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Estimating the malaria transmission over the Indian

subcontinent in a warming environment using a

dynamical malaria model

Shweta Chaturvedi and Suneet Dwivedi
ABSTRACT
Malaria is a major public health problem in India. The malaria transmission is sensitive to climatic

parameters. The regional population-related factors also influence malaria transmission. To take into

account temperature and rainfall variability and associated population-related effects (in a changing

climate) on the malaria transmission over India, a regional dynamical malaria model, namely VECTRI

(vector-borne disease community model) is used. The daily temperature and rainfall data derived

from the historical (years 1961–2005) and representative concentration pathway (years 2006–2050)

runs of the Coupled Model Intercomparison Project Phase 5 models have been used for the analysis.

The model results of the historical run are compared with the observational data. The spatio-

temporal changes (region-specific as well as seasonal changes) in the malaria transmission as a

result of climate change are quantified over the India. The parameters related to the breeding cycle of

malaria as well as those which estimate the malaria cases are analyzed in the global warming

scenario.
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INTRODUCTION
Malaria poses a significant public health problem in India.

Even though there has been a decrease in the mortality

rate as a result of malaria disease due to better treatment

and control strategies, malaria still remains a leading disease

in India. There is a growing concern about the changing

pattern of some diseases across India, which are directly

influenced by the climate variables. Malaria falls under

this category. It is a proven fact that malaria is sensitive to

climatic parameters (Martens et al. ; Lindsay et al.

; Goklany ). It is endemic in all parts of India,

except at elevations above 1,800 m and in some coastal

areas (Sharma ; Bhattacharya et al. ; https://

www.who.int/ith/ith_country_list.pdf). The Indian malaria

mosquito, Anopheles stephensi, and the malaria parasite,

Plasmodium falciparum, are strongly affected by climate,

mainly temperature and rainfall on key transmission-related

traits (Craig et al. ). Rainfall over India (especially
during the summer monsoon season) reduces the tempera-

ture of the region and provides water availability for

mosquito-breeding/-resting sites. However, the excess rain-

fall may result into flushing away of the breeding sites. The

temperature affects the developmental period related to

different stages of a mosquito’s lifecycle: blood-feeding

rate, biting rate, gonotrophic cycle and longevity (Dhiman

et al. ; Paaijmans et al. ).

It has been reported that as a result of climate change,

the spread of the disease in the current malaria endemic

areas will increase (Zhou et al. , ; Pascual et al.

). Few studies also suggest that due to global warming,

the malaria transmission may re-emerge in those areas

which have controlled transmission or where the disease

was eradicated in the past (Baldari et al. ; Krüger

et al. ). On the contrary, it has also been reported that

the malaria transmission is in no way associated with
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climate change (Hay et al. ). Endo et al. () per-

formed a combined modeling and observational study to

investigate the impact of climate change on malaria in

Africa. Their study showed disproportionate future risk of

malaria due to climate change between East and West

Africa. Ngarakana-Gwasira et al. () carried out a math-

ematical modeling study to assess the role of climate

change in malaria transmission over Africa. They found

that as a result of climate change, malaria burden is likely

to increase in the tropics, the highland regions, and East

Africa. Le et al. () have predicted the direct and indirect

impacts of climate change on malaria in coastal Kenya. They

found that the vegetation acclimation triggered by elevated

CO2 under climate change increases the risk of malaria in

the region of study. The increase in air temperature under

the climate change is shown to have opposing effects on

mosquito larval habitats and the life cycles of both Ano-

pheles vectors and Plasmodium parasites. Caminade et al.

() carried out the first multimalaria model intercompar-

ison exercise to estimate the impact of future climate change

and population scenarios on malaria transmission at global

scale and to provide recommendations for the future. They

showed that future climate might become more suitable

for malaria transmission in the tropical highland regions.

Climate projections developed for India for 2050s (MoEF,

Government of India ) indicate an increase in average

temperature by 2–4 �C, an overall decrease in the number

of rainy days by more than 15 days in western and central

India and an increase by 5–10 days near the Himalayan foot-

hills and in northeast India. The projections also indicate an

overall increase in the rainy days’ intensity by 1–4 mm/day,

except for small areas in northwest India where the rainfall

intensities may decrease by 1 mm/day. There have been

several studies in which the impact of climate change on

malaria transmission over India has been investigated

(Bhattacharya et al. ; Dhiman et al. , , ,

). It has been found that the changes in the climate

affect mosquito-borne disease in several ways, namely their

survival and reproduction rates, the intensity and temporal

pattern of vector activity, and the rates of development,

survival and reproduction of pathogens within vectors

(Kovats et al. ).

Ferguson et al. () suggested that malaria elimination

and eradication requires urgent strategic investment into
://iwa.silverchair.com/jwh/article-pdf/18/3/358/759888/jwh0180358.pdf
understanding the ecology and evolution of the mosquito

vectors that transmit malaria. Several studies have been car-

ried out to look into the potential changes in the ecology of

malaria in the context of climate change. In addition to

other factors such as land cover, human migration, interven-

tions and socio-economic conditions which can alter the

local disease prevalence significantly (Koram et al. ;

Martens & Hall ), year-to-year fluctuations in climate

can also lead directly to variability in malaria transmission

intensity. Gething et al. () suggested that the predictions

of an intensification of malaria in a warmer world, based on

extrapolated empirical relationships or biological mechan-

isms, must be set against a context of a century of

warming that has seen marked global declines in the disease

and a substantial weakening of the global correlation

between malaria endemicity and climate. They quantified

contraction in the range of malaria through a century of

economic development and disease control to report

global recession in malaria endemicity since approximately

1900. In their multimalaria model intercomparison study,

Caminade et al. () evaluated three malaria outcome

metrics at global and regional levels in the context of climate

change: climate suitability, additional population at risk and

additional person-months at risk across the model outputs.

Their findings showed an overall global net increase in cli-

mate suitability and a net increase in the population at

risk, but with large uncertainties. They found a net increase

in the annual person-months at risk from the 2050s to the

2080s with increasing greenhouse gas concentration. Pion-

tek et al. () developed a framework to study coinciding

impacts related to water, agriculture, ecosystems and

malaria at different levels of global warming and identify

regional exposure hotspots. They found that the multisec-

toral overlap starts to be seen robustly at a mean global

warming of 3 �C above the 1980–2010 mean, with 11% of

the world population subject to severe impacts in at least

two of the four impact sectors at 4 �C. In a low prob-

ability-high impact worst-case assessment, almost the

whole inhabited world is at risk for multisectoral pressures.

Caminade et al. () argued that many key factors affect

the spread and severity of human diseases, including the

mobility of people, animals and goods; control measures

in place; availability of effective drugs; quality of public

health services; human behavior; and political stability and



360 S. Chaturvedi & S. Dwivedi | Malaria transmission over the Indian subcontinent in a warming environment Journal of Water and Health | 18.3 | 2020

Downloaded fr
by guest
on 09 April 202
conflicts. With drug and insecticide resistance on the rise,

significant funding and research efforts must be maintained

to continue the battle against existing and emerging

diseases, particularly those that are vector borne (for

example, malaria).

Several methods have been used to estimate changes in

the distribution of malaria in scenarios of global climate

change. These methods include both observational studies

as well as statistical and dynamical modeling of malaria

transmission. Some studies used biological models for

this purpose (Martens et al. , ; Rogers & Randolph

). Endo et al. () used a combination of observational

and modeling study. There have been a number of studies

related to the mapping and predictive modeling of the distri-

bution, intensity and seasonality of malaria transmission

(Hay et al. ; Snow et al. ; Craig et al. ; Kleinsch-

midt et al. ; Rogers et al. ). To understand and

quantify the malaria transmission rates so that its hazardous

effects can be minimized in the present and future climate,

many scientific efforts were made, which include the con-

struction of mathematical models (Beck Johnson et al.

). These models consider the life cycle of mosquitoes

and the seasonality effect, which are very important aspects

of the dynamics of malaria transmission. Recently devel-

oped models of malaria incorporate details of the climate-

driven parasite and vector life cycles (Depinay et al. ;

Eckhoff ; Lunde et al. ). The dynamical malaria

models have been used to estimate the malaria transmission

variations on a seasonal scale (Jones & Morse , ;

MacLeod et al. ; Tompkins & Di Giuseppe ). They

have also been used for the estimation of malaria trans-

mission rates over the multi-decadal timescales (Caminade

et al. ; Piontek et al. ). The mathematical model

‘VECToR borne disease community model of ICTP, TRIeste

(VECTRI)’ developed by Tompkins & Ermert () has

been used widely in many studies for investigating malaria

transmission rates (Tompkins et al.  and references

therein) over the different parts of Africa.

The studies linking climate fluctuations and malaria

transmission across the various regions of India are very

limited due to the absence of comprehensive, good quality

malaria transmission-related data continuous in space, and

time over India. For example, there is no long-term-gridded

data of malaria transmission which is available at all the grid
om http://iwa.silverchair.com/jwh/article-pdf/18/3/358/759888/jwh0180358.pdf

4

points over India. Moreover, the long-term regional projec-

tions of malaria transmission over India in the context of

climate change are also not available due to the lack of

gridded transmission data for this purpose. The studies,

which have been carried out in the past, are mainly observa-

tional in nature and are limited to a specific region of India

(Bhattacharya et al. ; Dhiman et al. , , ,

). Sarkar et al. () has recently analyzed shift in

potential malaria transmission areas in India, using the

fuzzy-based climate suitability malaria transmission model

under changing climatic conditions. The examples of dyna-

mical modeling studies carried out over India for this

purpose are a few. Only recently, Parihar et al. ()

employed VECTRI for investigating malaria transmission

dynamics over a limited regional domain of the highly ende-

mic state of Odisha in India. As such, it will be worthwhile

to carry out a dynamical modeling study of malaria trans-

mission over the entire Indian region by generating quality

controlled continuous in time data for this purpose. It will

also be imperative in this light to investigate the effect of cli-

mate change on malaria transmission over the densely

populated Indian region. The main aim of this paper is to

investigate the spatio-temporal variability in malaria trans-

mission patterns over the Indian subcontinent in the

context of climate change using the VECTRI model driven

by rainfall and temperature datasets (historical and future

projections) obtained from the Coupled Model Intercompar-

ison Project Phase 5 (CMIP5). The results obtained in the

manuscript are discussed with the help of Larvae and Ento-

mological Inoculation Rate (EIR) as parameters. We have

demonstrated the ability of the VECTRI model to provide

malaria early warning information over the Indian subconti-

nent. The changes in the length of transmission season

(LTS) over the different parts of India are also examined

in a warming environment.
MODEL DESCRIPTION AND DATA

We use the VECTRI malaria model (Tompkins & Ermert

) for carrying out the present study. The VECTRI solves

a set of equations using a daily time step that describes the

life cycles of the key vector, An Gambiae and Plasmodium

Falciparum (Tompkins & Ermert ; Tompkins &
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Di Giuseppe ). However, it is possible to extend the

VECTRI simulation for other vectors (Anopheles stephensi

and Plasmodium app, for example) by making appropriate

changes in the model parameterization for those mosquito

species according to their characteristic life cycles. The

VECTRI model for malaria transmission accounts for the

impact of temperature and rainfall variability on the devel-

opment cycles of the malaria vector in its larval and adult

stage, and also of the parasite itself (http://users.ictp.it/

∼tompkins/vectri/model.html). The temperature affects the

sporogonic and gonotrophic cycle development rates

according to the standard degree-day model, and higher

temperature increases the mortality rates for adult vectors

(Craig et al. ; Lunde et al. ). In other words, the pro-

cesses such as the gonotrophic cycle and the parasite and

vector larvae development rates are temperature sensitive,

as are the mortality rates of the vector in the larval and

adult stages. The combination of these temperature effects

results in the model reproducing the observed nonlinear

relationship between temperature and malaria (Tompkins

& Di Giuseppe ). Also, the relationship between rainfall

and malaria is strongly nonlinear; while rainfall drives the

creation of temporary water bodies (e.g. pond parameteriza-

tion with no spatial representation of permanent open water

bodies or wetlands), the model also includes a represen-

tation of the flushing effect, whereby intense rainfall

increases the mortality of early stage larvae (Tompkins &

Di Giuseppe ). This means that the intensity of malaria

transmission will increase in locations with low rainfall

amounts, whereas, above a certain threshold, the malaria

transmission decreases with rainfall. The simple surface

hydrology scheme of the VECTRI model estimates at each
Table 1 | Brief description of the CMIP5 models

CMIP5 models References R

CNRM-CM5 Lucarini and Ragone () 1

GFDL-CM3 Donner et al. () 2

MIROC-ESM Nozawa et al. () 2

MPI-ESM-MR Stevens et al. (); Jungclaus et al. () 1

HadGEM2-ES Collins et al. (, ) 1

://iwa.silverchair.com/jwh/article-pdf/18/3/358/759888/jwh0180358.pdf
time step the fractional water coverage area in each grid

cell. The key model processes in the VECTRI are resolved

using the multi-compartmental approach. The VECTRI

accounts for human population density in the calculation

of biting rates and host-to-vector and vector-to-host

transmission probabilities for the parasite. The higher popu-

lation densities lead to a dilution effect, resulting in lower

parasite ratios (PRs) in urban and peri-urban environments

compared with nearby rural locations. In this respect, the

model is able to reproduce the reduction in EIRs and PR

with increasing population density that has been widely

observed in African field studies (Kelly-Hope & McKenzie

; Tompkins & Ermert ). This study uses version

v1.4.6 of the VECTRI model, which additionally represents

larvae growth rates using the relationship of Craig et al.

(), and water temperature-dependent larvae mortality

rates derived from a combination of the growth rate and

the data of Bayoh & Lindsay (, ). This version of

VECTRI currently lacks the treatment of host immunity

and assumes that bites received per person are randomly dis-

tributed, thus neglecting heterogeneities in the distribution

of breeding sites relative to human habitations within a

grid cell and also in host attractiveness to vectors (Tompkins

& Di Giuseppe ). In this study, the VECTRI model is

driven by daily rainfall and temperature measurements

derived from a total of five CMIP5 models, namely

CNRM-CM5, GFDL-CM3, MIROC-ESM, MPI-ESM-MR

and HadGEM2-ES. These models are summarized in brief

in Table 1. Two types of experiments of 45 years each are

carried out for historical run and for future projection of

these models. The first type of experiment uses as input

the temperature and rainfall data from historical run of
esolution (in degrees)

Period of temperature and rainfall dataset used

Historical Projection

.41 × 1.40 Years 1961–2005 Years 2006–2050

.5 × 2.0

.81 × 1.77

.875 × 1.85

.875 × 1.25

http://users.ictp.it/&sim;tompkins/vectri/model.html
http://users.ictp.it/&sim;tompkins/vectri/model.html
http://users.ictp.it/&sim;tompkins/vectri/model.html


Table 2 | The correlation coefficient (r) and rmse between the observed and model

rainfall and temperature of the CMIP5 models

Model

Rainfall Air temperature

r rmse r rmse

CNRM-CM5 0.99 0.48 0.94 3.52

GFDL-CM3 0.99 0.40 0.91 2.66

MIROC-ESM 0.99 1.66 0.88 3.39

MPI-ESM-MR 1.0 0.55 0.96 3.31

HadGEM2-ES 0.84 1.35 0.93 2.57
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these CMIP5 model between 1961 and 2005, whereas the

second type of experiment uses the same input data for

representative concentration pathway 8.5 (RCP8.5) future

projection scenario between 2006 and 2050. For the present

study, we use population density derived from the Gridded

Population of the World project (SEDAC, ) at a

resolution of 30 arc min during the historical period. The

population data estimates from Inter-Sectoral Impact

Model Intercomparison Project at 50 resolutions are taken

for the years 2006–2050. This dataset is based on the

national SSP2 population projections as described in

Samir & Lutz () and is useful for us for evaluating

the effect of temperature and rainfall on the malaria

transmission intensity in a warming environment with the

time-varying population. The VECTRI model output is

stored as successive daily means. Using the methodology

described above, we carry out the VECTRI model run over

the Indian subcontinent region for the historical period

(1961–2005) as well as for future climate (2006–2050).
RESULTS AND DISCUSSION

TEMPERATURE AND RAINFALL DATA OF CMIP5 MODELS

We begin by analyzing the monthly variability of the temp-

erature and rainfall data of CMIP5 models (which are

used to initialize VECTRI) over the Indian subcontinent

against the corresponding observed values. The air tempera-

ture data from National Centers for Environmental

Prediction (NCEP) reanalysis (Kalnay et al. ) and rain-

fall data from the Global Precipitation Climatology Project

(GPCP) (Huffman et al. ) are used as observed dataset

for this purpose. We compute the correlation coefficient

(r) between the observed rainfall and corresponding rainfall

data from all five CMIP5 models. The results are summar-

ized in Table 2. We see that the model and observed

rainfall datasets are highly correlated. These correlation

values are significant at more than 99% level. Similarly,

we also compute the root mean square error (rmse) between

the model and observed rainfall dataset (Table 2). We see

from the table that the rsme values are much lower than

the standard deviation of observed rainfall (2.35 mm/day),

thus confirming the quality of the model dataset. These
om http://iwa.silverchair.com/jwh/article-pdf/18/3/358/759888/jwh0180358.pdf
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statistically quantified results clearly suggest that the quality

of the CMIP5 model derived rainfall dataset of all the five

models compares well with the observed rainfall. To look

at the spatial variability of the rainfall, we also show in

Figure 1 the seasonal variability of the observed rainfall

over the Indian subcontinent and make a comparison with

one of the CMIP5 models, namely CNRM-CM5. Other

models also show similar results (not shown for sake of

brevity). We see from the figure that as expected, the rainfall

is generally very low (average rainfall in the range of

1–2 mm/day) in the DJF and MAM months. The highest

rainfall (>10 mm/day) is observed during the monsoon

season of JJA. The post-monsoon months of SON also

receive a good amount of rainfall (average rainfall in the

range of 3–6 mm/day). The third panel of Figure 1 shows

the bias (defined as difference between model and obser-

vation data (model – observation)) map of rainfall. We see

that the biases are very low (<± 0.5 mm/day) in the DJF

and MAM months over the central Indian region. The

biases are mostly positive (∼1–2 mm/day) over the central

Indian region during the monsoon season (JJA), which

suggests that the CNRM-CM5 model has a wet bias over

these regions. The southern Indian region, Western Ghats

and East Indian regions show dry bias. Similarly, a small

wet bias in the northern Indian region and a dry bias in

the eastern Indian subcontinent are seen during the post-

monsoon season (SON).

We also compute the correlation coefficient and rmse

between the observed air temperature and corresponding

temperature data of all five CMIP5 models. These results

are summarized in Table 2. We see from the table that the

model data are significantly highly correlated (at more



Figure 1 | Seasonal variability of precipitation (mm/day). Upper panel: GPCP observations (1961–2005), middle panel: CNRM-CM5 model (1961–2005), and lower panel: bias (model-

observation).
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than 99%) with the observed temperature. Moreover, the

rmse values between the model and observed temperature

are less than the standard deviation of observed temperature

(4.2 �C). These statistical results clearly suggest that the cli-

matological temperature data of all the five CMIP5 models

used in the analysis are realistic and may be utilized to initi-

alize the VECTRI malaria model with confidence. The

spatial map of seasonally varying temperature data shown

in Figure 2 suggests that the CNRM-CM5 model very well

captures the temperature variability exhibited by the

NCEP reanalysis data. As expected, the temperature of the

central Indian region remains high (>35 �C) during spring

(MAM) and monsoon (JJA) months and low (<15 �C)
://iwa.silverchair.com/jwh/article-pdf/18/3/358/759888/jwh0180358.pdf
during winter (DJF). The bias map of temperature shows

that the model slightly underestimates the temperature of

the western Indian region during DJF and SON months,

whereas it overestimates it in the southeast Indian region

during JJA. It is likely that the slightly higher temperature

and higher rainfall (when compared to observation) of the

CNRM-CM5 model in the southeast Indian region during

JJA, when used as an input of the VECTRI model, may

result into slightly higher malaria transmission rates in the

region. After having confirmed from Figures 1 and 2 and

Table 2 that five CMIP5 models taken in this study are

able to realistically represent the temperature and rainfall

variability of the region, we used daily values of these



Figure 2 | Seasonal variability of air temperature at 2 m (�C): Upper panel: NCEP reanalysis (1961–2005), middle panel: CNRM-CM5 model (1961–2005), and lower panel: bias (model-

observation).
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variables from five CMIP5 models to initialize the VECTRI

model. The VECTRI output is used to quantify the malaria

transmission over the Indian subcontinent as explained in

the following section.

ANALYSIS OF VECTRI OUTPUT

Figure 3 shows the VECTRI-simulated EIR, defined as the

number of infectious bites. The daily temperature and rain-

fall of the CNRM-CM5 model is used as input here. The

results of the VECTRI output using other model dataset

are very similar and not shown here for brevity. The results

clearly show that malaria transmission quantified in terms of

EIR generally follows rainfall patterns over the India sub-

continent. The timing of peaks in the EIR (July–October)

follows peaks in rainfall. In the VECTRI model, malaria

transmission is sustained if simulated EIR �0.01 (Tompkins

& Ermert ) and no transmission occurs if simulated EIR

<0.01. The month of September exhibits the maximum EIR,
om http://iwa.silverchair.com/jwh/article-pdf/18/3/358/759888/jwh0180358.pdf
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i.e. a maximum number of infectious bites spread over

almost the entire Indian region. The EIR in the month of

August mainly remains concentrated over the eastern and

southeastern regions, whereas in the month of October,

the EIR is high over the southeastern and northwest regions.

The EIR starts to increase from July, becomes maximum in

September, then starts to decrease and becomes negligibly

small October onwards.

For mosquitoes, the environment in which larvae

develop strongly determines adult characteristics such as

individual size, teneral reserves, biting behavior, fecundity,

longevity, and vector competence (i.e. their ability to

develop and transmit pathogens) (Briegel ; Breaux

et al. ; Araújo et al. ), which are all factors influen-

cing vectorial capacity (i.e. the potential intensity of

transmission by mosquitoes). We show in Figure 4 the

monthly larvae map obtained from the VECTRI output

over the region. In the monsoon and post-monsoon seasons,

precipitation is higher and the temperature starts to



Figure 3 | Monthly climatological variability of the VECTRI-simulated EIR over India.

Figure 4 | Monthly climatological variability of the VECTRI-simulated Larvae over India.
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decrease, thus making the conditions favorable for the

reproduction and growth of malaria larvae. It is clear from

the figure that the larvae population is high during July–

October months with the highest larvae population seen in

August–September months. The figure suggests that the

maximum number of malaria vectors is found in August–

September months.

After calculating the malaria transmission for the his-

torical period, we made an effort to see the effect of

climate change on malaria transmission by carrying out

the VECTRI model run using the RCP8.5 future projection

data of all the five CMIP5 models for the period 2006–

2050. Figure 5 shows the difference map of temperature

between RCP8.5 and historical run of the CNRM-CM5

model. The difference map clearly suggests that the maxi-

mum change in temperature will happen during the

March–May and September–November months. The highest

temperature change over the central Indian region is

obtained in October. The monthly difference map of rainfall
Figure 5 | Monthly difference map of the surface air temperature (�C) between RCP8.5 run (2

om http://iwa.silverchair.com/jwh/article-pdf/18/3/358/759888/jwh0180358.pdf
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between RCP8.5 and historical run is shown in Figure 6.

The difference map clearly suggests that the monsoon

season will see high rainfall changes with a maximum

change happening during the September month over the

entire central Indian region. The difference map of

rainfall suggests that rainfall in the month of September is

going to decrease (up to 1 mm/day) from its historical

values.

We compute the EIR and Larvae from the VECTRI

model output using temperature and rainfall of the RCP8.5

future projection scenario data of all five CMIP5 models

for the years 2006–2050. The mean monthly variability of

EIR difference (RCP8.5 – historical) for these years is

shown in Figure 7(a)–7(e) corresponding to CNRM-CM5,

GFDL-CM3, HadGEM2-ES, MIROC-ESM, and MPI-ESM-

MR CMIP5 models, respectively. We see that the EIR differ-

ences in the context of climate change are mainly occurring

in the monsoon and post-monsoon months of July–October.

It is interesting to note that out of these months, the
006–2050) and historical run (1961–2005) of CNRM-CM5 model.



Figure 6 | Monthly difference map of the rainfall (mm/day) between RCP8.5 run (2006–2050) and historical run (1961–2005) of CNRM-CM5 model.
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post-monsoon months of August–October see highest EIR

differences with a positive sign, suggesting that the malaria

transmission will increase in these months in a warming

environment. It is also worthwhile to note that these

VECTRI-simulated EIR differences are in general consistent

across all the output obtained using the temperature and

rainfall dataset of different models, though magnitudes

may differ in different months. However, we also notice a

decrease in the EIR (Figure 7(a)) in some parts of the north-

western Indian region in VECTRI simulation using

climatological data of the CNRM-CM5 model. A similar

decrease in some northwestern parts, as well as the south-

western region is seen in Figure 7(d) (MIROC-ESM

model) and in eastern and southeastern coastal states

during October–November months in Figure 7(c)

(HadGEM2-ES model). Interestingly, the EIR is also

increasing in the southern Indian region during November

in nearly all the model simulations. This indicates that the

malaria transmission will extend up to the month of
://iwa.silverchair.com/jwh/article-pdf/18/3/358/759888/jwh0180358.pdf
November in the event of climate change and other parts

of India will also become vulnerable to malaria transmission

in a warming world.

The mean monthly variability of Larvae difference

between the VECTRI output obtained using the RCP8.5

data and historical data is shown in Figure 8 for the

CNRM-CM5 model (larvae maps with very similar charac-

teristics using other CMIP5 model data not shown for

brevity). The Larvae differences are mainly seen in the

months of July–October. In the month of July, the malaria

vectors will see a decrease in the eastern and southeastern

regions, while the north central Indian region will see a

slight increase in the malaria vectors. There will be a high

increase in the Larvae population in the month of August

in central and southern Indian regions, whereas the central

and northern Indian region will see a decrease in the

malaria population. In the month of September, the entire

Indian region, except Western Ghats and southern Indian

region, will see a decrease in the malaria population.



Figure 7 | Monthly difference map of the VECTRI-simulated EIR between RCP8.5 run (2006–2050) and historical run (1961–2005) of (a) CNRM-CM5, (b) GFDL-CM3, (c) HadGEM2-ES, (d)

MIROC-ESM, and (e) MPI-ESM-MR models.
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Figure 8 | Monthly difference map of the VECTRI-simulated Larvae between RCP8.5 run (2006–2050) and historical run (1961–2005) of CNRM-CM5 model.
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During October, the increased Larvae population will be

found only in the southern Indian region. In general, the

VECTRI malaria model tends to show an increase in climate

suitability for endemic malaria transmission over Western

Ghats and northeast India between July and September.

In order to check the robustness of VECTRI-simulated

malaria transmission results of the future projections and

to see how they compare with the actual estimates, we com-

pute the standardized (by its own standard deviation)

anomaly of malaria cases over the Indian region for the

years 2006–2018. The standardized anomaly of VECTRI-

simulated malaria cases is computed for model runs using

the RCP8.5 scenario of all the five CMIP5 models. The cor-

responding actual malaria cases data provided by the

Directorate of National Vector Borne Disease Control Pro-

gramme (NVBDCP), Ministry of Health and Family

Welfare, Government of India (https://nvbdcp.gov.in/) are

used for comparison. The results are shown in Figure 9.

We see from the figure that out of all model simulations,

the VECTRI-simulated results using the CNRM-CM5 and

MIROC-ESM projection data are able to correctly get the
://iwa.silverchair.com/jwh/article-pdf/18/3/358/759888/jwh0180358.pdf
observed trend of malaria cases. It is interesting to note

that the malaria cases are decreasing in recent years

suggesting usefulness of measures being adopted by the Gov-

ernment agencies to mitigate the malaria transmission.

These results are, however, interpreted with the caveat

that rainfall and temperature data of RCP8.5 scenario used

as an input in the VECTRI may not be actual representation

of these variables during 2006–2018. In other words, global

warming may not be actually occurring at the same rate as

depicted by the RCP8.5 runs of these models.

To put the results into perspective, we also compute the

LTS of malaria in a year (Caminade et al. ). For the

VECTRI model, LTS¼ 1 for a given month if EIR >0.01/

day (Caminade et al. ). All those months of a year in

which the EIR is greater than 0.01/day are counted for the

purpose of computing LTS at each grid point. The LTS

greater than 3 is considered as stable. We compute LTS

for all the VECTRI simulations using the historical as well

as RCP8.5 data. We show, in Figure 10, the LTS map over

the Indian region using the CNRM-CM5 data. We see

from the figure that the LTS is high (>8) and remarkably

https://nvbdcp.gov.in/
https://nvbdcp.gov.in/


Figure 9 | Standardized anomaly of malaria cases over the Indian region for the years 2006–2018 corresponding to RCP8.5 run of CNRM-CM5, GFDL-CM3, MIROC-ESM, MPI-ESM-MR, and

HadGEM2-ES models. The comparison is made with the corresponding anomaly computed using the data provided by the NVBDCP, Government of India (https://nvbdcp.gov.in/).

Figure 10 | LTS map of malaria computed from VECTRI simulation using the CNRM-CM5 data.
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Figure 11 | Difference map of the LTS between RCP8.5 run (2006–2050) and historical run (1961–2005) for VECTRI simulation using the CNRM-CM5 data.
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stable in the southern Indian states, intermediate (3–8) in

central and eastern Indian states, and low unstable (<3) in

parts of western and northern Indian states. The difference

in the LTS between the VECTRI simulations using the

RCP8.5 and historical data is shown in Figure 11. The LTS

difference map clearly suggests even those regions that

were less prone to malaria transmission will become suscep-

tible to disease through climate change. For example, due to

global warming, it is likely that the LTS will increase in the

densely populated north central and western Indian states.

In addition to these regions, the LTS is also likely to increase

in the south and south central Indian states in a changing

climate scenario.
CONCLUSION

In the present study, we try to assess the effect of climate

change on malaria transmission over the Indian
://iwa.silverchair.com/jwh/article-pdf/18/3/358/759888/jwh0180358.pdf
subcontinent using the VECTRI dynamical malaria

model. This study suggests that temperature and precipi-

tation play a dominant role in malaria transmission. The

relationships between spatial patterns in malaria and clima-

tological drivers of malaria varied greatly across India. The

role of climate variability in influencing the malaria out-

breaks in India is clearly seen under the climate change

(seasonal shifts seen in the EIR and Larvae, for example).

It is found that the malaria is endemic in the eastern and

southeastern Indian regions of the country for the current

climate. Applying the same criteria under the climate

change conditions, it is projected that malaria is likely to

persist in Western Ghats and north-eastern Indian regions.

However, it may also shift from these regions to the

southern Indian region in the month of November. The

study carried out in the present manuscript uses the histori-

cal and future projection data of one of the five CMIP5

models. In future, it will be worthwhile to check the robust-

ness of the results presented in the study by using
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multi-model mean and also by including more models from

the CMIP6 output.
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