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ABSTRACT

The study is carried out to investigate the surface runoff depth with changing precipitation due to climate change in the study area where

sandy loam and loamy soil are dominant. In this study, future rainfall is projected by a statistical downscaling model (SDSM) using a set of

predictors derived from a Coupled Model Intercomparison Project Phase 6 (CMIP6) global climate model (GCM) [the Norwegian Earth System

Model (NorESM)] with updated scenarios SSP 4.5 and SSP 8.5. Daily rainfall values for the observed period (1981 to 2014) are validated using

statistical learning and evaluated with matrices, namely, root mean square error (RMSE), coefficient of correlation, and Nash–Sutcliffe effi-

ciency (NSE), which are found to be valid for further predictions. Rainfall projections show a decrease in rainfall trend of 50% from 2030

to 2040 for scenario SSP 4.5 and an increase of 7% from 2040 to 2050. Predicted rainfall for scenario SSP 8.5 shows a similar trend of decreas-

ing rainfall of 24% for the period 2030–2040 and an increase of 19% in the period 2040–2050. Furthermore, these rainfall values are spatially

modelled in a geographic information system (GIS) and rainfall maps are obtained. The obtained rainfall map, land-use map, and soil map are

overlaid to compute curve numbers and runoff depths. A similar trend of decrease in runoff is observed for the period 2030–2050. The overall

trend of climate change shows a water-stressed scenario.
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HIGHLIGHTS

• The study downscaled a CMIP6 GCM to evaluate the effect of climate change on rainfall.

• The study conducts hydrological assessments to predict surface runoff for future scenarios.

• The SDSM model, when subjected to statistical learning analysis, shows good performance in simulating rainfall values.

• The study predicts a decrease in rainfall and runoff in the years 2030, 2040, and 2050.

• Machine learning-boosted SDSM is a strong tool.
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GRAPHICAL ABSTRACT

1. INTRODUCTION

Surface runoff is an important hydrological parameter for water management and storage. Surface runoff refers to the move-

ment of water on the surface resulting from precipitation. The most studied problem in hydrology is the prediction of runoff
depth, which is influenced by rainfall predictions. The statistical downscaling model (SDSM) offers significant reliability, pro-
vides efficient results, and is a widely established model for statistical downscaling of climatic data (Phuong et al. 2020; Ma

et al. 2022; Mahdaoui et al. 2023). Statistical downscaling involves establishing a relationship between large-scale climatic
models and regional/local-scale climatic models. These large-scale climatic models are derived from Global Climate
Models (GCMs), also known as ‘predictors’. The GCMs represent the spatial distribution of climate variables across the
Earth’s surface by dividing it into grid cells. Data from GCMs provide a comprehensive understanding of the past, current,

and future climates. The regional or local climate variables are known as ‘predictands’ (Wilby & Dawson 2013). Once the
GCMs perform well in establishing a relationship with the Regional Circulation Models (RCMs), they are subjected to simu-
lation for future scenarios. The Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6) has new

versions of the Coupled Model Intercomparison Project (CMIP), with updated scenarios called SSP1-2.6, SSP2-4.5, SSP4-6.0,
and SSP5-8.5. The Shared Socioeconomic Pathways (SSPs) are predicated upon five distinct narratives that elucidate over-
arching socioeconomic patterns capable of exerting influence over the trajectory of future societies. The present set of

scenarios has been designed to encompass a comprehensive spectrum of potential future outcomes.
In contrast to weather forecasts, which provide a comprehensive depiction of the anticipated daily progression of atmos-

pheric conditions commencing from the current moment, climate models adopt a probabilistic approach (www.climate.gov).

Many researchers have used statistical prediction approaches in their studies to better analyze different climate-related par-
ameters such as drought, catchment modelling, land susceptibility, agricultural production, and soil erosion trends
(Huntingford et al. 2005; Meenu et al. 2013; Chuenchum et al. 2020; Hürlimann et al. 2022). Ma et al. (2022), who compared
downscaled climate projections, namely, for precipitation and temperature, state that SDSM results are more efficient com-

pared with the Long Ashton Research Station Weather Generator (LARS-WG). Kreienkamp et al. (2020) analyze the
difference between CMIP5 and CMIP6 GCMs. Precipitation changes are reportedly less dramatic, and they only differ signifi-
cantly on a seasonal basis. In another study, Verma et al. (2023) compared the performance of CMIP5 and CMIP6 GCMs. It

is reported that CMIP6 GCMs provide a reduced margin of error for future climate prediction and more reliability for analysis
of the hydrological effects. Hussain et al. (2015) state the need to improve the correlation between predictor and predictand
for model performance. Kumar et al. (2023) conduct a comparative analysis of various machine learning techniques and

Journal of Water and Climate Change Vol 15 No 2, 760

Downloaded from http://iwa.silverchair.com/jwcc/article-pdf/15/2/759/1376009/jwc0150759.pdf
by guest
on 10 April 2024

http://www.climate.gov


suggest adopting an ensemble approach to improve the quality of prediction. Doulabian et al. (2021) report uncertainty in

projected precipitation assessed using 25 GCMs. Nasidi et al. (2021) validate the modelled precipitation by the coefficient
of determination, Nash–Sutcliffe efficiency (NSE), percent bias, root mean square error (RMSE), standard error, and
mean absolute error.

The runoff curve number is an empirical parameter used to compute the runoff. The curve number method was initially
formulated by the United States Department of Agriculture (USDA) Natural Resources Conservation Service, previously
known as the Soil Conservation Service (SCS). In scholarly literature, it is commonly referred to as the ‘SCS runoff curve
number’ (SCS-CN). The runoff curve number was derived through an empirical examination of runoff patterns observed

in small catchments and hillslope plots monitored by the USDA. The method is extensively employed and demonstrates
high efficacy in estimating the approximate depth of direct runoff resulting from a specific rainfall event within a given geo-
graphical region. Patil et al. (2023) reported the use of SCS-CN to compute the potential of rainwater harvesting sites in the

extended urban area of Jaipur. The CN method incorporates several factors, including soil properties, land use, and surface
condition, to account for runoff in watersheds. This comprehensive approach enhances the method’s applicability and accep-
tance within the scientific community. Mishra & Singh (2003) present a tabular representation of the CN values for various

combinations of soil, vegetation cover, and land use, which has been included in the study. Similarly, Mehta et al. (2023)
implemented the Hydrologic Engineering Centre’s Hydrologic Modelling System (HEC-HMS) for rainfall–runoff modelling,
which shows more accurate flow values when compared with the observed flow values.

As discussed, several related studies have been conducted in the study area; however, proper scientific discussions regard-
ing future trends of rainfall and its impact on projected surface runoff are hardly found in the literature. The information
about the availability of water resources is crucial to water resources engineers in planning, management, storage as well
as groundwater recharge. Notably, downscaling of climatic parameters provides reliable results for improved quality of rain-

fall prediction. To address the gap, the current investigation endeavours to downscale the rainfall for a forthcoming period
and compute the surface runoff depth with respect to the projected rainfall for a semi-arid water-stressed region. The
study incorporates a more recent CMIP6 GCM, namely, the Norwegian Earth System Model (NorESM) for a realistic assess-

ment of the parameters for better prediction. Furthermore, this projected rainfall is employed in an analysis of the runoff
resulting in future runoff depths. The present study offers valuable insights for researchers seeking to strategize their approach
toward future water utilization. Thus, the objectives of the study are as follows:

1. To construct a statistical learning model using CMIP6 GCM predictors to replicate historical rainfall patterns. To validate
the model against observed data and utilize a calibrated model to project future rainfall for a specified period.

2. To analyze spatially the projected daily rainfall for the future period (2030–2050) to discern distinct temporal changes.
3. To integrate a geographic information system (GIS) technique to model spatially the rainfall changes and overlay them on

soil and land use/land cover (LULC) maps to compute curve numbers.
4. To investigate the temporal evaluation of runoff depth in climatically sensitive regions focusing on the impact of changing

rainfall patterns due to climate change.

2. STUDY AREA

The study area covers Jaipur city and the adjoining rural areas located in the state of Rajasthan in the Northwestern region of

India, as shown in Figure 1. The annual rainfall reportedly analyzed for 30 years (1990–2020) is 593 mm per the district report
on Jaipur in the national aquifer mapping and management plan document. The normal annual rainfall for the period 1901 to
1971 is 527 mm. Furthermore, rainfall of a declining trend at the rate of 1.18 mm/year is reported (Jaipur district 2022). Rain-

fall over the timeframe has frequently been recorded as low as 200–300 mm. Notably, the land-use pattern of the study area
includes both urban and rural settlements. The soil formation is alluvial sandy loam in the major part of the study area and the
remaining part consists of loamy desert soil. The area is naturally drained by six rivers, namely, Sabi, Banganga, Bandi,
Mendha, Mashi, and Sota rivers. Rainfall is the prime source of water for these rivers. Hence, it is important to study the

runoff variation with changing rainfall patterns.

3. DATA

The predictand (actual daily rainfall) data are acquired from the India Meteorological Department (IMD) https://www.
imdpune.gov.in/lrfindex.php in network Common Data Form (NetCDF), gridded (0.25o� 0.25o) in the latitude and longitude
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format and extracted for five stations as presented in Table 1. The actual daily rainfall is considered from 1979 to 2014, which

is identical to the period of the climate model. The list of the acquired data for the study is detailed in Table 2.
The NorESM, which has been under development since 2007, has emerged as a pivotal instrument for climate researchers

in their comprehensive investigation of historical, contemporary, and prospective climatic conditions (Kreienkamp et al.
2020). The NorESM model has made significant contributions to the field of climate simulation, particularly in its application
to research evaluated in the IPCC’s fifth comprehensive assessment report (Seland et al. 2020). The climate model NorESM2-
MM used in the present study is presented in Table 3 (www.climate-scenarios.canada.ca). The predictors are derived for
SSP2-4.5 and SSP5-8.5 for the period 2015–2100 as provided in CMIP6. SSP2 depicts a future where societal trends largely

adhere to historical patterns. It envisages a ‘middle-of-the-road world’ that is characterized by a continuation of existing

Figure 1 | Location map of the study area.

Table 1 | Geographical location of stations for which daily rainfall values (1979–2014) are extracted

Station number Latitude Longitude Average annual rainfall (mm)

1 26.25 74.5 460.93

2 27 76 638.14

3 28 74.5 345.86

4 28 76.5 635.42

5 26.25 76.5 680.57
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practices and policies, without significant deviations or transformative changes. SSP5 envisions a future characterized by

rapid and unconstrained growth in economic output and energy consumption. This scenario suggests a trajectory where econ-
omic expansion takes precedence, potentially leading to increased resource exploitation and environmental degradation
(www.carbonbrief.org). The shapefile of the study area is downloaded from https://www.diva-gis.org/. The land-use map is

prepared using the Landsat 8–9 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) images downloaded
from the United States Geological Survey (USGS) website https://earthexplorer.usgs.gov.

4. METHODOLOGY

The rainfall prediction has been based on statistical learning that can be seen as following the four steps as shown in Figure 2.

The SDSM is a stochastic and hybrid downscaling model developed by Wilby & Dawson (2007). The study employed SDSM
for statistical downscaling of the predictors and predictand. The first step in downscaling is to identify the most influential
predictors for each station predictand (rainfall). In this study, the potential predictors are selected based on p-value and par-
tial correlation analysis (Wilby & Dawson 2007). These carefully selected predictors form the foundation of the prediction

model that will provide its accuracy and reliability. In the second step, the model is calibrated for the current period through
the production of ensembles. The model is subjected to a comparative analysis with the observed rainfall data, wherein var-
ious statistical metrics such as correlation coefficient (Equation (1)), RMSE (Equation (2)), and NSE (Equation (3)) are

employed to assess the level of concordance of the model with the actual rainfall patterns.
This evaluation is conducted to ascertain the model’s efficacy in accurately capturing the observed rainfall and to determine

the extent to which it aligns with the empirical data. In the third phase, the model is executed to generate projections for

Table 2 | List of datasets and their sources

S.no Data Source/Description

1. Actual rainfall IMD Pune https://www.imdpune.gov.in/lrfindex.php

2. GCMs Copernicus Climate Change Service https://cds.climate.copernicus.eu/cdsapp#!/dataset/projections-cmip6?
tab¼form

3. Landsat for 2021 Landsat 8–9 Operational Land Imager (OLI) and Thermal Infrared (TIRS) Collection 2 Level-2. United States
Geological Survey (USGS) https://earthexplorer.usgs.gov

4. Soil map Food and Agriculture Organization of the United Nations https://www.fao.org/soils-portal/

Table 3 | CMIP6 predictors name and their corresponding variable ID as provided by https://climate-scenarios.Canada.ca/?page¼pred-
cmip6-notes

No. Variable ID Predictor variable No. Variable ID Predictor variable

1 mslp Mean sea level pressure 14 p8_f 850 hPa Wind Speed

2 p1_f 1,000 hPa Wind speed 15 p8_u 850 hPa Zonal wind component

3 p1_u 1,000 hPa Zonal wind component 16 p8_v 850 hPa Meridional wind component

4 p1_v 1,000 hPa Meridional wind component 17 p8_z 850 hPa Relative vorticity of true wind

5 p1_z 1,000 hPa Relative vorticity of true wind 18 p8th 850 hPa Wind direction

6 p1th 1,000 hPa Wind direction 19 p8zh 850 hPa Divergence of true wind

7 p1zh 1,000 hPa Divergence of true wind 20 p500 500 hPa Geopotential

8 p5_f 500 hPa Wind speed 21 p850 850 hPa Geopotential

9 p5_u 500 hPa Zonal wind component 22 prcp Total precipitation

10 p5_v 500 hPa Meridional wind component 23 s500 500 hPa Specific humidity

11 p5_z 500 hPa Relative vorticity of true wind 24 s850 850 hPa Specific humidity

12 p5th 500 hPa Wind direction 25 shum 1,000 hPa Specific humidity

13 p5zh 500 hPa Divergence of true wind 26 temp Air temperature at 2 m
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forthcoming scenarios, predicated upon the chosen predictors. In the fourth phase, spatial analysis of the projected rainfall is
performed. Furthermore, the curve number map is prepared by overlaying the land-use map and the soil texture map. In the

conclusion phase, surface runoff is computed using Equations (4) and (5). The approach of statistical method in conjunction
with spatial analysis enhances the precision and applicability of rainfall projections. This approach advances the field of rain-
fall prediction, which provides further valuable insights while predicting surface runoff.

r ¼
P

(Pobs � Pobs)(Pmod � Pmod)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Pobs � Pobs)

2
(Pmod � Pmod)

2
q (1)

where r is the correlation coefficient, Pobs is the observed rainfall, Pmod is the modelled rainfall value, Pobs is the mean of the
observed rainfall, Pmod is the mean of the modelled rainfall.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN
i¼1

(Pmod � Pobs)
2

N

vuuut
(2)

RMSE is the root mean square error, N is the number of values, Pobs is the observed rainfall, Pmod is the modelled rainfall
value.

NSE ¼ 1�

PN
i¼1

(Pi
obs � Pi

mod)
2

PN
i¼1

(Pi
obs � Pobs)

2
(3)

Figure 2 | Workflow of statistical learning-based rainfall prediction.
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NSE is the Nash–Sutcliffe efficiency, N is the number of values, Pobs is the observed rainfall, Pmod is the modelled rainfall

value, and Pobs is the average of the observed rainfall.
The curve number is related to soil moisture retention (S) using the following equation:

S ¼ 25,400
CN

� 254 (4)

where S is the potential maximum storage and CN is the curve number.
Runoff quantity is estimated using the equation

Q ¼ (P� 0:2S)2

(Pþ 0:8S)
(5)

where Q is the runoff depth in millimetres, P is the precipitation in millimetres, and S is the potential maximum storage.

5. RESULTS AND DISCUSSIONS

5.1. Selection of predictors

The utilization of the correlation analysis is employed in the process of selecting appropriate predictors to construct a model.
The selection of predictors is dependent upon the examination of partial correlation coefficients (partial-r) and their corre-
sponding p-values. The selection process involves identifying the partial-r values that exhibit the highest degree of strength,

with a particular emphasis on those that possess p-values in close proximity to zero (Anandhi et al. 2008; Ncoyini-Manciya
& Savage 2022). The station-wise selection of predictors along with their partial-r and p-value are mentioned in Table 4.

5.2. Calibration and validation of the model

The model has been calibrated using the selected predictors to estimate daily rainfall values within the time frame spanning
from 1979 to 2014. It is calibrated by taking one predictand and a set of predictors and estimates the parameters of the
regression equation using the ordinary least square approach. The model creates various model parameters for each

month of the chosen period (1979–2014). Multiple ensembles were employed to compute the mean precipitation of each
month, which was subsequently cross-validated against the actual data (Table 5). The examination of the correlation coeffi-
cients from Equation (1) across all stations reveals that values ranging from 0.7 to 0.9 denote a strong association between the
observed and modelled monthly rainfall, thereby signifying a high level of correlation. This high level of the correlation instils

confidence in the reliability of the model predictions. RMSE from Equation (2) for all stations except stations 3 and 4 are near
zero, indicating a perfect fit (Nasidi et al. 2021; Sharma et al. 2023). These values imply that the predicted model precisely
matches the actual rainfall measurement, showing accuracy and precision. The acceptance criterion for the NSE from the

value of Equation (3) is a threshold greater than 0.5 (Bemmoussat et al. 2021; Meydani et al. 2022). The NSE shows how
well the model captures the observed variations in rainfall. A value above 0.5 indicates a satisfactory level of model efficacy,
implying model capability for reproducing rainfall values with a reasonable degree of accuracy. The values of the rainfall

modelled are validated against the observed rainfall data for the study period 1979–2014, as presented in Figure 3.

5.3. Prediction of rainfall

An existing trend is determined from the modelled precipitation values for the period 1979–2014, and is further used to pre-

dict the rainfall till 2050 (Shaikh et al. 2022). The selected predictors are subsequently employed to execute the model for the
future scenarios of SSP2-4.5 and SSP5-8.5, spanning the period from 2015 to 2100. The station points are digitized, and rain-
fall maps are prepared by interpolating the annual rainfall value within the study area. The rainfall maps for 2030, 2040, and
2050 are shown in Figure 4. The selection of the years 2030, 2040, and 2050 is predicated upon their proximity to the present,

thereby rendering them suitable hopefuls for investigation within the realm of the near future. The examination of the near
future has consistently held a position of significance within the realm of scholarly inquiry, as its findings serve to prompt
proactive measures and ensure a continuous state of awareness. High rainfall (743.95 mm) is predicted for the year 2030

in SSP 4.5; by contrast, low rainfall (383–259.3 mm) is predicted in SSP 8.5. In 2040, SSP 4.5 predicts more rainfall as com-
pared with SSP 8.5. Further, in 2050, SSP 8.5 predicts high rainfall (602–367 mm) as compared with SSP 4.5, which shows
less rainfall (393–344 mm). However, the rainfall pattern is apparently similar for both scenarios, for all the years. Notably,
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north-eastern areas receive more rainfall in 2030, whereas the middle and south-western areas receive more rainfall in 2040
and 2050, respectively.

5.4. Runoff computation

The computation of predicted runoff depth for the years 2030, 2040, and 2050 was conducted. The soil map has been
downloaded from the Food and Agriculture Organization of the United Nations https://www.fao.org/soils-portal/ and

Table 4 | Predictors selected for modelling and prediction

Station Predictors Code Partial-r p-value

1 1,000 hPa Relative vorticity of true wind p1_z 0.159 0.0000

1,000 hPa Meridional wind component p1_v 0.078 0.0073

500 hPa Geopotential p500 0.091 0.0015

850 hPa Relative vorticity of true wind p8_z 0.143 0.0000

500 hPa Specific humidity s500 0.117 0.0000

2 1,000 hPa Relative vorticity of true wind p1_z 0.142 0.0000

500 hPa Geopotential p500 0.080 0.0080

850 hPa Zonal wind component p8_u 0.086 0.0003

850 hPa Relative vorticity of true wind p8_z 0.130 0.0000

500 hPa Specific humidity s500 0.065 0.0075

3 1,000 hPa Relative vorticity of true wind p1_z 0.169 0.0000

1,000 hPa Divergence of true wind p1zh 0.121 0.0000

500 hPa Geopotential p500 0.080 0.0080

850 hPa Relative vorticity of true wind p8_z 0.101 0.0007

4 1,000 hPa Relative vorticity of true wind p1_z 0.149 0.0000

1,000 hPa Divergence of true wind p1zh 0.095 0.0001

500 hPa Wind speed p5_f 0.084 0.0007

500 hPa Relative vorticity of true wind p5_z 0.092 0.0002

500 hPa Geopotential p500 0.113 0.0000

500 hPa Specific humidity s500 0.076 0.0023

5 1,000 hPa Meridional wind component p1_v 0.072 0.0024

1,000 hPa Relative vorticity of true wind p1_z 0.179 0.0000

500 hPa Relative vorticity of true wind p5_z 0.092 0.0001

500 hPa Geopotential p500 0.114 0.0000

850 hPa Zonal wind component p8_u 0.083 0.0004

850 hPa Relative vorticity of true wind p8_z 0.126 0.0000

Total precipitation prcp 0.000 0.001

500 hPa Specific humidity s500 0.09 0.0001

Table 5 | Performance of model validation

Station Correlation RMSE NSE

1 0.84 0.06 0.71

2 0.91 0.03 0.84

3 0.76 0.2 0.6

4 0.8 0.36 0.64

5 0.83 0.05 0.7
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delineated for the study area. The soil formation in Jaipur district consists of mainly loam and sand. Loamy soil and sandy
loam were identified as hydrological soil groups D and C, respectively, as reported by Khare et al. (2017). To prepare the

land-use map, the Landsat 8–9 image for 2021 was downloaded from the USGS website https://earthexplorer.usgs.gov. The
Landsat image is mosaicked and delineated for the study area. Among several bands, land classes are identified and classi-
fied into five distinct classes, namely ‘Urban settlement’, ‘Agriculture/vegetation’, ‘Open land’, ‘Hills’, and ‘Water’ (Kodihal
& Akhtar 2023). The land-use map is superimposed on the HSG group soil map to identify CNs per the methodology

suggested by Mishra & Singh (2003) and Patil et al. (2023). The CN for the LULC areas superimposing ‘Agriculture’
and ‘Open land’ on soil group HSG C is 86 and HSG D is 89. The CN for the areas superimposing ‘urban settlement’
on soil group HSG C and HSG D is 98, as mentioned in Table 6. The CN grid map is prepared using the raster calculator

tool in the GIS platform presented in Figure 5. Further, runoff depth is computed using Equations (4) and (5) using the
projected precipitation data for 2030, 2040, and 2050 (SSP 4.5 and 8.5). The maximum surface runoff depth and minimum
surface runoff depth for the rainfall for the respective years are presented in Table 6. The maximum computed surface

Figure 3 | Average monthly observed and modelled rainfall for the period 1979–2014.
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runoff is (485.2 mm) for vegetation or open land in 2030 (SSP 4.5). The minimum computed surface runoff is at least
(94.5 mm) for the vegetation or open-land class in 2040 (SSP 4.5). The 2040 SSP 8.5 shows the lowest values of computed
runoff considering the worst-case scenario.

Figure 4 | Geographical representation of precipitation patterns for the scenarios SSP2-4.5 and SSP5-8.5 for 2030, 2040, and 2050.
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Table 6 | Rainfall values, curve numbers, and their respective surface runoff depths

Land-use class

CN Maximum
Annual Rainfall

Minimum
Annual Rainfall

Maximum
surface runoff

Minimum
surface runoff

Maximum
Annual Rainfall

Minimum
Annual Rainfall

Maximum
surface runoff

Minimum
surface runoff

HSG soil
group C

HSG soil
group D in mm in mm depth in mm depth in mm in mm in mm depth in mm depth in mm

Year 2030 SSP 4.5 SSP 8.5

Urban settlement 98 98 658.4 618.52 431.770 395.420 383.4 340.32 190.604 156.357

Agriculture/
Vegetation/ Open
land/Hills

86 686.88 431.74 485.280 259.940 383.4 292.31 173.784 106.299

Agriculture/
Vegetation/ Open
land/Hills

89 603.35 215.48 414.260 94.590 383.4 292.31 178.236 109.785

Year 2040 SSP 4.5 SSP 8.5

Urban settlement 98 98 328.3 315.76 146.958 137.283 288 260.14 116.389 96.254

Agriculture/
Vegetation/Open
land/Hills

86 364.99 303.53 159.818 114.219 288 204.92 103.294 50.461

Agriculture/
Vegetation/Open
land/Hills

89 364.99 315.76 164.094 126.764 288 260.14 106.730 87.522

Year 2050 SSP 4.5 SSP 8.5

Urban settlement 98 98 358.12 351.59 170.483 165.273 288 260.14 116.389 96.254

Agriculture/
Vegetation/Open
land/Hills

86 393.09 351.59 181.711 149.589 601.07 204.92 356.830 214.738

Agriculture/
Vegetation/Open
land/Hills

89 393.09 351.59 186.258 153.730 601.07 434.26 362.932 219.652
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6. CONCLUSION

The study is focused on assessing surface runoff depth for future scenarios. The study area has a semi-arid climate and

receives comparatively low rainfall. The statistical downscaling approach is selected because it is reliable and effective in
downscaling rainfall, as can be illustrated when comparing the predicted and actual rainfall using statistical matrices. The
selection of predictors is crucial in downscaling as the accuracy of modelling depends on the correlation of predictors and

predictand. The modelled rainfall values for the observed period (1979–2014) show less deviation from the observed rainfall
values. The projected rainfall values show a decreasing rainfall trend from 2030 to 2040 and a slight increase from 2040 to
2050 for all scenarios. The statistical downscaling of future rainfall based on CMIP6 GCM (NorESM) predictors, coupled
with SSP 4.5 and SSP 8.5, has proven to be a reliable approach. The meticulous validation process, employing statistical

learning and assessing performance through metrics, has instilled confidence in the reliability of the generated rainfall pro-
jections. Integrating GIS has facilitated spatial modelling of the projected rainfall. Overlaying the future rainfall with land-use
and soil data, a holistic understanding of the hydrological landscape is obtained. Runoff computation is challenging since it

relies on land-use class, soil type, and rainfall values. Computed future runoff depth is less for sandy loam compared with
loam soil. The decrease in runoff is observed from 2030 to 2040 for all scenarios. An important aspect of this study is its
focus on the measurement of runoff independent of its basin area, with specific attention to runoff values presented in milli-

metres as depth. Overall, the scenarios show a future when the study region will be under water stress. These results will make
hydrologists and water resource managers more prepared for the future.

7. LIMITATIONS AND FUTURE RECOMMENDATIONS

This model is sensitive to influential parameter selection; hence, the result may be significantly affected if predictor selection

and data calibration have not been done appropriately. In this work, regression analysis has been applied as a machine learn-
ing method; however, with large data like hourly rainfall, observation may be fine-tuned with the other machine learning
methods to improve the accuracy.

Figure 5 | Land-use map and curve number map of the study area.
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