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ABSTRACT

Gundlakamma sub-basin faces challenges with increasing water demand and climate change impacts, requiring innovative solutions for sus-

tainable water management. The study was conducted to improve the long-term utilization of water resources in Andhra Pradesh. To

accomplish this, the study attempts to estimate LULC change detection and its impact on water resources by analyzing the performance

of the soil and water assessment tool (SWAT) model. From 2005 to 2021, the amount of cropland decreased while built-up land increased,

indicating urban growth. The SWAT model identifies hydrological processes and assesses the temporal and spatial distribution of water

resources in the watershed. Statistical parameters results reveal that a good match was found between actual and modeled flows with

Nash–Sutcliffe efficiency (NSE) and coefficient of determination (R2) greater than 0.75 for both calibration and validation periods. The area

has average annual precipitation, surface runoff, water yield, and actual evapotranspiration of 949.96, 215.6, 469.24, and 429.15 mm,

respectively. The SWAT model’s fascinating outcomes demonstrate that it could be a promising decision support tool for predicting water

balance and water yield in other watersheds of Andhra Pradesh for sustainable water management of water resources where water quality

and quantity are critical issues.
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HIGHLIGHTS

• The present study attempts to estimate LULC change detection and its impact on water resources by analyzing the performance SWAT

model.

• Land cover changes are influenced by human activities, environmental changes, and land-use decisions.

• The SWAT model’s fascinating outcomes demonstrate that it could be a promising decision-support tool for predicting water balance and

water yield in other watersheds of Andhra Pradesh.

1. INTRODUCTION

Water resource management is a critical issue in many parts of the world, particularly in countries dealing with rising popu-
lations, industrialization, and the negative effects of climate change. Anthropogenic activities are changing the properties of
watersheds, notably land cover, which has an impact on the complex biogeochemical processes at work in these settings. The
effective and integrated management of water resources in the face of changing land-use and climatic circumstances has

arisen as a major problem for many communities, both now and in the near future (Simonovic 2002). Licite et al. (2022)
advocate a shift in nutrient-rich organic soil management in agriculture toward targeted, research-based climate change miti-
gation practices. This approach aligns with national and international climate change mitigation targets, particularly in the

pursuit of climate neutrality goals. Faye (2022) suggests that drying trends already affect socioecological systems, leading to
reduced agricultural yields and land salinization. To mitigate the impact of future drought the necessity of concerted efforts
through water conservation measures is suggested, including effective water management policies and climate-smart agricul-

tural practices.
Changes in the physical, biological, and chemical characteristics of land and soil brought on by anthropogenic activity are

the main cause of land degradation (Braimoh & Vlek 2004; Korkanc et al. 2008; Emadodin et al. 2009; Yao et al. 2010).
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LULC changes can be used as indicators of ecological stress and can affect air pollution by modifying the interaction between

the Earth’s surface and the atmosphere (Sun et al. 2016). Notably, Landsat satellite remote sensing data, known for their high
spectral, geographical, and temporal resolutions, are critical for a variety of mapping and planning projects (Sadidy et al.
2009).

Hydrologic models distributed throughout space provide an effective tool for understanding the impact of land-use and cli-
matic factors on stream hydrology and surface water availability (Haverkamp et al. 2005). Such models, which are frequently
used at the watershed size, include the Hydrologic Simulation Programme Fortran (Holtan & Lopez 1971; HSPF 2001) and
the SWAT model (Arnold et al. 1998). The SWAT model has been regularly utilized to examine the effects of LULC changes

on surface water resources worldwide (Rathjens et al. 2015; Zhang et al. 2017; Gashaw et al. 2018; Abbaszadeh et al. 2023)
and in India (Kushwaha & Jain 2013; Nagraj et al. 2018; Bera & Maiti 2021).

Water balance modeling is an important technique in water resource management since it allows for the simulation of a

region’s water balance, including precipitation, evapotranspiration (ET), water withdrawal, and the identification of surplus
and deficit areas. The SWAT model gives a complete knowledge of watershed behavior over space and time by integrating
meteorological data, soil parameters, vegetation characteristics, and land-use dynamics. This model proves invaluable in

the face of escalating environmental challenges and the growing demands on water resources, serving as a critical tool for
researchers and stakeholders navigating the intricacies of sustainable watershed management.

Wang et al. (2019) reviewed the SWAT model, confirming its effective simulation of long-term hydrological processes.

However, consistent with previous studies, accuracy declines with shorter time steps, particularly in daily runoff simulations.
Despite this, the SWAT model shows promise for improvement to enhance water cycle simulation, aid water resources sche-
duling decisions, and support effective water resources management.

Hari et al. (2019) carried out a study on the simulation of water resources in the Gundlakamma sub-basin, and it was found

that the maximum and minimum reservoir outflow in 2010 were 28.94 and 171.03 m³/s, respectively. The average annual
surface runoff and actual ET were reported as 210.67 and 404.20 mm, respectively. These values varied with land use and
land cover (LULC) patterns. The peak reservoir outflow occurred in October, which was attributed to the increased urban-

ization, causing higher surface runoff and reduced infiltration in the sub-basin.
Hari et al. (2020) used the SWAT model to investigate how changes in land-use cover affect water resource availability in

the Gundlakamma sub-basin. Statistical parameters of the SWAT model such as NSE and R2 values were 0.79 and 0.87

during calibration, and 0.65 and 0.72 during validation, respectively. The simulated and observed values of reservoir outflow
showed a good degree of agreement during both the calibration and validation phases.

Human activities have a significant impact on water resources in the Gundlakamma watershed, which is mostly driven by
shifting land use. Water quality and quantity changes in the watershed are intimately linked to changes in land-use practices,

particularly the increased entry of chemicals into streams from agricultural and urban sources. Due to increasing population,
industrialization, and the impending shadow of climate change, the Gundlakamma sub-basin, a critical water supply for sur-
rounding areas, faces complex management difficulties. Geo-informatics emerges as a powerful tool in this context, providing

insights into water resource optimization. The area under study is experiencing drought conditions. However, the utilization
of the SWAT model in estimating the available water resources in the area has not been thoroughly explored. Despite the
importance of this, there has been a lack of in-depth simulation research conducted on the Gundlakamma watershed. The

authors of this study have attempted, for the first time, to conduct a comprehensive study of the water resources available
in the Gundlakamma sub-basin using the SWAT model.

As a result, a robust SWAT simulation of water quantity has the potential to offer insight into the implications of land-use

changes in this region, especially given the significant urban development that is occurring. The main objective of the present
study encompasses evaluating the impact of LULC changes on water resources, simulating streamflow, and water balance
components to gauge the water resource status, and projecting annual water quantities under diverse urban land-use
change scenarios. This study, crucial in managing natural resources for sustainable watershed development, identifies aquifer

recharge and saturated hydraulic conductivity as key parameters for simulating water yield. The results of the present find-
ings indicate that climate change poses a threat to water resources, emphasizing the need for future research to assess its
impact on impervious land use and overall water quantity. The outcomes of this research could lead to the use of SWAT

and other methods that impacted agricultural watersheds within Andhra Pradesh. Ultimately, the findings have the power
to assess the applicability of such tools under varying watershed conditions and data availability for water resource manage-
ment purposes.
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2. MATERIALS AND METHODS

2.1. Study area

The Gundlakamma sub-basin rises in the Kurnool region, close to Istkagundam. It is situated between latitudes 15° 500

59.166″ to 15° 290 27.166″ N and longitudes 79° 380 7.794″ to 80° 110 24.858″ E (Figure 1) and has an elevation of
around 600 m from the eastern Nallamala Hills. The area between the Krishna and Pennar sub-basins covers 24,669 km2,
with 41 watersheds, 15 of which belong to the Gundlakamma sub-basins. The study focused on an area of 8,494 km2. The

Figure 1 | Study area location map of Gundlakamma sub-basin, Kurnool region Andhra Pradesh.
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Gundlakamma sub-basin faces challenges with increasing water demand and climate change impacts, requiring innovative

solutions for sustainable water management. According to the Census of India (2011), the sub-basin formed by the east-flow-
ing rivers between Krishna and Pennar covers four districts: Prakasam, Kurnool, Guntur, and Nellore, with a total population
of 227,528.

2.2. Geomorphology

The physical landscape and hydrology of the Gundlakamma sub-basin are shaped by its geomorphology. The sub-basin has

varying elevations, including hills, mountains, valleys, and plains, which affect water flow patterns, drainage networks, and
erosion processes. Understanding the distribution of slopes is crucial for assessing soil erosion and sedimentation processes in
the area. The geomorphology of the area is given in Figure 2.

The geomorphological history of the Gundlakamma sub-basin can provide valuable insights into its geological past, hydro-
logical behavior, and susceptibility to environmental processes. Human activities like deforestation, urbanization, and
agriculture can significantly alter the natural geomorphology of a region, affecting erosion rates, sediment transport, and over-

all landscape stability. The knowledge of these factors is crucial for effective water resource management, land-use planning,
and environmental conservation within the sub-basin.

2.3. Climate and rainfall

The city has a mildly tropical atmosphere with an average high temperature of 47 °C in May and a low temperature of 14 °C in
January. The monsoon season starts in the second week of June, with heavy rainfall in July and August. By the end of

Figure 2 | Geomorphology map of the area.

Journal of Water and Climate Change Vol 15 No 2, 852

Downloaded from http://iwa.silverchair.com/jwcc/article-pdf/15/2/849/1376271/jwc0150849.pdf
by guest
on 09 April 2024



September, the monsoon retreats, and around 88% of rainfall occurs from June to September. Excess water is available for

deep percolation into groundwater during the monsoon.
Mann &Gupta (2022) worked on temporal trends of rainfall and temperature and found that local factors, including moun-

tain summit characteristics, relief, and apexes, significantly influence rainfall. Variations in both rainfall and temperature

arise from internal epochal variability and broader climatic factors. Recent changes are attributed to global warming and
anthropogenic factors like rapid urbanization, altering rainfall, and temperature patterns.

Rainfall data from 2002 to 2019 in the Gundlakamma sub-basin were collected and statistically analyzed (www.indiawris.
gov.in). The result reveals an average annual rainfall of 930 mm, with a standard deviation of 208 mm and a coefficient of

variation of 22.2% (Table 1). The highest rainfall was recorded in 1990 and reached its lowest in 2018. The result of rainfall
analysis identifies six drought periods over 33 years, as annual rainfall dips below a 10% reduction from the normal rainfall of
853 mm (Figure 3). The data suggest that droughts occur in the area every 5 years.

2.4. Drainage map

Stream order categorizes streams based on hierarchical position within a drainage network. Drainage data reveal the stream
length distribution by order, with larger and more significant streams forming from the convergence of smaller streams. This

information is essential to comprehend the overall structure and characteristics of a river system or watershed. The stream
orders 1, 2, 3, 4, and 5 have a total length of 960, 548, 231, 107, and 136 km, respectively (Figure 4). The Gundlakamma
sub-basin has a particular drainage pattern that determines how water is distributed across its landscape, featuring valleys,
ridges, plateaus, hills, and possibly even erosional or depositional landforms caused by water flow and sediment transport.

The sub-basin comprises the Palleru River, Musi, and Utla Vagu River tributaries, which contribute to the Gundlakamma
River.

2.5. Digital elevation model and slope

A digital elevation model (DEM) is a digital representation of the ground surface topography. The topographic data used for
DEM were taken from the USGS website in the form of SRTM. The SRTMDEMwas clipped to retrieve elevation data within
the vector polygon boundary file of the area (Figure 5). DEM processing and slope calculations were performed using ArcGIS

10.7. The altitude varies from 2 to 921 m above mean sea level (AMSL). In general, the western part of the area shows higher
elevations with steep slopes. The lower elevation of the area is observed in the eastern part of the area with a gentle slope. The
general flow of the basin is from west to east.

Slope refers to the steepness of the terrain in a specified area and is measured in degrees to indicate how much the elevation
changes over a given horizontal distance. The slope of the area ranges from 2° to 15° (Figure 6). Different slope classes in
degrees of the area are presented in Table 2. The majority of the area, about 83.7%, has a slope range of less than 2%.
The steepness of slopes affects the speed of water runoff, erosion rates, and sediment deposition. In areas with steeper

slopes, erosion might be more significant, leading to sediment transport downstream.

2.6. Soil map

In the study area, soil characteristics are distributed allowing for an understanding of soil types, erosion levels, productivity,

slopes, and textures present in the region. Soil data were collected from www.indiawris.gov.in and soil characteristics of the
area are presented in Table 3.

The majority of the area shows moderate erosion, followed by none to slight, severe, and very severe erosion. About 68.5%

of the area has deep/moderately deep depth of more than 50 centimeters, while shallow, very shallow, and extremely shallow
soil depth is present in the remaining area. About 45.2% of the total area has highly productive soil, while 25.2 and 24.9% of
the soil exhibit low and moderate productivity, respectively. In terms of slope, the area has a gentle slope of 3–8% for 41.4% of
the area and is nearly level (0–1%) for 42.1% of the total area. Soil texture of the area is characterized by clay, loamy clay,

sandy clay, silty clay, and sandy clay for about 70.9% of the total area, while loam, silt loam, silt, and sandy loam make up
20.2% of the total area.

2.7. Land use land cover mapping

A land use land cover (LULC) map was created for the years 2005, 2010 and 2021 by acquiring remote sensing data such as
Landsat SRTM data (https://earthexplorer.usgs.gov) and Sentinel 2 (https://www.arcgis.com/apps). These data were geo-
referenced, digitized, and systematically classified to accurately depict the various types of LULC classes in a given area.
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The process often combines remote sensing data, Geographic Information System (GIS), and field validation. ArcGIS 10.7

was used to resample image 2005 and Shuttle Radar Topography Mission (SRTM) elevation data into 10 m grid cells.
Additional datasets include a topographic map, road network, rivers, water bodies, and specified areas. Landsat pictures
were obtained without distortion. All processed datasets used WGS 1984 and UTM Zone 44 P as spatial references. Imagery

Table 1 | Statistical analysis of annual rainfall of Gundlakamma sub-basin

Year Actual rainfall (mm) X Normal rainfall (mm) Y Departure (X/Y )� 1 Cumulative Dep. X�Y (X�Y )2

1990 1,265 853 0.48 �0.05 411.91 16,9670

1991 1,111 853 0.30 0.25 258.07 66,600

1992 774 853 �0.09 0.16 �78.11 6,101

1993 945 853 0.11 0.27 92.33 8,525

1994 973 853 0.14 0.41 120.57 14,537

1995 954 853 0.12 0.53 101.20 10,241

1996 1,140 853 0.34 0.87 287.85 82,858

1997 1,146 853 0.34 1.21 293.36 86,060

1998 1,040 853 0.22 1.43 187.23 35,055

1999 647 853 �0.24 1.19 �205.18 42,099

2000 1,082 853 0.27 1.46 229.33 52,592

2001 910 853 0.07 1.53 57.22 3,274

2002 659 853 �0.23 1.30 �193.74 37,535

2003 793 853 �0.07 1.23 �60.09 3,611

2004 855 853 0.00 1.23 2.63 7

2005 1,030 853 0.21 1.44 177.56 31,528

2006 1,107 853 0.30 1.74 254.68 64,862

2007 1,114 853 0.31 2.05 261.77 68,524

2008 1,099 853 0.29 2.33 246.26 60,644

2009 808 853 �0.05 2.28 �44.65 1,994

2010 950 853 0.47 2.75 397.41 157,935

2011 661 853 �0.23 2.52 �192.00 36,864

2012 961 853 0.13 2.65 108.36 11,742

2013 1,029 853 0.21 2.86 176.11 31,015

2014 589 853 �0.31 2.55 �263.20 69,274

2015 798 853 �0.06 2.48 �54.38 2,957

2016 685 853 �0.20 2.29 �167.29 27,986

2017 752 853 �0.12 2.17 �101.00 10,201

2018 521 853 �0.39 1.78 �331.11 109,634

2019 866 853 0.02 1.80 12.99 169

2020 1,086 853 0.27 2.07 233.90 54,709

2021 1,005 853 0.18 2.25 152.61 23,290

2022 1,020 853 0.20 2.45 167.83 28,167

Minimum 521

Maximum 1,265

Average 930

Standard deviation 206.7

Coefficient of variation 22.2%
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was preprocessed by removing distortions, atmospheric effects, and applying radiometric corrections. Techniques like histo-
gram equalization, contrast modification, and band combination were employed to identify LULC classes based on their

spectral traits and patterns for improved visual interpretation. Supervised classification used methods like support vector
machines (SVM) or random forests to classify each pixel into distinct LULC classes. Relevant labels were assigned based
on actual data or field experience and gather real-world information by conducting field research or using high-resolution

images for verification. In the present study, LANDSAT satellite images from 2005, 2015, and 2021 were used, with a
decade gap between each image.

2.8. SWAT model

To resemble both the quality and quantity of water resources of a river basin, a SWAT was developed by the USDA Agricul-

tural Research Service in 1990. It foresees how land use and management decisions will affect water supplies (Arnold et al.
1998). SWAT is a hydrological and water quality model that routes water, sediments, and nutrients from sub-watersheds to
mainstream watersheds. It forecasts how changing land use and management circumstances will affect water, sediment, and
chemical yields in distinct basins over time.

The SWAT models the hydrological cycle using the water balance equation (Equation (1)) (Neitsch et al. 2005).

SWt ¼ SWo þ
Xt

i¼1

(Rday þ Qsurf � Ea �Wseep �Qgw) (1)

Water yield, hydrological response units (HRUs), and entering the principle channel during a time step, are critical par-
ameters for sustainable water resource management. The following equation is used to evaluate water yield within a

watershed (Arnold et al. 2011).

Wyld ¼ Qsurf þQgw þQlat � Tlos (2)

Figure 3 | A comparison of annual rainfall with a 10% reduction in normal rainfall.
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For the estimation of the surface runoff equation, the following equation can be used

Qsurf ¼
(Rday þ 0:2S)2

(Rday þ 0:8S)
(3)

The retention parameter S was determined by the following equation

S ¼ 25:4
100
CN

� 10
� �

(4)

The prediction of lateral flow was measured by the following equation

Qlat ¼ 0:024
(2SSC sina)

udL
(5)

The base flow was estimated by the following equation

Qgjw ¼ Qgjw�1:e
(�agw4t) þQrchrg:(1� e(�agw4t)) (6)

Figure 4 | Stream ordering of the study area.
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Table 4 displays the notation and terminology used in the aforementioned equations.

2.8.1. Data input

The primary channel network of the sub-basin is where the impoundments are known as Gundlakamma reservoirs. They are
loaded from all upstream sub-basins, and the SWAT model can be used to simulate inflow, outflow, and sedimentation. For
the SWATmodel, LULC, soil, IMD gridded weather, and DEM data were taken from https://swat.tamu.edu/data/india-dataset/

. The Kandula Obula Reddy Gundlakamma Reservoir Project was built on the Gundlakamma River near Chinnamallavaram
Village in Maddipadu Mandal, Prakasam District, Andhra Pradesh. Mean monthly reservoir outflow data were collected from
the Office of Chief Engineer, Ongole and Prakasam district from 1 January 2010 to 31 December 2022. Before running the

SWAT executables for model calibration and validation, we ensure that all necessary files for simulating SWAT have been
prepared and appropriate weather sources have been selected. The Arc-SWAT requires basic ArcGIS 10.7 compatible
maps including DEM elevation slope maps, LULC maps for 2005, 2010, and 2015, geomorphology, and drainage network

ordering of streamline. The interface requires access to ArcGIS-compatible raster and vector datasets, as well as database
files including watershed data, in order to construct a SWAT dataset. Daily rainfall data for the study area were available
for 33 years (1990–2022).

2.8.2. Calibration and validation of the SWAT model

The simulation ran for a total of 13 years from 2010 to 2022 from the outlets of the Gundlakamma sub-basin (Figure 1). The
calibration phase for the SWAT simulation was 2010–2017, while the validation period was 2018–2022 sub-watersheds.

Figure 5 | DEM of the area.
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Parameter adjustment was performed only during the calibration period, while the validation process involved executing the

model using the previously calibrated input parameters for different time periods. The water balance and streamflow were
calibrated for average monthly conditions, followed by the calibration of several SWAT hydrologic parameters. The SWAT
Calibration Uncertainty Program (SWAT-CUP) is an interface that connects with SWAT models to undertake sensitivity

analysis, calibration, validation, and uncertainty analysis in hydrological models. It is a combination of algorithms including
sequential uncertainty fitting 2 (SUFI-2), particle swarm optimization (PSO), generalized likelihood uncertainty estimation
(GLUE), solution parameters (ParaSol), and Mark Chain Monte Carlo (MCMC), and assess the adequacy of SWAT

Figure 6 | Slope of the area in degrees.

Table 2 | Different slope classes in degrees of area

Slope (degree)

Area

in sq. km in percentage (%)

,2 6,600 83.7

2–5 870 11.04

5–10 381 4.8

10–15 35 0.44
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calibration using coefficient of determination (R2) and NSE. The R2 number measures the correlation between observed and

simulated values, while the NSE value evaluates model performance by measuring the agreement between measured and
simulated values. A model’s prediction is deemed acceptable if both R2 and NSE are greater than 0.5 for NSE (Moriasi
et al. 2007).

3. RESULTS AND DISCUSSION

3.1. LULC change detection

Deforestation, biodiversity loss, and desertification are all caused by the degradation of LULC. The study assessed the LULC
deterioration in the study area from 2005 to 2021 using remote sensing indices and LULC change detection. The focus was on
natural vegetation changes, urban expansion, soil deterioration due to industrial operations, and surface water body degra-

dation. The major seven LULC classes were identified (Table 5). A study was carried out by Hari et al. (2020) and
Kesanapalli et al. (2018) on the change of LULC patterns in the Gundlakamma sub-basin, and their studies reported a sig-
nificant increase in urbanization over time.

The LULC maps for 2005, 2015, and 2021 are shown in Figures 7(a)–7(c), respectively. Pie diagrams showing the LULC
classification in sq.km of 2005, 2015, and 2021 are given in Figures 8(a)–8(c). The dominant area was covered by the crop
land followed by the deciduous needleleaf, mixed forest, built-up land, and water body in 2021.

Table 3 | Soil characteristics of the study area (source: www.indiawris.gov.in)

Soil characteristics

Area

in sq. km in percentage (%)

Soil depth

Deep/moderately deep (depth .50 cm) 5,815.4 68.5

Extremely shallow (,10 cm) 56.7 0.7

Shallow (25–50 cm) 2,102.0 24.8

Very shallow (10–25 cm) 516.1 6.1

Soil erosion

Moderate 3,822.0 45.0

None to slight, slight 2,869.7 33.8

Severe 1,741.9 20.5

Very severe, gullied 56.7 0.7

Soil productivity

Highly productive 3,841.5 45.2

Low productive 2,137.4 25.2

Moderately low productive 339.5 4.0

Moderately productive 2,115.1 24.9

Soil slope

Gently sloping (3–8%) 3,510.8 41.4

Moderately sloping (8–15%) 1,349.9 15.9

Moderately steep sloping (15–30%) 56.7 0.7

Nearly leveled (0–1%) and very gently sloping (1–3%) 3,573.0 42.1

Soil texture

Clay, loamy clay, sandy clay, silty clay, sandy clay 6,020.6 70.9

Loam, silt loam, silt, sandy loam 1,717.3 20.2

Loamy sand, sand 695.7 8.2

Rocky, other non-soil categories (built-up, water body 56.7 0.7
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A bar diagram showing the change detection in LULC from 2005 to 2021 is given in Figure 9. Cropland refers to land used for
growing crops, while built-up land includes areas developed for urban use, such as residential, commercial, and industrial
zones. From 2005 to 2021, the amount of cropland and built-up land increased, indicating urban growth and development.
Deciduous needleleaf forests are mostly composed of trees with needlelike leaves that lose their leaves seasonally. From

2015 to 2021, the area of this forest type has significantly decreased due to various factors such as deforestation, urbanization,
agricultural practices, changes in vegetation composition, and environmental changes in the area. Mixed forests are a combi-
nation of different tree species, including deciduous and coniferous trees. The area of mixed forests has decreased over time due

to deforestation, land conversion, and natural disturbances. Barren land refers to areas with sparse or no vegetation. The
decrease in its coverage from 2005 to 2021 could be due to changes in land use, reclamation efforts, or natural vegetation
regrowth. Fallow land is agricultural land left unplanted for an extended time. The area of fallow land has decreased from

301 km2 in 2005 to 1.5 km2 in 2021, indicating changes in agricultural practices. This result is supported by the increase in

Table 4 | Notation and terminology used in the above equations

Notation Terminology

SWt Final soil water content (mm)

SWo Initial soil water content (mm) in day i

T Time in days

Rday Precipitation (mm) in day i

Qsurf Surface runoff (mm) in day i or rainfall excess

Ea Amount of ET (mm) in day i

Wseep Water entering the vadose zone from the soil profile (mm) on day i

Qgw Groundwater discharge in day i or groundwater contribution to streamflow (mm)

Wyld Water yield (mm)

CN Soil curve number

Qlat Lateral flow (mm/day)

Θd Drainable porosity

Tloss Transmission losses (mm)

S Retention parameter (mm)

SC Hydraulic conductivity (mm/h)

L Flow length

Α Slope of the land

Table 5 | Change detection in major LULC classes from 2005 to 2021

Land-use land cover classification

2005 2015 2021

Area Area Area

Sq. km % of convergence Sq. km % of convergence Sq. km % of convergence

Cropland 4,799.7 56.9 5,246.4 62.2 5,303.8 62.9

Built-up land 51.2 0.6 249.1 3.0 289.1 3.4

Deciduous broadleaf forest 2,202.8 26.1 2,442.4 30.1 2,063.7 24.5

Mixed forest 622.1 7.4 330.7 3.9 608.4 7.2

Barren land 53.8 0.6 2.8 0.03 12.4 0.15

Fallow land 301.3 3.6 4.0 0.05 1.5 0.02

Water bodies 407.7 4.8 163.2 0.7 160.0 1.9

Total 8,438 100 8,438 100 8,438 100
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agricultural areas over time. Water bodies, both natural and man-made, like lakes, rivers, and reservoirs, have decreased from

407.7 km2 in 2005 to 160 km2 in 2021, possibly due to climate change, water management, and human activities. Land cover
changes are influenced by human activities, environmental changes, and land-use decisions, resulting in changes in different
categories over time in the studied region. The region has seen significant economic growth and an increase in mining activity,
which, combined with population growth and industrialization, has put significant strain on the environment.

A similar study was conducted by Kesanapalli et al. (2018) on land use/land cover (LU/LC) pattern and it reported five
major land-use classes such as agricultural land followed by forest, barren land, built-up land, and water bodies for the Gun-
dlakamma sub-basin.

3.2. SWAT model

3.2.1. Model calibration and validation

A SWAT model was set up using the dataset of the Gundlakamma sub-basin to simulate total water yield from 2010 to 2022.
The model was calibrated using reservoir outflow data. Four years of discharges (2010–2014) were used for calibration, with

Figure 7 | (a) LULC classification of the area 2005, (b) LULC classification of the area 2015, and (c) LULC classification of the area 2021.
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the first 8 years (2010–2017) for model warm-up. In calibration, both manual and auto-calibration techniques were employed
in adjusting parameters to align with observed data. Auto-calibration, utilizing SWAT-CUP with the SUFI-2 algorithm, itera-
tively refined parameters to enhance the model’s alignment with observed values. After the calibration process, model

Figure 8 | (a) Pie diagram showing the LULC classification in sq.km of 2005, (b) Pie diagram showing the LULC classification in sq.km of 2015,
and (c) Pie diagram showing the LULC classification in sq.km of 2021.

Figure 9 | Bar diagram showing the change detection in LULC from 2005 to 2021.
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validation (2018–2022) involved testing the calibrated model by comparing its predictions against field observations, the

subset of data not utilized during calibration. This evaluation was conducted without altering any input parameter values.
Figure 10 shows monthly comparisons of measured and simulated streamflow during calibration and validation periods. A

comparison of simulated and observed monthly discharges of calibration periods and validation period is shown in Figure 11.

The model has a strong predictive capability with R2 values of 0.81 and 0.790, and NSE values of 0.795 and 0.785 for cali-
bration and validation periods, respectively (Table 6). These results confirm that the SWAT model performed well in this sub-
basin, meeting the statistical model efficiency criteria of R2. 0.6 and NSE. 0.5 (Moriasi et al. 2007).

The SWAT model estimates important water balance components including water yield, soil water content, and actual ET

of the sub-basin for efficient water management and planning. The LULC map has been prepared for 2005, 2015, and 2022,
with details presented in Table 5. Land-use changes affect water yield and availability in the sub-basin. Average annual basin
values of different components of water balance are presented in Table 7.

Guug et al. (2020) applied the SWAT hydrological model to assess water availability, revealing a crucial understanding of
catchment water, especially surface runoff and percolation tank dynamics. The study emphasized the significance of percola-
tion tanks, indicating that the shallow aquifer holds extractable water with low input costs during dry seasons. Additionally,

findings suggested the potential capture of significant surface runoff through well-designed water harvesting structures like
dams and ponds for dry-season irrigation and various purposes.

Figure 10 | (a) Monthly discharges simulated and observed during calibration periods; (b) monthly discharges simulated and observed during
validation periods.

Figure 11 | (a) A comparison of simulated and observed monthly discharges of calibration periods; (b) a comparison of simulated and
observed monthly discharges of validation periods.
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The average monthly values of water balance components of 2010 and 2021 are presented in Table 8. Hydrological par-
ameters such as percolation, surface flow, and groundwater contribution to flow indicate a relationship with precipitation.
The actual ET values were estimated based on climatic data, available water content in the root zone, and soil properties.

Table 8 | Average monthly basin values of different components of water balance

Year Months Rainfall (mm) Surface runoff (mm) Water yield Actual ET (mm)

2010 Jan 5.99 1.75 29.5 27.7
Feb 0 0 26.5 28.7
Mar 1.43 0.5 27.14 18.1
Apr 10.46 7.95 26.6 15.75
May 70 15.1 33.9 28
Jun 113.52 29.5 53.6 47.9
Jul 95 17.5 37.1 37
Aug 150 32.3 45.2 43
Sep 166.29 35.5 46.9 45
Oct 180.27 42.5 70.5 68
Nov 85 17.5 37.1 41
Dec 72 15.5 35.2 29
Total 949.96 215.6 469.24 429.15

2021 Jan 7.68 3 30.1 28.95
Feb 14.92 4.2 30.5 29.95
Mar 0 0 27.5 28.5
Apr 17.78 4.5 30.9 30.12
May 52.95 16.35 35.15 32.5
Jun 46.73 15.5 35.9 32.8
Jul 150.85 37.5 54.5 38.25
Aug 138.06 35.2 52.5 44.25
Sep 113.91 31.5 48.15 41.25
Oct 96.82 25.2 39.5 36.5
Nov 347.46 55.5 65.5 62.5
Dec 18.04 4.5 30.4 30.1
Total 1,005.2 232.95 480.6 435.67

Table 6 | R2 and NSE values of SWAT simulated versus observed calibration and validation

Statistical parameters Monthly calibration (2010–2017) Monthly validation (2018–2022)

NSE 0.795 0.81

R2 0.785 0.790

Table 7 | Average annual basin values of different components of water balance

Parameters

Years

2010 2021

Precipitation 950 1,005.2

Surface runoff 215.6 232.95

Lateral flow through soil 7.85 8.78

Groundwater (shallow aquifer) 49.5 50.6

Deep aquifer recharge 170 178.9

Actual evapotranspiration 429.5 435.67
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In 2010, the average annual precipitation, surface runoff, water yield, and actual ET were 949.96, 215.6, 469.24, and

429.15 mm, respectively. The maximum surface runoff contribution to flow was 42.5 mm in October, coinciding with the
highest rainfall of 180.27 mm. Hydrological parameters such as percolation, surface flow, and groundwater contribution to
flow showed a good relationship with precipitation. ET rates are highest from April to August due to vegetation and high

temperatures. The hydrological process was quantified for each year in the study area to determine the water balance contri-
bution to the overall annual average.

The analysis involved examining 10 input parameters using the SUFI-2 algorithm and SWAT_CUP to determine their sen-
sitivities. In the Gundlakamma sub-basin, three input parameters in the SWAT model were found to be the most sensitive.

These parameters include delay time (GW_Delay.gw) for aquifer recharge (days), saturated hydraulic conductivity
(SOL_K.sol) in millimeters per hour, and available water capacity (SOL_AWC.sol). These findings align with Wang et al.’s
(2019) observations, highlighting the potential of the SWAT model to improve the water cycle simulation, assist in water

resource scheduling decisions, and support effective water resource management. A similar observation was reported by
Hari et al. (2019) and Hari et al. (2020) in the Gundlakamma sub-basin.

This work is comprehensive but not exhaustive, offering valuable insights for future researchers, particularly in ground-

water flow and solute transport modeling. Further research is needed in the region on soil geochemistry and its
connection with groundwater, as well as stable O and H isotope studies, to identify the recharge zones, and establish their
relationship with hydrogeochemical parameters. The present study encompasses evaluating the impact of LULC changes

on water resources by utilizing the SWAT model. The SWAT model faces limitations, particularly in the reliability of stream-
flow simulation outcomes, which may not be adopted directly in decision-making processes. To address these challenges,
there is a compelling need to develop a comprehensive SWAT-Paddy module.

4. CONCLUSIONS

The hydrological analysis confirmed that Kurnools basin has low relief and an elongated shape. The dendritic drainage net-

work indicates uniform texture and lack of structural control, aiding the understanding of topographical parameters such as
bedrock properties and permeability. The result of rainfall analysis identifies six drought periods over 33 years, as annual rain-
fall dips below a 10% reduction from the normal rainfall and the study area is facing the drought conditions in the area every

5 years. The slope is crucial in determining penetration and runoff. Infiltration is negatively correlated with slope. Gentle
slopes have higher permeability and less runoff, while steep slopes have lower permeability and more runoff. GIS, remote
sensing data, and digital elevation models can effectively analyze topographical parameters such as bedrock properties
and surface runoff to better understand land formation, drainage management, and groundwater potential in watershed plan-

ning and management. Based on LULC, the dominant area was covered by cropland followed by the deciduous needleleaf,
mixed forest, built-up land, and water bodies in 2021. Between 2005 and 2021, there was a reduction in cropland and a sim-
ultaneous increase in built-up land, signaling urban expansion. Land-use changes affect water yield and availability in the sub-

basin. Land cover changes are influenced by human activities, environmental changes, and land-use decisions, resulting in
changes in different categories over time in the studied region. The region has seen significant economic growth and an
increase in mining activity, which, combined with population growth and industrialization, has put significant strain on

the environment. In calibration, both manual and auto-calibration techniques were employed in adjusting parameters to
align with observed data. The model has a strong predictive capability with R2 values of 0.81 and 0.790, and NSE values
of 0.795 and 0.785 for calibration and validation periods, respectively. The Gundlakamma sub-basin had average annual pre-

cipitation, surface runoff, water yield, and actual ET was 949.96, 215., 469.24, and 429.15 mm, respectively. The maximum
surface runoff contribution to flow was 42.5 mm in October, coinciding with the highest rainfall of 180.27 mm. Hydrological
parameters such as percolation, surface flow, and groundwater contribution to flow showed a good relationship with precipi-
tation. ET rates are highest from April to August due to vegetation and high temperatures. The hydrological process was

quantified for each year in the study area to determine the water balance contribution to the overall annual average. In
the Gundlakamma sub-basin, three input parameters in the SWAT model were found to be the most sensitive, including
delay time for aquifer recharge (days), saturated hydraulic conductivity in millimeters per hour, and available water capacity

(SOL_AWC.sol). This study is crucial in managing natural resources for sustainable watershed development and identifies
aquifer recharge and saturated hydraulic conductivity as key parameters for simulating water yield. The results of the present
findings indicate that climate change poses a threat to water resources, emphasizing the need for future research to assess its
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impact on impervious land use and overall water quantity. The outcomes of this research could lead to the use of SWAT and

other methods that impacted agricultural watersheds within Andhra Pradesh.
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