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ABSTRACT
Escherichia coli is simultaneously an indicator of water contamination and a human pathogen. This

study aimed to characterize the virulence and resistance of E. coli from municipal and hospital

wastewater treatment plants (WWTPs) in central Portugal. From a total of 193 isolates showing

reduced susceptibility to cefotaxime and/or nalidixic acid, 20 E. coli with genetically distinct

fingerprint profiles were selected and characterized. Resistance to antimicrobials was determined

using the disc diffusion method. Extended spectrum β-lactamase and plasmid-mediated quinolone

resistance genes, phylogroups, pathogenicity islands (PAIs) and virulence genes were screened by

polymerase chain reaction (PCR). CTX-M producers were typed by multilocus sequence typing.

Resistance to beta-lactams was associated with the presence of blaTEM, blaSHV, blaCTX-M-15 and

blaCTX-M-32. Plasmid-mediated quinolone resistance was associated with qnrA, qnrS and

aac(60)-Ib-cr. Aminoglycoside resistance and multidrug-resistant phenotypes were also detected.

PAI IV536, PAI IICFT073, PAI II536 and PAI ICFT073, and uropathogenic genes iutA, papAH and sfa/foc

were detected. With regard to the clinical ST131 clone, it carried blaCTX-M-15, blaTEM-type, qnrS and

aac(60)-lb-cr; IncF and IncP plasmids, and virulence factors PAI IV536, PAI ICFT073, PAI IICFT073, iutA,

sfa/foc and papAH were identified in the effluent of a hospital plant. WWTPs contribute to the

dissemination of virulent and resistant bacteria in water ecosystems, constituting an environmental

and public health risk.
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INTRODUCTION
Escherichia coli is simultaneously a biological indicator of

water treatment safety and an important human pathogen

responsible for several diseases (Edberg et al. ; Kaper

et al. ).E. colipresents several virulence and antimicrobial

resistance genes which contribute to its success as a human

pathogen (Pitout ). These genes may be disseminated by

mobile genetic elements such as pathogenicity islands

(PAIs), carriers of virulence factors, or plasmids with genes

coding for both resistance and virulence determinants

(Hacker et al. ; Carattoli ). Water constitutes a good

matrix for the lateral transfer of mobile genetic elements

(Taylor et al. ), which are responsible for the dissemination
of virulence or resistance traits between bacteria fromdifferent

sources, contributing to the modification of the natural bac-

terial ecosystems (Baquero et al. ).

Currently, an inverse relationship between antimicrobial

resistance and virulence has been the consensus (Moreno

et al. ). However, recently it has been shown that

these two features may co-exist in the same genotype perpe-

tuating the bacterial lineage and highlighting concern

because of its dissemination (Dolejska et al. ; Colomer-

Lluch et al. ).

Wastewater treatment plants (WWTPs) are designed to

significantly reduce the biological contamination of water.

mailto:gjsilva@ci.uc.pt
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Nevertheless, studies report resistant bacteria in effluents of

treated water, and suggest that the conditions in WWTPs

favour the proliferation of antibiotic-resistant bacteria and

the exchange of genetic elements (Moura et al. ;

Dolejska et al. ; Korzeniewska et al. ). The emer-

gence and dissemination of antimicrobial-resistant bacteria

has led to increasing concerns about potential environ-

mental and public health risks. Moreover, the carriage of

specific virulence genes, especially those located in mobile

genetic elements, are important to evaluate the public

health risks.

The main objectives of this study were to characterize

the virulence and antimicrobial resistance profiles of E.

coli collected in waters from municipal and hospital

WWTPs from central Portugal and to screen for the pres-

ence of mobile genetic elements.
MATERIALS AND METHODS

Bacterial isolates

Between April and May 2011, water samples were collected

from four hospitals and three municipal WWTPs located in

the central region of Portugal:

• University hospital: reference hospital for the central

region of Portugal. A large hospital with 1,456 beds,

with an extended set of medical specialties and clinical

services, as well as a centre of research, serving a popu-

lation of approximately 430,000 inhabitants.

• General hospital: medium-sized hospital with 13 main

wards and 350 beds. It serves a population of approxi-

mately 369,000 inhabitants.

• Pediatric hospital: small reference hospital in central Por-

tugal that supports paediatric units. It is composed of

nine main wards and 110 beds serving a population of

about 90,000 inhabitants.

• Maternity: small hospital with 96 beds and three main

wards – gynaecology, obstetrics and neonatology, not

including the baby unit. It serves a population of approxi-

mately 507,000 women.

• Municipal WWTP1: serves a 14,000 population

equivalent.
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• Municipal WWTP2: serves a 213,000 population equival-

ent. It receives urban wastewaters that include domestic

wastewaters and hospital effluents (namely from the

four mentioned hospitals).

• Municipal WWTP3: serves a 1,500 population

equivalent.

Municipal WWTP sampling was performed at the

entrance and exit of the station on two occasions and hospi-

tal samples were collected on three different dates at the exit

of the station. Wastewater samples (250 mL) were collected

in amber glass bottles and further vacuum filtered through

1.0 μm glass microfibre filters (GF/C, Whatman, UK), fol-

lowed by 0.45 μm nylon membrane filters (Whatman, UK).

The filters were placed in MacConkey Agar supplemented

with 0.5 mg/L of cefotaxime or 10 mg/L of nalidixic acid.

A bacterial suspension was prepared with the inoculum

and cultured in MacConkey Agar. A maximum of eight pre-

sumptive colonies of E. coli per plate were further cultured

in Eosin Methylene Blue Agar, and lactose fermenter colo-

nies with a green metallic sheen were selected. The citrate

test was used to distinguish E. coli from Citrobacter spp.

The identification was confirmed using a polymerase chain

reaction (PCR)-based technique with specific primers set tar-

geting uidA gene (Heijnen & Medema ).

The genetic relationship was evaluated by BOX-PCR

(Versalovic et al. ), and only non-duplicate isolates

were further analysed.
Susceptibility testing and phenotypic extended

spectrum β-lactamase detection

The antimicrobial susceptibility profiles for ampicillin

(10 μg), amoxicillin-clavulanic acid (20/10 μg), cefoxitin

(30 μg), cefotaxime (30 μg), ceftazidime (30 μg), nalidixic

acid (30 μg), ciprofloxacin (10 μg) and gentamicin (10 μg)

were determined using a disc diffusion test. Extended spec-

trum β-lactamase producers were detected with the double

disc synergy test (Jarlier et al. ). The methods were per-

formed and the results were interpreted based on the

Clinical and Laboratory Standards Institute guidelines

(CLSI ). Multidrug resistance was defined as acquired

non-susceptibility to at least one agent in three or more anti-

microbial categories (Magiorakos et al. ).
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Antimicrobial resistance determinants detection

The blaCTX-M, blaTEM and blaSHV genes coding for β-lacta-

mases and plasmid-mediated quinolone resistance (PMQR)

determinants qnrA, B and S, and qepA were screened with

specific primers by PCR (Cattoir et al. ; Mendonça

et al. ; Ma et al. ). For the samples with a positive

result for the screening of blaCTX-M, the full gene was further

amplified using previously described primers (Conceição

et al. ) and amplicons were purified with ExoSAP-IT

(Affymetrix, USB products). The whole genes were

sequenced at Macrogen, Amsterdam, The Netherlands.

aac(60)-Ib was screened by PCR and isolates positive for

the aac(60)-lb gene were further digested with BtsCI enzyme

(New England Biolabs) to identify aac(60)-lb-cr which lacks

the BtsCI restriction site present in the wild-type gene (Park

et al. ).
Plasmid replicon typing

Plasmid replicon identification was performed according to

the PCR-based replicon typing scheme (Carattoli et al. ),

detecting the main replicon families in Enterobacteriaceae.
Detection of PAIs and other virulence markers

PAI markers were screened according to the Bronowski

et al. () scheme, based on the technique first

described by Sabaté et al. (). This method allows the

detection of eight PAIs, encoding several virulence deter-

minants: PAI I536, PAI II536, PAI III536, PAI IV536,

PAI IJ96, PAI IIJ96, PAI ICFT073, and finally PAI IICFT073
(Sabaté et al. ).

Other virulence genes that may be present in extrain-

testinal E. coli (EXPEC) such as papAH, papC (P

fimbriae structural subunit and assembly), sfa/foc (S and

F1C fimbriae), afa/dra (Dr-binding adhesins), iutA (aero-

bactin receptor), kpsM II (group 2 capsules) and cnf1

(cytotoxic necrotizing factor 1) were screened by PCR

(Johnson & Stell ), as well as the enterohaemorrhagic

E. coli associated virulence genes eaeA (intimin), hlyA

(pore-forming cytolysin), stx 1 and 2 (shiga-like toxins)

(Ram et al. ).
://iwa.silverchair.com/jwh/article-pdf/13/2/311/394726/jwh0130311.pdf
Phylogenetic analysis

The determination of E. coli major phylogroups (A, B1, B2

and D) was performed with a PCR-multiplex detecting

chuA, yjaA and DNA fragment tspE4.C2 genes (Clermont

et al. ; Mendonça et al. ).

Multilocus sequence typing (MLST)

MLST of the CTX-M producers was performed based on the

PCR amplification and sequencing of seven housekeeping

genes, adk, fumC, gyrB, icd, mdh, purA and recA, according

to the University College of Cork (Cork, Ireland) scheme for

E. coli (http://mlst.ucc.ie/mlst/dbs/Ecoli).
RESULTS

Bacterial isolates

A total of 193 presumed E. coli with reduced susceptibility

to cefotaxime and/or nalidixic acid were obtained from

WWTPs. The majority of the isolates showed an identical

genetic profile and only 20 isolates with distinct profiles

were selected (non-duplicate isolates) and further character-

ized for resistance and virulence profiles (Table 1). Fourteen

of the non-duplicate isolates were from municipal WWTPs,

while the remaining six were recovered from hospital water

samples. The municipal isolates were recovered from

WWTP2 (n¼ 7), followed by WWTP3 (n¼ 4) and WWTP1

(n¼ 3). Isolates W4 and W12 were detected in both the

influent and effluent of the respective WWTPs, and in

addition W12 isolate was detected on two different sampling

occasions. From the hospital WWTPs, three strains were

recovered from the general hospital, two from the maternity

hospital and one from the university hospital. E. coli isolates

with reduced susceptibility to CTX or NAL were not

detected in the outflow of the paediatric hospital.

Resistance profile characterization

The majority of the isolates were resistant to nalidixic acid

(85%), followed by resistance to ampicillin (50%), amoxicil-

lin-clavulanic acid (35%), cefoxitin (35%), cefotaxime (35%),

http://mlst.ucc.ie/mlst/dbs/Ecoli
http://mlst.ucc.ie/mlst/dbs/Ecoli


Table 1 | Distribution of strains and characterization of phylogeny, virulence and resistance determinants and plasmid incompatibility groups

WWTP Strain

Collection
date (day/
month) Sampling Phylogroup

Virulence
determinants Resistance profile

Plasmidic
resistance
determinants Replicon type ST

Hospital
WWTP

Maternity W1 19/4 Outflow A PAI IV536, iutA NAL – F, FIA, FIB,K, I1/Iϒ, P ND
W2 9/5 Outflow D iutA AMP, NAL blaTEM I1/Iϒ, P ND

University W3 18/4 Outflow B2 PAI IV536, PAI
ICFT073, PAI
IICFT073, iutA,
sfa/foc, papAH

AMP,CAZ, CTX,
CN, NAL, CIP

blaCTX-M-15,
blaTEM, qnrS,
aac(60)-lb-cr

F, FIB,P ST131

General W16 19/4 Outflow D iutA AMP, FOX, CAZ,
CTX, AMC,
GEN, NAL,
CIP

blaTEM, qnrA F ND

W17 19/4 Outflow A – AMP, FOX, CTX,
NAL, CIP

blaTEM – ND

W18 2/5 Outflow A – AMP, FOX, CAZ,
CTX, AMC,
NAL

blaTEM – ND

Municipal
WWTP

ND

WWTP1 W4 19/4 Inflow/
Outflow

D PAI IV536 – – – ND

W5 19/4 Outflow B1 – – – – ND
W6 19/4 Outflow B2 PAI II536, PAI

IV536, PAI
IICFT073, iutA

AMP, AMC blaTEM F, FIA, I1/Iϒ ND

WWTP2 W7 19/4 Inflow B2 PAI IV536, , PAI
IICFT073, iutA,
papAH

AMP, GEN,
NAL, CIP

blaTEM, qnrS F, FIA ND

W8 19/4 Outflow A – AMP, CAZ, CTX,
NAL, CIP

blaSHV I1/Iϒ ND

W9 19/4 Outflow B1 PAI IV536,iutA AMP, FOX, CAZ,
CTX, AMC,
NAL,CIP

qnrA F, FIA, FIB, K, I1/Iϒ,P ND

W10 19/4 Outflow B1 PAI IV536,iutA NAL – F,K ND
W11 19/4 Outflow A PAIIV536, iutA FOX, AMC, NAL – F ND
W12 19/4; 5/5 Inflow/

Outflow
B2 PAI IV536, PAI

ICFT073, PAI
IICFT073, iutA,
eaeA

NAL – F ND

W13 5/5 Inflow D PAI IV536, iutA FOX, NAL – P ND

WWTP3 W14 19/4 Outflow A iutA NAL – – ND
W15 5/5 Inflow A PAI IV536 AMP, CTX,

NAL,
blaCTX-M-32 F,K ST34

W19 5/5 Inflow B2 PAI IV536,,iutA FOX, NAL – F, FIB ND
W20 5/5 Inflow B1 PAI IV536 NAL qnrA K ND

AMP, ampicillin; CAZ, ceftazidime; FOX, cefoxitin, CTX, cefotaxime; GEN, gentamicin; CIP, ciprofloxacin; NAL, nalidixic acid; AMC, amoxicillin-clavulanic acid.

ND, not determined.
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ciprofloxacin (30%), ceftazidime (25%) and gentamicin

(15%). Strains W4 and W5 from municipal WWTP1 were

susceptible to all the antibiotics tested, and strains W3

from the university hospital, strain W16 from the general

hospital and strain W7 from the municipal WWTP2 were

multidrug resistant. Among the antimicrobial resistance

determinants screened, blaTEM was detected most (n¼ 7)

followed by qnrA (n¼ 3), qnrS (n¼ 2) and blaCTX-M (n¼
2). The studied resistance determinants were not detected

in nine isolates.

Only two strains carried blaCTX-M genes: blaCTX-M-15

(W3) collected from the university hospital outflow and

blaCTX-M-32 (W15) from the municipal WWTP3 inflow

water. Isolate W3 was assigned by MLST to ST131 and iso-

late W15 to ST34. The strain W3 ST131 was multidrug

resistant and showed the higher diversity of plasmidic

determinants, carrying blaCTX-M-15, blaTEM-type, qnrS and

aac(60)-lb-cr.

The main plasmid groups detected in Enterobacteriaceae

family members were also investigated. Four plasmid

groups: IncF, IncK, IncI1/Iγ and IncP were detected. IncF

was the most prevalent group (n¼ 11) found in both hospital

and municipal WWTPs waters, while in 25% of the isolates

no plasmid was identified.

Virulence profile description

The PAIs most frequently detected was PAI IV536 (n¼ 13)

followed by PAI IICFT073 (n¼ 5), PAI ICFT073 (n¼ 2) and

PAI II536 (n¼ 1). PAI I536, PAI III536, PAI IJ96 and PAI IIJ96
were not detected. PAI IV536 and PAI IICFT073 were more

prevalent in municipal isolates. PAI II536 was exclusively

detected in a strain from a municipal WWTP. Different com-

binations of PAIs were identified (Table 1).

Considering individual virulence genes, the most fre-

quently detected was iutA (n¼ 13), followed by papAH

(n¼ 2); more common among hospital isolates, sfa/foc and

eaeA were less prevalent, each of them being detected in

one isolate, the former found in a hospital source and

eaeA detected in a municipal WWTP. The genes afa/dra,

kpsM II, cnf, hlyA, stx1 and 2 were not detected. The most

prevalent phylogenetic group was group A (n¼ 7) followed

by B2 (n¼ 5), and finally B1 and D (n¼ 4, each). Strains

from phylogroup B2 from both municipal and hospital
://iwa.silverchair.com/jwh/article-pdf/13/2/311/394726/jwh0130311.pdf
WWTPs carried more virulence factors, including the

ST131 isolate (Table 1). All the other isolates presented viru-

lence determinants regardless of the phylogroup, with the

exception of W17 and W8 from phylogroup A, and W5

from phylogroup B1.
DISCUSSION

This study aimed to characterize the virulence and resist-

ance profiles of E. coli selected from municipal and

hospital WWTPs from a central region of Portugal, evaluat-

ing the possibility of environmental dissemination of

pathogenic and/or resistant bacteria from these sources.

Several studies indicate the potential dissemination of resist-

ant and/or virulent bacteria from WWTPs into the

environment (Jakobsen et al. ; Sabaté et al. ;

Chagas et al. ; Dolejska et al. ; Colomer-Lluch

et al. ; Biswal et al. ). Nonetheless, only one study

concomitantly studied virulence factors and resistance

determinants in hospital WWTPs (Jakobsen et al. ),

and it only focused on gentamicin resistance determinants

and in single virulence factors. Here, we extended the

study to the identification of PAIs, clusters of virulence

genes with the potential to be mobile.

E. coli strains showed resistance to important groups of

antibiotics such as beta-lactams, quinolones and aminogly-

cosides, with multidrug resistance being detected in both

municipal and hospital strains, indicating that WWTPs

may be responsible for the introduction of multidrug-resist-

ant bacteria into the environment. In the Portuguese

Mondego river, where the effluents of the studied WWTPs

are discharged, several types of antibiotics, including fluoro-

quinolones, were recently detected (Santos et al. ),

which may exert a selective pressure in the dissemination

of resistant bacteria in environmental waters (Kummerer

& Henninger ). Plasmidic resistance determinants are

important vehicles of transmission of resistance genes. Sev-

eral resistance determinants were detected in this study,

including blaTEM, blaSHV, blaCTX-M-15 and blaCTX-M-32,

responsible for resistance to several beta-lactams, as well

as PMQR genes, including qnrA, qnrS and aac(60)-Ib-cr.

Different beta-lactamase genes have already been detected,

including blaCTX-M group 1, blaCTX-M group 9, blaSHV and
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blaTEM genes, in hospital and municipal effluents (Korze-

niewska & Harnisz ; Korzeniewska et al. ). In

addition, CTX-M-15 and CTX-M-32 producers have already

been detected in river waters in Portugal, with unknown

origin, indicating that these determinants may be spreading

among water systems (Tacão et al. ).

Several virulence factors responsible for enhancing the

pathogenic potential of bacteria have been detected in E.

coli (Johnson ; Johnson & Stell ), and some of

them are clustered in PAIs, mobile genetic platforms capable

of dissemination through horizontal gene transfer (Hacker

et al. ). Virulence profiles were characterized in the iso-

lates. Results show that PAI IV536 was the most prevalent

island, likewise in other studies performed in clinical samples

and in water from several origins, but none of them from

WWTPs (Sabaté et al. ;Mendonça et al. ). The associ-

ation of PAI IV536 to virulence is controversial, as some

studies indicate that this island contributes to the virulence

of EXPEC (Schubert et al. ) but other authors suggest

that this is, rather, a fitness element (Oelschlaeger et al.

). Several uropathogenic E. coli (UPEC) virulence

genes were identified in the isolates, including iutA, involved

in the uptake of iron, papAH coding for P fimbriae associated

with pyelonephritis (Kallenius et al. ; Dowling et al. )

and sfa/foc encoding S fimbriae/F1C fimbriae, involved in

urinary infections, neonatal sepsis as well as meningitis

(Antão et al. ). In addition, eae, usually detected in enter-

opathogenic and enterohaemorrhagic E. coli were also

detected in a municipal isolate. This fact may be related to

the possible association of animal farms to the municipal

WWTP where W12 isolate was detected, as ruminants are

known to be important reservoirs of E. coli carrying intimin

gene (Blanco et al. ). This isolate also carried other viru-

lence determinants and was detected in both the influent and

effluent of the WWTP at different collection dates indicating

that WWTPs are not only inefficient concerning the elimin-

ation of virulent bacteria, but are also contributing to the

dissemination of strains carrying virulence-associated genes

in the environment.

The phylogenetic background of the strains was studied

as an indicator of the virulence potential of the isolates. E.

coli strains have been grouped into four different phy-

logroups (A, B1, B2 and D) according to their virulence

features. Virulent extra-intestinal strains belong mainly to
om http://iwa.silverchair.com/jwh/article-pdf/13/2/311/394726/jwh0130311.pdf
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group B2 and, to a lesser extent, to group D, while commen-

sal strains belong to groups A and B1 (Clermont et al. ).

Despite group A and B1 being considered less virulent,

strains from these phylogroups harbouring virulence factors

were detected in both municipal and hospital isolates. This

observation may indicate that even the bacteria considered

less virulent may be enhancing their virulent potential, poss-

ibly due to horizontal gene transfer of virulence traits.

In this study the international clone E. coli ST131 was

detected in the effluent of a hospital. The ST131 isolate

carried several pathogenic factors, including PAI IV536,

PAI ICFT073, PAI IICFT073, iutA, sfa/foc and papAH as well

as resistance determinants blaCTX-M-15, blaTEM, qnrS and

aac(60)-lb-cr and the IncF plasmid, a conjugative plasmid

that can easily be spread to other bacteria, and is known

for dissemination of blaCTX-M-15 and aac(60)-Ib-cr (Carattoli

; Partridge et al. ). ST131 displays both resistance

and virulence features which contribute to the success of

this international clone, which today is one of the most

adapted and efficient human pathogens (Johnson et al.

a, b). This clone was previously detected in the effluent

of a municipal WWTP in the Czech Republic (Dolejska et al.

) and in the influent of a WWTP in Catalonia, Spain

(Colomer-Lluch et al. ). However, to our knowledge,

this is the first finding in hospital WWTPs, highlighting the

crucial need for monitoring the efficiency of hospital

WWTPs.

The dissemination of bacteria carrying both resistance and

virulence determinants, such as ST131, constitutes an impor-

tant threat to public health and to the environment. Resistant

or pathogenic isolates when in contact with autochthonous

bacteria may be responsible for the dissemination of resistance

and virulence determinants among natural ecosystems by hori-

zontal gene transfer.
CONCLUSIONS

WWTPs constitute a potential mechanism of propagation of

resistant and pathogenic bacteria from sewage of diverse ori-

gins, into the environment, and may thus contribute to the

environmental dissemination of virulence and resistance

determinants which constitute an important public health

concern.
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