin-based flat sheet membrane by combining phase inversion and sintering tech-

niques for water desalination via DCMD. The main purpose of this study was to investigate the effect of metakaolin
content and sintering temperature on the surface morphology, porosity, hydrophobicity property, and mechanical strength

of the eventual metakaolin-based flat sheet membrane. This is the first broader study on the use of modified metakaolin-
based flat sheet ceramic membranes in the membrane distillation process.

2. MATERIALS AND METHODS

2.1. Raw materials

Beneficiated and calcined Ethiopia kaolin (metakaolin) powder from our previous study (Zewdie et al. 2021b) was used as
the ceramic material. Analytical grade polyethersulfone (PES; Radel 3100P, Solvay Advanced Polymer), polyethyleneglycol-
30 dipolyhydroxystearate (Arlacel P135, CRODA, Belgium), and N-methyl-2-pyrrolidone (NMP; VWR International bvba,

Belgium) were purchased and used as a polymer binder, dispersant, and solvent, respectively. Deionized water was used
as the non-solvent coagulation bath. 1H,1H,2H,2H-perfluorooctyltriethoxysilane (PFAS; 97%, VWR International bvba, Bel-
gium) was used as a grafting agent, and ethanol (.99.8%, Sigma-Aldrich, Belgium), acetone, and alkaline solution (NaOH at

pH 10).

2.2. Fabrication of metakaolin flat sheet membrane

The preparation of metakaolin-based flat sheet membrane was conducted at four different metakaolin contents with four
different sintering temperatures (1,200, 1,300, 1,400, and 1,500 °C) (Figure 1). The detailed compositions of the dope solutions

are listed in Table 1.
Beneficiated and calcined kaolin (metakaolin) powder and PES were dried to ensure that no moisture was trapped in the

particle. Then, the required quantity of NMP was taken in a 250 ml glass bottle and PES was slowly added and stirred by a hot

plate magnetic stirrer for 4 h under continuous moderate stirring (300 rpm) to form the polymer solution. Arlacel P135 was
then added as a dispersant into a polymer solution and stirred by a hot plate magnetic stirrer for 24 h under continuous mod-
erate stirring (300 rpm). After the polymer solution was formed, metakaolin powder was then added into a polymer solution
slowly and then stirred by a hot plate magnetic stirrer for 72 h under continuous moderate stirring (300 rpm) at 60 °C to

ensure that the metakaolin powder and polymer solution were mixed well. The resulting dope solution was degassed in
an ultrasonic bath for 30 min at room temperature to eliminate the air bubbles. The casting dope solution was cast on a cast-
ing machine and left for the evaporation process to occur for 30 s before the solvent exchange in the coagulation bath. The

cast slurry was left in the water bath (2 L deionized water) for 24 h to let the phase inversion process be completed. Afterward,
the membrane precursors were dried at room temperature for 24 h. Before the sintering process, the membrane precursors
were cut in a square form (100 mm� 100 mm). The membrane precursors were then placed in an electric furnace and
://iwa.silverchair.com/jwrd/article-pdf/12/1/131/1030303/jwrd0120131.pdf



Figure 1 | Schematic diagram of metakaolin-based flat sheet membrane fabrication using phase inversion and sintering techniques.

Table 1 | Composition of the ceramic suspensions with different metakaolin contents

Membranes 1 2 3 4

Metakaolin (wt.%) 37.5 40 42.5 45

NMP (wt.%) 56.5 54 51.5 49

PES (wt.%) 5 5 5 5

Arlacel P135 (wt.%) 1 1 1 1
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sintered in a controlled furnace to 600 °C at a rate of 2 °C min�1 and held for 2 h, then to target temperature (1,200, 1,300,
1,400, and 1,500 °C) at a rate of 5 °C min�1 and held for 4 h. Lastly, the furnace was cooled down at a rate of 5 °C min�1 to
room temperature.

2.3. Preparation of hydrophobic metakaolin-based flat sheet membrane

Metakaolin-based membranes are hydrophilic. Hydrophilic membranes are not suitable to be used for membrane distillation

applications (Hubadillah et al. 2019a; Twibi et al. 2021). Thus, surface modification/grafting is required to obtain hydro-
phobic properties. Four equal size metakaolin-based flat sheet membranes prepared at various sintering temperatures
(1,200, 1,300, 1,400, and 1,500 °C) were used for this treatment. The membranes were cleaned using ethanol, acetone, and
distilled water for 10 min, respectively. The samples were dried in an oven at 105 °C for approximately 12 h and have

been treated by using an alkaline solution (NaOH at pH 10) for 8 h.
The treated samples were completely immersed and soaked into a 2 wt.% FAS (1H,1H,2H,2H-perfluorooctyltriethoxysi-

lane) in ethanol solution for different grafting times (12, 24, 48, 72, and 96 h) to allow the coupling reaction to occur.

Then, the grafted membranes were then rinsed with ethanol, acetone, and distilled water successively and dried at 105 °C
for 12 h in an oven. The modified membranes have been characterized using different methods such as contact angle
measurement (Kruss DSA 10Mk2, Germany), Fourier Transform Infrared Spectroscopy (FTIR; Perkin Elmer Spectrum
om http://iwa.silverchair.com/jwrd/article-pdf/12/1/131/1030303/jwrd0120131.pdf
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100, USA), and Scanning Electronic Microscopy (SEM; JEOL, JSM-6010LV, Tokyo, Japan) to determine the grafting effi-

ciency. Also, the grafting degree (GD) was calculated by Espiritu et al. (2016), Hernández-Aguirre et al. (2016), and Lim
& Shin (2020).

GD(%) ¼ (Wf �Wb)
Wb

� 100 (1)

where Wb and Wf are the mass of the metakaolin-based membrane before and after modification, respectively.

2.4. Characterization of membranes

The identification of the crystalline phases was carried out by X-Ray Diffraction (XRD; D2 phaser, Bruker, Germany) using Cu-
Kα1 radiation at a scanning rate of 2° min�1. Fourier Transform Infrared (FTIR) spectroscopy (Perkin Elmer Spectrum 100,
USA) over the range of 4,000–400 cm�1 was used to measure the surface properties of ceramic membrane before and after

grafting. Membrane thickness was measured using a digital micrometer (0–25 mm, Fowler IP54) measure at different spots
at least 10 times, and the average value was reported. Furthermore, the structure of the metakaolin-based membrane was exam-
ined using an SEM (JEOL, JSM-6010LV, Tokyo, Japan). The metakaolin-based membrane samples were cut into 5 mm� 5 mm
size and placed on a metal holder, which was then sputtered by platinum under vacuum before testing. The images of the meta-

kaolin-based membrane were captured to examine the overall view and porous structure of the metakaolin-based membrane at
different metakaolin contents: 37.5, 40, 42.5, and 45 wt.%. The contact angle of metakaolin-based membranes sintered to
different final temperatures ranging from 1,200 to 1,500 °C were measured by the sessile drop method (Kruss DSA 10Mk2,

Germany) using distilled water at room temperature. All contact angle readings were taken 10 min after a 0.5 ml water droplet
was placed on the membrane surface. Thermal conductivity (C-Therm TCi Thermal Conductivity Analyzer, Canada) of
the metakaolin-based membrane was measured using MTPS (ASTM D7984) method with a water contact agent (0–70 °C).

The shrinkage percentage that occurred during the sintering process was determined using the dimensions (volume) of
the flat green ceramic specimen before and after being sintered at a temperature range of 1,200–1,500 °C. The total linear
shrinkage percentage of the metakaolin-based flat sheet membrane was determined by Zulkifli et al. (2020).

Total linear shrinkage ¼ V0 � Vf

Vo

� �
� 100 (2)

The mechanical strength of the sample was determined by the three-point bending strength method. The three-point bend-

ing test was carried out with a dynamic mechanical analysis (DMA; Model Q800, TA Instruments, USA) machine. The
bending strength (σb) of a flat sheet sample was calculated by Hara et al. (2014) and Obada et al. (2017a).

sb ¼ 3FL
2Wt2m

(3)

where σb is bending strength, F is fracture force, L is membrane support span length, W is membrane support width, and tm is
membrane support thickness.

Archimedes’ principle was used for the prepared membrane porosity determination. For this purpose, firstly, the membrane
was dried at 105 °C for 12 h and weighed to obtain its dry weight followed by weighing after immersion in distilled water for
about 24 h and then removing extra water on the membrane surface by a tissue paper to measure its wet weight. The porosity

of the prepared membrane was calculated by Abd Aziz et al. (2019).

Porosity ¼ (Ww �Wd)=rw
Vmem

� �
� 100 (4)

2.5. DCMD test

An experimental laboratory-scale DCMD setup was constructed with an effective membrane area of 0.0025 m2 (50 mm�
50 mm) located in a plate and frame (flat sheet membranes) module made of Plexiglas™ with 90 mm� 90 mm dimensions.
The desalination performance of metakaolin-based flat sheet membranes in different operating conditions including feed inlet
://iwa.silverchair.com/jwrd/article-pdf/12/1/131/1030303/jwrd0120131.pdf
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temperature, feed inlet flow rate, feed inlet concentration under counter-current flow pattern was investigated. The membrane

had an approximate thickness of 400 μm and exhibit low values of effective thermal conductivity. The membrane cell con-
sisted of two compartments, the feed side and the permeate side. Figure 2 shows the experimental setup.

The synthetic solutions were prepared by dissolving a reagent grade NaCl salt (supplied by Fluka) in distilled water to

obtain different salt concentrations (0, 5, 15, 25, and 35 g/L) and served as the feed solution on the hot side of the
module. The feed container was immersed in a water bath and heated until it reaches a predetermined operating temperature
(50, 60, 70, and 80 °C). The hot feed was circulated with a peristaltic pump (Model, Sci-Q 323) into the membrane module
with a flow rate of 30, 40, 50, and 60 L/h. A coiled heater was used to regulate the temperature of the hot stream. Deionized

water was used as a cooling liquid on the permeate side of the module from a double-walled cooling water container by a
peristaltic pump (Model, Sci-Q 323) at a constant flow rate of 40 L/h. A cooling thermostat was used to regulate the temp-
erature of the cold stream.

The inlet temperatures of the hot feed and the cold water were measured by two digital thermometers (Model, HI98509
Checktemp®1). The electrical conductivity or the salt concentration of the feed and permeate solution was measured by a con-
ductivity meter (Radiometer CDM230, Sweden) inserted into the vessel. After the flow rates of the hot solution, cold distillate

water, and the two inlet and outlet temperatures were stabilized, it was assumed that the experimental conditions had reached
a steady state; the permeated liquidwas circulated through a double-walled coolingwater reservoir, and the volumemeasured at
regular intervals was used to calculate the water vapor flux through the membrane under the given experimental conditions.

The water vapor flux of the membrane distillation membrane was calculated and expressed in J (kg/m2 h) (Hubadillah et al.
2018b; Abd Aziz et al. 2019; Mohamed Bazin et al. 2019; Abdelrazeq et al. 2020; Tai et al. 2021).

Water vapor flux (J) ¼ Vw � rw
A� t

(5)

where Vw is the volume of water transferred (L), ρw is the density of water (kg/L), A is the effective membrane area (m2), and t
is the time required to collect a certain amount of permeate (h). DCMD experiments were repeated three times, and the aver-
age flux value was calculated to narrow the error range.
Figure 2 | (a) Laboratory-scale membrane distillation setup; (b) flat sheet direct contact membrane distillation module; and (c) scheme of the
membrane distillation setup.
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The salt rejection (R) of the membrane distillation membrane was determined by Li et al. (2015), Hubadillah et al. (2018b),
and Tai et al. (2021):

Rejection (%) ¼ Cf � Cp

Cf
� 100 (6)

where Cf is the salinity in the feed solution (μs/cm) and Cp is the salinity of the permeate solution (μs/cm).

3. RESULTS AND DISCUSSION

3.1. Characterization of starting materials and membranes

The physical properties of beneficiated Ethiopian kaolin and beneficiated and calcined kaolin (metakaolin) were reported in
previous work (Zewdie et al. 2021b). Powder particle size and the distribution of the starting material (raw material) are criti-
cal factors in the fabrication of ceramic membranes (Hubadillah et al. 2016a; Al-Naib 2018). According to the literature, the

powder particle size used in the fabrication of ceramic membrane is mainly in the range of 1 μm (Harabi et al. 2014;
Hubadillah et al. 2019b) to 15 μm (Zhou et al. 2010). In this study, the particle size of beneficiated and calcined kaolin (meta-
kaolin) is sufficiently small suggesting its suitability for ceramic membrane fabrication. The powder particle size and the
distribution affected the viscosity of the ceramic suspension, the movement of the particles in ceramic suspension during

phase inversion, and the particle migration and bindings during sintering at high temperatures (Konijn et al. 2014; Renteria
et al. 2019; Li et al. 2020a). Moreover, powder particle size and the distribution of the starting material (raw material) affected
themorphology characteristic and theporosityof the fabricatedceramicmembrane (Hubadillah et al.2016a, 2021; Ji et al.2020).

3.2. XRF analyses

The chemical composition of beneficiated Ethiopian kaolin and beneficiated and calcined kaolin (metakaolin) were reported
in previous work (Zewdie et al. 2021b). The analysis showed that the composition of SiO2 and Al2O3 varied between 60.10

and 60.30%, and 27.60 and 29.40%, respectively. On the other hand, the loss on ignition varied between 10.7 and 0.98%.
These amounts were close to the values determined for theoretical kaolin and metakaolin. Due to its lower iron oxide content
and SiO2/Al2O3 mass ratio, and higher Al2O3/Fe2O3 mass ratio, beneficiated and calcined kaolin (metakaolin) is a suitable

cheap raw material for developing ceramic membranes for water purification.

3.3. XRD measurements

Figure 3 presents the XRD patterns of beneficiated Ethiopia kaolin, beneficiated and calcined kaolin (metakaolin), and meta-

kaolin-based flat sheet membrane. It can be noted that the XRD patterns of beneficiated Ethiopia kaolin, beneficiated and
calcined kaolin (metakaolin) powder, and metakaolin-based flat sheet membrane reported in Figure 3 depict a clear differ-
ence. During the calcination process, the kaolinite structure is disordered due to dihydroxylation (Cheng et al. 2019;

Izadifar et al. 2020). Due to this, the complex structural transformation of kaolinite mullite is formed. As shown in the pre-
vious study (Zewdie et al. 2021b), XRD peaks at Bragg’s angles of 12.4°, 25.1°, 32.2°, 40.5°, and 44.1° represented the presence
of kaolinite minerals in beneficiated Ethiopian kaolin powder. Similar trends have been reported elsewhere (Djobo et al.
2014; Douiri et al. 2017; Khan et al. 2017; Obada et al. 2017b) for other types of clay used in ceramic membrane fabrication.
During the sintering process, kaolinite peaks disappeared whereas mullite ceramic peaks were formed in all XRD patterns for
metakaolin-based flat sheet membrane (Sahnoun & Baklouti 2013; Abdulhameed et al. 2017a, 2017b; Obada et al. 2017b).
The XRD patterns showed that by increasing the sintering temperature from 1,200 to 1,500 °C, the peak intensity of mullite
ceramic became stronger which indicated that the amount of mullite increased with increasing sintering temperature (Chen
et al. 2008; Abdulhameed et al. 2017a, 2017b; Mohtor et al. 2017; Liu et al. 2021; Ndjigui et al. 2021). Besides that, XRD
peaks at Bragg’s angles of 27.3°, 27.5°, and 60.6° were also observed in beneficiated Ethiopian kaolin, beneficiated and cal-

cined kaolin (metakaolin) powder, and metakaolin-based flat sheet membrane, respectively, which indicated the presence of
non-clay mineral (quartz). XRD analysis revealed a significant predominance of quartz and kaolinite in the beneficiated
Ethiopian kaolin clay. These observations are in agreement with the X-ray fluorescence (XRF) results in the previous

study (Zewdie et al. 2021b). It has also been noticed that the beneficiated Ethiopian kaolin powder used in this study con-
sisted of quartz as the non-clay mineral in which the XRD peaks remained for metakaolin-based flat sheet membranes
sintered at different target temperatures (1,200–1,500 °C) (Sahnoun & Baklouti 2013; Mohtor et al. 2017; Magalhaes et al.
://iwa.silverchair.com/jwrd/article-pdf/12/1/131/1030303/jwrd0120131.pdf



Figure 3 | XRD patterns of (a) beneficiated Ethiopian kaolin, (b) beneficiated and calcined kaolin (metakaolin) powder, and metakaolin-based
flat sheet membranes (45 wt.% metakaolin loading) sintered at (c) 1,200 °C, (d) 1,300 °C, (e) 1,400 °C, and (f) 1,500 °C (K: kaolinite; Q: quartz;
M: mullite).
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2020). According to the XRD analysis, it was also proved that the higher sintering temperature has no dramatic change on the

mullite phase presented in metakaolin-based flat sheet membrane (Figure 3). Additionally, the intensity of the XRD peaks of
quartz decreased with temperature (Mohamed Bazin et al. 2019; Magalhaes et al. 2020).

3.4. TGA/DSC analyses

The TGA/DSC is an important analysis that needs to be performed on the powder samples. As shown in the previous study
(Zewdie et al. 2021b), TGA/DSC curves were obtained from the simultaneous thermal analysis of the beneficiated Ethiopian

kaolin and beneficiated and calcined kaolin (metakaolin) powder. The total weight loss of mass was 9.12 wt.% for benefi-
ciated Ethiopian kaolin and 0.55 wt.% for beneficiated and calcined kaolin (metakaolin). The TGA/DSC analysis has
proven that the thermal properties of beneficiated Ethiopian kaolin and beneficiated and calcined kaolin (metakaolin)

powders are suitable for possible industrial use, especially for ceramic membrane fabrication.

3.5. FTIR measurements

FTIR spectra of the beneficiated Ethiopia kaolin powder, beneficiated and calcined kaolin (metakaolin) powder, and meta-
kaolin-based flat sheet membrane are shown in Figure 4. According to the result presented in Figure 4(a), beneficiated
Ethiopia kaolin powder has OH-bending modes at 1,122 cm�1 and OH-stretching modes at 3,619 and 3,688 cm�1 (Khan

et al. 2017; Mohtor et al. 2017; Boussemghoune et al. 2020). Moreover, the absorption band at around 1,626 cm�1 was
observed in beneficiated Ethiopia kaolin powder due to its deformation vibration of physisorbed water molecules at the sur-
face (Khan et al. 2017; Kljajević et al. 2017; Aragaw & Angerasa 2020). The absorption band for beneficiated Ethiopia kaolin

powder at 920 cm�1 was attributed to Al–OH bending vibration (Aragaw & Angerasa 2020). This sharp band disappeared in
all spectra of beneficiated and calcined kaolin (metakaolin) powder and metakaolin-based flat sheet membranes as a result of
the bonds breaking between the octahedral sheet and tetrahedral sheet of kaolinite structure due to the mullitization process
om http://iwa.silverchair.com/jwrd/article-pdf/12/1/131/1030303/jwrd0120131.pdf
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Figure 4 | FTIR spectra of (a) beneficiated Ethiopia kaolin powder, (b) beneficiated and calcined kaolin (metakaolin) powder, and flat sheet
membranes (45 wt.% metakaolin loading) sintered at (c) 1,200 °C, (d) 1,300 °C, (e) 1,400 °C, and (f) 1,500 °C.
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of kaolinite at a high sintering temperature and for a long sintering time (Mohtor et al. 2017). Beneficiated and calcined
kaolin (metakaolin) powder and metakaolin-based flat sheet membranes sintered at different temperatures do not contain

OH because of the loss of structural hydroxyl group due to the sintering process. As a result of the sintering process, these
characteristic bands for kaolinite structure diminished in all spectra of metakaolin powder and metakaolin-based flat sheet
membranes, showing that the sintering process was adequate for complete dehydroxylation and structural distortion of kao-
linite and its transformation into metakaolin (Mohtor et al. 2017; Merabtene et al. 2019; Magalhaes et al. 2020).

The band between 900 and 1,150 cm�1 is relatively wide in beneficiated and calcined kaolin (metakaolin) powder, but in
metakaolin membranes sintered at different temperatures, it becomes a relatively narrow band which explains the strong
bond of aluminosilicate molecules in metakaolin membranes resulting in the increase of its mechanical strength.

3.6. Morphological properties of membranes

During the phase inversion process, shrinkage of the flat sheet precursor occurred (Bikel et al. 2010; dan Sinteran 2017). This
is because the rate of solvent (NMP) diffusion from the suspension is always faster than the rate of diffusion of water into the

suspension (Bonyadi et al. 2007; dan Sinteran 2017). Similarly, during the sintering process, organic components (polymer
binders) were removed from the precursors, and only inorganic mineral was left in the metakaolin-based membranes after the
sintering process (Wang et al. 2009; Paiman et al. 2015). Then, the shrinkage of the metakaolin-based flat sheet membrane
was determined using dimensions (volume) of the membrane before and after sintering. Figure 5 depicts the percentage of

shrinkage volume for the metakaolin-based flat sheet membrane sintered at a targeted temperature (1,200–1,500 °C) in differ-
ent beneficiated and calcined kaolin (metakaolin) contents (37.5–45 wt.%). The maximum shrinkage of the volume for the
metakaolin-based flat sheet membrane sintered at a targeted temperature of 1,200, 1,300, 1,400, and 1,500 °C in 45 wt.%

metakaolin is found to be 10.31+ 4.25%, 31.24+ 3.74%, 46.97+ 1.42%, and 53.93+ 0.21%, respectively.
The more the shrinkage, the higher the internal stress generation, which results in more shape distortions and severe cracks

or warps in the final sintered ceramic membrane (Green et al. 2008; Ni et al. 2013). This is due to the internal rearrangement
://iwa.silverchair.com/jwrd/article-pdf/12/1/131/1030303/jwrd0120131.pdf



Figure 5 | Volume shrinkage of the flat sheet metakaolin-based membrane at a targeted sintering temperature (1,200–1,500 °C) in different
metakaolin contents (37.5–45 wt.%).
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(densification process) of the membrane at a higher temperature. It can be concluded that the shrinkage of the metakaolin-

based flat sheet membrane increases with the sintering temperature. Similar results have been reported in previous studies
(Qiu et al. 2009; Vasanth et al. 2011; Mankai et al. 2018; Elgamouz et al. 2019; Jiang et al. 2019; Li et al. 2020b; Ndjigui
et al. 2021; Souza et al. 2021) for clay materials used in ceramic membrane fabrication. These results indicate that the meta-

kaolin-based flat sheet membrane is suitable for application in DCMD for water desalination (Eykens et al. 2016b).

3.7. Evaluating the grafting efficiency

After chemical modification, the grafting efficiency of the flat sheet metakaolin-based ceramic membranes was determined by
measurement of grafting degree and contact angle measurement.

3.8. Degree of grafting

The dependence of grafting time on grafting degree with membrane sintered at different sintering temperatures (1,200, 1,300,
1,400, and 1,500 °C) was evidenced in Figure 6. The grafting process was carried out at room temperature at different grafting
times (12, 24, 48, 72, and 96 h). The grafting degree of the reaction system could change for membranes sintered at different

sintering temperatures. The grafting degree of metakaolin-based membrane sintered at 1,200 °C was 3.25+ 0.1%, 3.43+
0.25%, 3.94 +0.13%, 4.6+ 0.06%, and 4.03+ 0.14% corresponding to a reaction time of 12, 24, 48, 72, and 96 h, respect-
ively. As shown in Figure 6, the grafting efficiency is proportional to the grafting time, where the modified membranes

presented the highest grafting degree at 72 h. The determined grafting degree values for metakaolin-based membrane
increased with grafting time from 12 to 72 h. Thus, the longer membrane hydrophobization leads to the creation of a
smoother surface (lower surface roughness). The membrane also has a high contact angle due to a higher level of PFAS graft-
ing agent concentration and covering all active sites on the membrane surface (Kujawa et al. 2016; Li et al. 2021). For a

grafting time longer than 72 h, the value of grafting degree was slightly lower. This is due to a long-time interaction between
the hydroxyl group on the metakaolin-based ceramic membrane surface and Si–O-alkyl groups of the PFAS grafting agent,
which contributes to a decline in the amount of hydroxyl group. This is associated with the fact that contact angle increases

with increasing the grafting time from 12 to 72 h, while it decreases with increasing grafting time longer than 72 h (Lu et al.
2009). Furthermore, it can be seen that a membrane sintered at a lower temperature leads to a higher grafting degree
(Figure 6). A similar grafting process was also found in the literature for ceramic membrane (Lu et al. 2009; Fang et al.
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Figure 6 | Effect of reaction time on grafting degree of the metakaolin-based membrane (45 wt.% metakaolin loading) sintered at 1,200 °C,
1,300 °C, 1,400 °C, and 1,500 °C.
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2012; Kujawa et al. 2013, 2014b, 2016; Hubadillah et al. 2019c; Saud et al. 2021) and clay powder materials (Kujawa et al.
2014b, 2014c).

3.9. Contact angle measurements

It was shown that the hydrophilic property of a metakaolin-based flat sheet membrane could be changed into a hydrophobic
one by grafting 1H,1H,2H,2H-perfluorodecyltriethoxysilane on the surface of a metakaolin-based flat sheet membrane. The
grafting process can be performed by a reaction between OH� groups on the ceramic membrane surface and Si-O-alkyl
groups of the silane (Krajewski et al. 2006; Khemakhem & Amar 2011; Khemakhem et al. 2014; Wang et al. 2016; Zuo
& Chung 2016; Yang et al. 2017; Twibi et al. 2021). The surface modifying process can decrease the surface free energy
and increase the contact angle of the membranes (Kujawa et al. 2017; Shahabadi et al. 2017; Yang et al. 2017; Hubadillah
et al. 2018c; Dong et al. 2020). During the sintering process at temperatures between 400 and 800 °C, the hydroxyl groups

(OH�) can be suppressed from the membrane surface. Therefore, alkaline pretreatment is required to restore hydroxyl
groups (OH�) on the membrane surface and allow more coupling reactions with PFAS. Water drops deposited on the non-
grafted metakaolin-based flat sheet membrane form a contact angle of 3.6+ 0.37° (super hydrophilic) (Figure 7(a)). This is
Figure 7 | The water contact angle of the membrane surface: (a) before grafting and (b) after grafting.
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due to the uniform distribution of hydroxyl groups on the membrane surface. After grafting, the contact angle for grafted

metakaolin-based flat sheet membrane sintered at a temperature of 1,200 °C was 143.3+ 0.5°, proving that the metakao-
lin-based flat sheet membrane surface was successfully changed into superhydrophobic (Figure 7(b)) by grafting with
PFAS. These results adequately demonstrate that the modified metakaolin-based flat sheet membrane is hydrophobic and suf-

ficient for application in the DCMD for water desalination (Khayet 2011; Liu et al. 2012; Ren et al. 2015; Yang et al. 2017).
Contact angle values of modified membranes were higher than for unmodified membranes, which indicate that grafting the
membrane surface revealed a highly hydrophobic character. Similar phenomena have been observed in previous studies
(Kujawa et al. 2014a; Wang et al. 2016; Yang et al. 2017; Hubadillah et al. 2018c, 2019c; Polak et al. 2021; Saud et al.
2021; Twibi et al. 2021).

The contact angle measurement of metakaolin-based membranes sintered at different targeted temperatures (1,200, 1,300,
1,400, and 1,500 °C) before and after chemical modification is shown in Figure 8. After grafting, the pore size of the mem-

brane sintered at 1,200 °C became smaller due to PFAS grafted on the metakaolin-based flat sheet membrane surface. The
highest hydrophobicity value was obtained by grafted metakaolin-based flat sheet membrane sintered at 1,200 °C with a con-
tact angle value of 143.3+ 0.5°. This was subsequently described as grafted metakaolin-based flat sheet membrane sintered at

1,200 °C that obtained a microtextured or micropatterned surface as shown in the SEM images (Figure 9).

3.10. SEM measurements

The effect of sintering temperature (ranging from 1,200 to 1,500 °C) on the membrane surface morphology of metakaolin-

based flat sheet membrane before and after grafting was investigated by SEM, and corresponding images are shown in
Figure 9. The SEM results indicated that no cracks were present in any membranes. The surface morphology of the membrane
was found to be uniform and free of any defect. The porous structure and uniformly distributed pore were observed in the
sintered membrane at 1,200 °C. The SEM results indicated that the membranes were cast from 45 wt.% metakaolin loading

and sintered at 1,200 °C have a higher porosity than the membranes sintered at 1,500 °C. The increase in sintering tempera-
ture of the membranes has decreased the porosity of the membrane, from 40.28+ 0.93% to 14.50+ 1.89% for temperatures
from 1,200 to 1,500 °C, respectively. Thus, the SEM micrographs reported in Figure 9 show that the effect of sintering is very

marked; a progressive reduction of porosity can be observed when temperature increases. The number of pores decreased
when the sintering temperature increased. At higher sintering temperatures, small pores disappeared and a less porous struc-
ture was produced, where sintering at 1,500 °C produced the strongest membrane with a highly dense structure and limited

grain and non-interconnected pores. This may be due to the particles binding/aggregating together and it forms a dense
Figure 8 | The contact angle of a metakaolin-based membrane (45 wt.% metakaolin loading) surface: (a) before grafting and (b) after grafting.
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Figure 9 | SEM image of the surface of the metakaolin-based flat sheet ceramic membrane (45 wt.% metakaolin loading). (a1, a2) sintered at
1,200 °C, (b1, b2) sintered at 1,300 °C, (c1, c2) sintered at 1,400 °C, and (d1, d2) sintered at 1,500 °C for 4 h. (a–d) Unmodified membrane,
(a1–d1) modified membrane.
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structure. The sintered membranes at 1,200, 1,300, 1,400, and 1,500 °C for 4 h showed a regular surface morphology as can be

seen in Figure 9. The above observation indicated that the sintering temperature plays an important role in controlling the
ceramic membrane porosity and structure. A similar observation was reported in the literature (Ghouil et al. 2015; Das
et al. 2016a, 2016b; Wang et al. 2016; Mohtor et al. 2017; Mouiya et al. 2019).

In addition, it can be observed in Figure 9, that the structural and surface morphology was unchanged after PFAS grafting:
this is due to the limited number of hydroxyl groups (OH�) left on the metakaolin-based ceramic membrane surface after
sintering at high temperatures (1,200–1,500 °C) (Fang et al. 2012; Hubadillah et al. 2018b). It can be concluded that the struc-

ture and surface morphology changed gradually with changing composition and sintering temperature (Yang et al. 2017;
Twibi et al. 2021).

3.11. Chemical stability test

Chemical resistance tests of the unmodified kaolin-based ceramic membrane in an acidic (hydrochloric acid, pH¼ 1) and
basic (sodium hydroxide, pH¼ 14) environment were reported in the previous study (Zewdie et al. 2021b). The results
showed that the prepared flat ceramic specimen offers good chemical stability in acidic (,3% mass loss in acid solution)

and an excellent chemical stability in basic media (,1% mass loss in alkali solution). In this study, the grafted metakao-
lin-based flat sheet membranes were then immersed into hexane for 120 h at room temperature. After contacting the
samples with hexane, the water contact angle of the grafted metakaolin-based ceramic membrane surface was found to be

142.7+ 0.86° (Figure 10). This shows that the modified membranes demonstrate good chemical stability when treated
with a harsh solvent. Besides, insignificant changes in their surface hydrophobicity/wetting properties after being in contact
with hexane for 120 h were observed. The stability of the modified membranes in a harsh solvent is due to the strong structure
and morphology of the ceramic material. In addition, this confirms that 1H,1H,2H,2H-perfluorodecyltriethoxysilane mol-

ecules were covalently attached to the surface as well as inside the porous structure of the metakaolin-based membrane
and were stable in hexane (Kujawa et al. 2014b). The stability test has shown that the modified metakaolin-based membrane
shows good stability in hexane for the PFAS grafting agent.

3.12. Porosity measurements

The porosity of the metakaolin-based flat sheet membranes was determined by the Archimedes method (immersion) using
distilled water. In this study, the metakaolin loading and sintering process play an important role in controlling the porosity

of the metakaolin-based flat sheet membrane. The experimental data shown in Figure 11 indicate the effect of metakaolin
loading and sintering temperature on the porosity of a metakaolin-based flat sheet membrane. According to Figure 11, the
porosity of the ceramic membrane decreased with increasing temperature from 1,200 to 1,500 °C, resulting in higher flexural
://iwa.silverchair.com/jwrd/article-pdf/12/1/131/1030303/jwrd0120131.pdf



Figure 11 | Variation of average porosity of metakaolin-based flat sheet membrane with different metakaolin contents (37.5–45 wt.%) and
sintering temperature (1,200–1,500 °C).

Figure 10 | Chemical stability tests of the metakaolin-based membranes (45 wt.% metakaolin loading, sintered membrane at 1,200 °C)
(a) unmodified, (b) modified, and (c) after contact with hexane for 120 h.
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strength (Paiman et al. 2015; Mohtor et al. 2017; Li et al. 2020b). This may be due to the close packing of the particles and the

denser texture of the ceramic membrane because, at high temperatures, the particles aggregate and form a cross-linked net-
work structure to attain a further solidified structure.

The values obtained for the porosity of the metakaolin flat sheet membranes (45 wt.% metakaolin loading) slightly

decreased from 40.28+ 0.93% to 36.61+ 1.07% when sintered at 1,200 and 1,300 °C, respectively. Furthermore, increasing
the temperature up to 1,400 and 1,500 °C, the porosity sharply decreases from 34.70+ 0.8% to 14.50+ 1.89%, respectively,
the latter is due to the significant sintering shrinkage and densification. This decline simultaneously enhances the flexural
strength of the membranes. As expected, the membrane porosity decreased when the sintering temperature increased

(Guechi et al. 2016; Hubadillah et al. 2016c, 2019d, 2020; Wang et al. 2016; Abdulhameed et al. 2017a, 2017b; Mankai
et al. 2018; Kadiri et al. 2020; Li et al. 2020b). The micrographs confirm that increasing the sintering temperature decreases
the porosity and increases the pore size of the sintered metakaolin-based membrane.

Furthermore, the experimental results indicated that the porosity of the ceramic membrane decreased with increasing meta-
kaolin loading from 37.5 to 45 wt.% (Das et al. 2016a, 2016b; Hubadillah et al. 2016a, 2016c; Figure 11). Porosity is crucial
for a metakaolin-based flat sheet membrane to be used for membrane distillation while providing enough pores for the water
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permeation (Fang et al. 2012; Hubadillah et al. 2016a, 2016c). Hence, controlling the metakaolin loading and sintering temp-

erature is essential for controlling the properties of the metakaolin-based flat sheet membrane (Hubadillah et al. 2016a,
2016c). It can be concluded that the porosity of the metakaolin-based flat sheet membranes ranges from 34.70+ 0.8% to
57.89+ 0.43%, indicating that the membrane is sufficient for application in the DCMD for water desalination (Khayet

2011; Eykens et al. 2016c).

3.13. Mechanical properties

Organic polymer materials such as the polyethersulfone (PES) as a binder and polyethyleneglycol-30 dipolyhydroxystearate
(Arlacel P135) as a dispersant in ceramic suspension have to be removed completely from ceramic precursors during the sin-

tering process (Wang et al. 2009; Paiman et al. 2015), before forming the metakaolin-based flat sheet membrane. Therefore,
the metakaolin content in the suspension plays a significant contribution to the flexural strength of the metakaolin-based flat
sheet membrane. The increase of the metakaolin content in the ceramic suspension would increase the suspension viscosity.

It is a determinantal factor to the flexural strength of metakaolin-based flat sheet membrane. Therefore, to effectively fabricate
and produce a low-cost metakaolin-based flat sheet membrane with excellent flexural strength, the higher metakaolin content
in the ceramic suspension must be maintained during ceramic suspension preparation (Hubadillah et al. 2016a, 2016c). In
addition to that, an increase in sintering temperature would enhance the flexural strength of the ceramic membrane.

Where, at the higher temperature, the ceramic particles fused and developed larger grains, which gave a higher flexural
strength.

The increase in sintering temperature of the metakaolin-based flat sheet membranes (45 wt.% metakaolin loading) raised

the flexural strength from 3.4+ 0.86 MPa to 24.39+ 1.9 MPa but decreased the porosity of the metakaolin-based flat sheet
ceramic membrane from 40.28+ 0.93% to 14.50+ 1.89% for temperatures from 1,200 to 1,500 °C, respectively. Findings
indicate that the porosity and flexural strength of the metakaolin-based flat sheet membranes can be controlled by varying

the metakaolin loading and the sintering temperature.
In general, the flexural strength of ceramic membrane tends to enhance with increasing sintering temperature and decreas-

ing porosity (Sahnoun & Baklouti 2013; Guechi et al. 2016; Wang et al. 2016; Hubadillah et al. 2016c, 2019d, 2020;
Abdulhameed et al. 2017a, 2017b; Mohamed Bazin et al. 2019; Li et al. 2020b; Ndjigui et al. 2021; Souza et al. 2021).
Based on the above-observed results, it can be said that a metakaolin-based flat sheet membrane sintered at 1,300, 1,400,
and 1,500 °C has a sufficient flexural strength compared to a membrane sintered at 1,200 °C. This is in good agreement
with the literature (Feng et al. 2004; Essalhi & Khayet 2013; Abdulhameed et al. 2017a, 2017b; Mohtor et al. 2017). It is
seen from Figure 12 that a rapid increase in the flexural strength for 1,500 °C sintered membrane is due to the larger grain
growth and densification of the membrane. Thus, it is concluded that the flexural strength of the membranes ranges from
7.3+ 0.92 to 24.39+ 1.9 MPa, indicating that the membrane is suitable for application in the DCMD for water desalination

(Eykens et al. 2016c) and in the filtration process (Sahnoun & Baklouti 2013). Moreover, a metakaolin-based ceramic mem-
brane could be used for a high-strength application at a low cost (Hubadillah et al. 2019d).

3.14. Performance of ceramic membrane in DCMD

Previous experimental studies have investigated the effect of flow patterns on permeate flux and salt rejection in desalination

by DCMD under countercurrent-flow and concurrent-flow operations. Based on the obtained results, a higher permeate flux
was observed in the counter-current flow arrangement. Thus, counter-current flow is preferable to co-current flow (He et al.
2011; Hwang et al. 2011; Duong et al. 2017). Therefore, in this study, a counter-current flow arrangement was applied in all

experiments. Moreover, the operational conditions can significantly influence the performance of the membrane distillation
process for desalination (Gryta 2012; Zhang et al. 2013; Francis et al. 2014; Duong et al. 2016; Ameen et al. 2020). In order to
examine the performance of metakaolin-based flat sheet membrane in DCMD the effect of processing time on permeate flux

for membranes was investigated. The effect of operating parameters on the permeate flux and salt rejection was assessed.
Three parameters at different levels were studied, namely feed temperature in the 50 to 80 °C range, feed flow rate of 30
to 60 L/h, and feed concentration ranging from 0 to 35 g/L.

3.15. Effect of processing time

Based on the characterization results, the metakaolin-based flat sheet membrane sintered at 1,200 °C has inadequate flexural
strength (3.4+ 0.86 MPa). Due to that, the membrane could not withstand the operating conditions (not tolerate higher
pressure/feed flow velocity) during the operations, which does not allow for extended process runs (running time: 3 h).
://iwa.silverchair.com/jwrd/article-pdf/12/1/131/1030303/jwrd0120131.pdf



Figure 12 | Effect of metakaolin loading (37.5–45 wt.%) and sintering temperatures (1,200–1,500 °C) on the flexural strength of flat sheet
membrane.
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Therefore, a preliminary membrane desalination experimental study with a metakaolin-based membrane sintered at 1,200 °C
shows a negligible permeate flux (not predict the permeate flux) for the range of feed flow rate tested. Thus, it is not suitable
for membrane distillation (Eykens et al. 2016c). Figure 13 shows the change in the permeate flux as a function of process time
Figure 13 | Variation of permeate flux with time for membranes sintered at different temperatures (1,300, 1,400, and 1,500 °C). Experimental
conditions: feed solution: 35 g/L NaCl, permeate: DI water, feed inlet temperature: 80 °C, coolant inlet temperature: 20 °C, volumetric flow
rate of feed and permeate inlet: 60 L/h, flow pattern: counter-current, running time: 3 h.
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for metakaolin-based membranes sintered at different temperatures (1,300, 1,400, and 1,500 °C). The results demonstrate that

the behavior of the permeate flux as a function of process time consists of two distinct stages: In the first stage, the permeate
flux declined. In the second stage of the process, a constant permeate flux was observed. Permeate flux decreased with pro-
cess time in all experimental runs for all membranes. A slight decline in the permeate flux was observed during the first

60 min for all membranes. The permeate flux remained constant after 60 min for time on stream of 180 min. The obtained
results showed that the metakaolin-based flat sheet membrane sintered at 1,300 °C has the highest water permeation of
6.58+ 0.3 kg/m2 h, followed by the membranes sintered at 1,400 and 1,500 °C with a water permeation of 4.33+ 0.65
and 1.93+ 0.43 kg/m2 h, respectively. This is due to the slightly higher porosity of the metakaolin-based membrane sintered

at 1,300 °C (about 36.61+ 1.07%) compared to membranes sintered at 1,400 °C (about 34.70+ 0.8%) and 1,500 °C (about
14.50+ 1.89%). The metakaolin-based flat sheet membranes showed a comparable performance (permeate flux) results
reported elsewhere (Kujawa et al. 2014a; Zhang et al. 2014; Wang et al. 2016; Hubadillah et al. 2019e).

3.16. Effect of feed temperature

Feed temperature is a key operational parameter for DCMD. The permeate flux and salt rejection of metakaolin-based flat
sheet membrane for artificial saline water during 3 h running time at different feed temperatures in counter-current flow oper-
ation are presented in Figure 14. Typically, the temperature at the feed stream is adjustable and the temperature at the coolant

inlet stream is fixed to study the effect of temperature on permeate flux and salt rejection. The feed temperature was inves-
tigated in the range of 50 to 80 °C at 10 °C intervals with a feed solution of 35 g/L; the feed inlet flow rate, coolant inlet flow
rate, and temperature were maintained at 60 L/h, 60 L/h, and 20+ 0.5 °C, respectively.

At feed inlet temperatures 50, 60, 70, and 80 °C, the permeate flux increases were 2.58+ 0.21, 3.17+ 0.09, then 5.67+
0.11, and 6.58+ 0.3. These results reflected the increase of the permeate flux, when the feed inlet temperature increased
from 50 to 80 °C for a fixed feed inlet solution of 35 g/L, and permeate inlet temperature of 20+ 0.5 °C. The vapor pressure
of a liquid increases exponentially with feed inlet temperature, as described in the Antoine equation. Therefore, at high feed

inlet temperatures, the permeate flux increased exponentially. The obtained results are in good agreement with the previously
reported results (Fang et al. 2012; Singh & Sirkar 2012; Kujawa et al. 2014a; Lee et al. 2015; Shim et al. 2015; Khalifa et al.
2017; Luo & Lior 2017; Ameen et al. 2020; Twibi et al. 2021).

Interestingly, the salt rejections remained almost constant as the feed inlet temperature increased from 50 °C (salt rejection:
95.17+ 0.2%) to 80 °C (salt rejection: 95.0+ 0.17%). The high salt rejection (.95%), as shown in Figure 14, indicates the
good desalination performance in the DCMD process.
Figure 14 | Effect of feed temperature on permeate flux and salt rejection. Experimental conditions: feed solution: 35 g/L NaCl, permeate: DI
water, coolant inlet temperature: 20 °C, volumetric flow rate of feed and permeate inlet: 60 L/h, flowpattern: counter-current, running time: 3 h.
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3.17. Effect of feed flow rate

The influence of feed inlet flow rate on the permeate flux and salt rejection in the DCMD process in counter-current flow is
illustrated in Figure 15. The increase in feed inlet flow rate in the DCMD process ranging from 30 to 60 L/h, leads to an

increase in the permeate flux from 2.03+ 0.14 to 6.58+ 0.3 kg/m2 h for a feed concentration of 35 g/L, at a feed inlet temp-
erature of 80 °C and a constant coolant inlet flow rate and temperature of 60 L/h and 20+ 0.5 °C, respectively. As displayed
in Figure 15, the permeate flux increased linearly with increasing feed flow rate. In most previous studies, the permeate fluxes
increased with the feed flow rate (Shirazi et al. 2014; Shim et al. 2015). Generally, a higher feed flow rate leads to higher

turbulence, which results in the better mixing of the feed solution, which in turn enhanced the mass and heat transfer coeffi-
cient (Qusay et al. 2017; Chen et al. 2020). This is due to the reduction in the temperature and concentration polarization
boundary layer thickness. Thus, the temperature difference across the membrane sides increased and resulted in an improved

permeate flux (Qusay et al. 2017).
Furthermore, it can be seen from Figure 15 that the salt rejection is slightly lower at a higher feed flow rate. This is due to

the lower residence time inside the membrane distillation module with high feed flow rates and therefore enhanced heat loss

by conduction and poor heat recovery (Guillén-Burrieza et al. 2015; Subrahmanya et al. 2021).
3.18. Effect of feed concentration

The experiments were carried out at various feed concentrations (i.e., 5, 15, 25, and 35 g/L NaCl) in counter-current flow
keeping the feed inlet temperature, coolant inlet temperature, and feed and coolant flow rate at constant values of 80 °C,

20 °C, and 60 L/h, respectively. Figure 16 shows the effect of the feed concentration on the permeate flux and salt rejection
at constant feed flow rates.

The results demonstrated that the permeate flux slightly decreased with increasing the feed salt concentration from 5 to
35 g/L. Many studies reported that permeate flux in the DCMD process decrease with increasing feed salt concentration

because the water vapor pressure decreases at higher feed salt concentration based on Raoult’s law (Fang et al. 2012;
Kujawa et al. 2014a, 2016; Hubadillah et al. 2018b; Twibi et al. 2021). This is because more salt molecules are deposited
and accumulated on the membrane surface at the feed side, formation of fouling/scaling layer on the membrane surface,

an increase of resistance in transfer, and induced wetting of the membrane on the feed side which ultimately leading in a
vapor pressure reduction. Moreover, it causes a decrease of the driving force across the membrane and an increase of salt
Figure 15 | Effect of feed flow rate on permeate flux and salt rejection. Experimental conditions: feed solution: 35 g/L NaCl, permeate: DI
water, feed inlet temperature: 80 °C, coolant inlet temperature: 20 °C, volumetric flow rate of permeate inlet: 60 L/h, flow pattern: counter-
current, running time: 3 h.
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Figure 16 | Effect of feed concentration on permeate flux and salt rejection. Experimental conditions: permeate: DI water, feed inlet
temperature: 80 °C, coolant inlet temperature: 20 °C, volumetric flow rate of feed and permeate inlet: 60 L/h, flow pattern: counter-current,
running time: 3 h.
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concentration of permeate flux. Thus, this study and others (Qusay et al. 2017; Ameen et al. 2020) all confirmed that salt rejec-

tion decreases with increasing salt concentration.
Table 2 lists the comparison between several studies reporting on ceramic membrane properties (hydrophobicity) and per-

formances (permeate flux and salt rejection) along with study results. The permeate flux and salt rejection obtained in this

study were low (permeate flux: 1.9–6.58 kg/m2 h, salt rejection: .95%) compared to previous studies on hollow fiber and
tubular membrane module for a feed temperature of 80 °C (see Table 2). The obtained results for the prepared metakaolin-
based flat sheet membrane sintered at 1,300 °C (45 wt.% metakaolin loading) can be explained by the lower porosity

(36.61+ 1.07%) and flexural strength (14.88+ 1.5 MPa). Despite the relatively low performance, there is no study yet on
the performance of metakaolin-based flat sheet membrane in terms of water permeate flux and salt rejection using DCMD
to directly compare with our findings. This work shows that the properties of metakaolin-based flat sheet membranes can

be further fine-tuned to obtain a better membrane performance. Therefore, metakaolin-based flat sheet membrane fabrication
needs further investigation under different membrane preparation parameters (metakaolin loading, sintering temperature,
the concentration of the additives, and mixing practice) to obtain desirable separation performances (permeate flux and
salt rejection) as well as membrane properties (porosity and flexural strength). Nevertheless, considering the abundant

availability and further refined the preparation methods. It will be an attractive alternative for seawater desalination in the
membrane distillation process and can achieve comparable membrane performance with hollow fiber and tubular membrane
modules.
4. CONCLUSION

This study was concerned with the development and characterization of hydrophobic metakaolin-based flat sheet ceramic
membranes for water desalination by DCMD. Based on the findings or outcomes of the present studies, the following con-

clusions can be drawn:
Based on the findings, the metakaolin loading of 45 wt.% and the sintering temperature of 1,300 °C could be selected as the

best parameters in preparing the metakaolin flat sheet membrane and provided desirable membrane performance in terms of

porosity, flexural strength, hydrophobicity, water permeate flux, and salt rejection.
It was noted that the most significant operating variable affecting the performance of the DCMD process was the feed temp-

erature. To a lower extent, the feed flow rate and concentration had a clear effect on the permeate flux. The permeate flux
://iwa.silverchair.com/jwrd/article-pdf/12/1/131/1030303/jwrd0120131.pdf



Table 2 | Comparison of the permeate flux and salt rejection at 80 °C obtained in this study with the literature values for the DCMD process

No
Membrane
materials

Membrane
module type Modifying agent (PFAS) Application

Contact
angle (°) Porosity (%)

Permeate flux
(kg/m2 · h)

Salt rejection
(%) Reference

1 Titania Tubular 1H,1H,2H,2H-
perfluorooctyltriethoxysilane

Desalination
(NaCl)

135–145 – 0.9–3.0 .99 Kujawa et al.
(2014a)

2 Silicon nitride Hollow fiber 1H,1H,2H,2H-
perfluorooctyltriethoxysilane

Desalination
(NaCl)

136 50 9.2 .99 Zhang et al.
(2014)

3 β-Sialon Hollow fiber 1H,1H,2H,2H-
perfluorooctyltriethoxysilane

Desalination
(NaCl)

125 48 12.2 .99 Wang et al. (2016)

4 Green Silica Hollow fiber 1H,1H,2H,2H-
perfluorodecyltriethoxysilane

Desalination
(NaCl)

157–161 35.86–54.12 38.2–52.4 99.9 Hubadilla et al.
(2018b)

5 Metakaolin Hollow fiber 1H,1H,2H,2H-
perfluorodecyltriethoxysilane

Deionized water 120 – 5.3–16.5 – Hubadillah et al.
(2019e)

6 Mullite Hollow fiber 1H,1H,2H,2H-
perfluorodecyltriethoxysilane

Desalination
(NaCl)

139 43 30.55 99.99 Twibi et al. (2021)

7 Metakaolin Flat sheet 1H,1H,2H,2H-
perfluorooctyltriethoxysilane

Desalination
(NaCl)

113.2–
143.3

14.88–36.61 1.9–6.58 .95 This study
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reached 6.58+ 0.3 kg/m2 h and salt rejection was as high as 95%, the feed inlet temperature was 80 °C and the feed inlet flow

rate and concentration were 60 L/h and 35 g/L NaCl, respectively.
The flux and salt rejections reported in this work (flat sheet membrane module) are low compared to those reported in the

literature (hollow fiber and tubular membrane modules) (see Table 2). This can be attributed to the low membrane porosity

(36.61+ 1.07%). Thus, this study could provide new insights on the utilization of metakaolin-based flat sheet membranes in
the field of the advanced separation process. Nevertheless, further optimization of membrane porosity, mechanical, and sur-
face properties is required to maximize the permeate flux and salt rejection.
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