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ABSTRACT

This study aims to model and assess surface water potential in an ungauged watershed using the Soil and Water Assessment Tool (SWAT),

principal component analysis (PCA), and regression-based regionalization techniques in the Gelana River, Ethiopia. The SWAT model was cali-

brated (and validated) for the 1989–2007 (2008–2015) period, and it showed a very good performance to model the river flow. The 18 physical

catchment characteristics that affect the production of streamflowwere selected for correlation, and to make an equation using 19 optimized

SWAT model parameters. These characteristics were categorized as two climate descriptors, three soil descriptors, seven land use land cover

descriptors, and six topographical descriptors. The regression equations for each SWAT parameter with a function of the physical character-

istics and principal components were developed. Then, SWAT model-sensitive parameters were transferred and validated. Results reveal that

the watershed has a greatest surface runoff volume of 162.14 MCM in May and a least runoff of 9.15 MCM in January. The contribution of the

water balance during the spring season is highest with a total surface runoff of 103.72 mm. From the whole Gelana watershed area of

336,460 ha, 778.4 MCM of yearly surface runoff was produced. The maximum mean monthly river flow is 15.7 m3/s in May.

Key words: principal component analysis, regionalization, SPSS, stepwise multiple linear regression, SWAT, ungauged watershed

HIGHLIGHTS

• The 18 physical catchments characteristics were selected for correlation, and to make an equation with optimized SWAT parameters.

• From the entire Gelana watershed area of 336,460 ha, 778.4 MCM of annual surface runoff was produced.

• Streamflow data play a significant role in existing and upcoming engineering design and water resources management in and around the

watershed.
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GRAPHICAL ABSTRACT

1. INTRODUCTION

Accurate information on stream flows is the basis for the management, planning, and design of water resources projects like
hydropower, irrigation project development, water supply, flood forecasting and control, and a sustainable aquatic life and
ecosystem. Likewise, it is necessary for studies in the watersheds and basins. However, researchers and project designers

have a crucial problem to address in order to achieve success on hydrological modeling in the watersheds. The streamflow
gauging stations in river basins are commonly installed on main rivers due to the challenge of estimating daily streamflow
with its stochastic and complicated structure (Burgan 2022). The main problem is the unavailability of gauged streamflow
series data for calibration and validation of the hydrological models. Streamflow estimation in ungauged and scarcely

gauged watersheds are a key study area in surface water hydrology, since streamflow data are essential for management
and development of surface water resources. Moreover, it is necessary for water and land use managers, administrators, plan-
ners, builders, engineers, recreationists, and for all sectors. Besides, the daily, monthly, seasonal, and annual streamflow data

are very useful for characterizing streamflow variability. Unfortunately, in many cases, several watersheds are ungauged at the
river outlets. Thus, it is possible to model the ungauged watershed using regionalization methods and hydrological models
(Guo et al. 2021; Daniel & Abate 2022).
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Besides, industrialization and urbanization have a substantial effect on the hydrological cycle. The land use land cover and

climate change are the foremost issues that can change the hydrological process of the catchment (Shahid et al. 2018, 2021).
Moreover, the variation of spatial patterns of landscape disturbs water balance components in the watersheds (Nannawo
et al. 2021). Assessing the surface water potential of a river is crucial for providing the strategic evidence needed for

long-term planning of water resources, and managing the water projects. Thus, it is vital to study a river’s potential for
effective water resources planning and management. The surface water is a renewable resource, of which the quality
and quantity are space–time dependent, that can possibly make economic returns and is the source of rainfed agriculture.
Water resources development, water resources utilization, and integrated water resources management are the best pro-

grams and are known as a tool for sustainable economic growth, water related conflict management, and poverty
reduction in developing countries (Ashine 2021). Rivers and lakes have served as the key sources of water during
human history, and found less than 0.3% of nearly 3% of the Earth’s freshwater (Beza et al. 2023). However, the rural

people who depend on agriculture and livestock production for their livelihoods require an effective management of sur-
face water. Moreover, irrigation development is necessary for sustainable and reliable agricultural development in
Ethiopia by satisfying the demands of food security and poverty reduction (Ashine 2021). These sustainable developments

are ensured by assessment of the potential of available surface water resources and designing best utilization mechanisms
on the watershed level.

The regionalization method is transforming hydrological information from gauged watersheds to ungauged water-

sheds. The aim of parameter regionalization is providing effective hydrological information to watersheds (Guo
et al. 2021; Daniel & Abate 2022). The regionalization methods can be used effectively to estimate streamflow in
ungauged watersheds (Arsenault et al. 2019). Numerous types of regionalization approaches have been proposed in
the last few decades for predictions in ungauged watersheds (Tegegne & Kim 2018). In general, there are four major

regionalization methods: similarity-based (spatial proximity and physical similarity) method, regression-based
method, hydrological signatures-based method, and catchment runoff-response similarity approach (Tegegne & Kim
2018; Guo et al. 2021).

The spatial proximity refers to finding one or more donor watersheds (gauged) that are adjacent to the target water-
sheds (ungauged) in space, and regionalizing its parameters to the target watersheds by interpolation or averaging. It
is proposed based on watershed spatial similarity that adjacent spaces have autocorrelation characteristics (Beck et al.
2016; Tegegne & Kim 2018; Guo et al. 2021). Hydrological signature refers to static and dynamic indicators that can
reflect the hydrological characteristics of watersheds on different time scales (Zhang et al. 2018; Guo et al. 2021). The
watersheds that have similar runoff responses and rainfall characteristics are considered hydrologically similar. The
runoff-response approach linked with the Soil and Water Assessment Tool (SWAT) model calibrated parameters is the

integrated output of the model and expresses all of the interactions related to the hydrological phenomenon within a
watershed (Tegegne & Kim 2018).

The regression-based regionalization does not need to define the similarity measure, but it establishes the relationship

between hydrological parameters and watershed characteristics (Guo et al. 2021). Regression analysis is the most rec-
ommended approach used to set up a regional model for the assessment of model parameters in the ungauged
watersheds. In addition, the stepwise multiple linear regression techniques can be applied in modeling hydrological responses

such as surface runoff from the watersheds (Sharma et al. 2015; Daniel & Abate 2022).
Principal components analysis (PCA) is the statistical method for reducing a large number of interrelated variables into a

smaller number of dominant variables, and has been used in many areas of scientific research (Wuttichaikitcharoen & Babel

2014). Large datasets are increasingly common and every so often problematic to interpret. PCA is an adaptive data analysis
technique for reducing the dimensionality of such datasets, increasing interpretability, and minimizing the loss of infor-
mation. It is developed by forming new uncorrelated variables that continually maximize variance (Jolliffe et al. 2016;
Daniel & Abate 2022). PCA is a data-analytic technique that obtains linear transformations of a group of correlated variables

such that certain optimal conditions are achieved. However, the transformed variables are uncorrelated (Daniel & Abate
2022). The spatially distributed rainfall information and the large dataset do not always lead to higher model performance.
In this case, performing the PCA is important for circumstances where reliable, and long-recorded hydrological data are not

available for modeling (Hu et al. 2007). The relevance of PCA is mainly due to three reasons: it can represent the variance of a
scalar field with comparatively fewer independent coefficients, it can remove redundant variables in a multivariate dataset,
and it can represent physically independent processes (Syed et al. 2004).
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PCA is the best method to get a better correlation and group the optimized parameters into physically significant com-

ponents. According a study in Kanhiya Nala watershed, India, by Sharma et al. (2015), the PCA in grouping geomorphic
parameters of a watershed for hydrological modeling clearly reveals that some of the parameters are strongly correlated
with the components, and it is a good method for screening out the insignificant parameters from the analysis. Moreover,

Gajbhiye & Sharma (2015), who studied the application of the PCAmethod for the interpretation and grouping of water qual-
ity parameters, concluded that the results of PCA reflect a good outlook on the water quality monitoring and interpretation of
the surface water. Furthermore, evaluating the variability of physical variables contributing to the hydrological cycle, the prin-
cipal components (PCs) showed proper cyclicity at seasonal and annual timescales (Syed et al. 2004).

SWAT is the semi-distributed hydrological model that is computationally effective for modeling and assessing the water-
shed hydrological process. It is physically based, continuous in time and is capable of simulating long periods for
computing the effects of management changes (Daniel & Abate 2022; Daniel 2023).

Lack of streamflow data for most of the watersheds makes it difficult for many sectors in the Rift valley basin watersheds in
Ethiopia to assess water resources availability, and any related study in the watersheds and sub-basins. Assessment of water
resources in a watersheds and sub-basins is very significant for proper management, planning, decision making, domestic sec-

tors, industrial sectors, disaster management, agricultural activity, design of bridges, and dams. According to Daniel & Abate
(2022), there are several occurrences of flooding in the Gelana watershed area; irrigated agriculture field and water supply are
increasing over time. So, for proper management of these phenomena, the historical streamflow data are necessary. None-

theless, the Gelana River is ungauged in the watershed outlet. Therefore, the objective of this study is ungauged watershed
modeling and assessing surface water potential using SWAT, PCA, and regression-based regionalization techniques in the
Gelana River, since streamflow estimation plays a significant role in existing and forthcoming engineering design and
water resources management in and around Gelana watershed. Subsequently, hydrological data are significant for planning

and management of surface water resources in the watershed. In addition, the streamflow data are essential for characterizing
streamflow changeability in the Gelana River.

2. MATERIALS AND METHODS

2.1. Study area

The Gelana River is situated in the Lake Abaya sub-basin, Rift valley basin in the southeastern part of Ethiopia. The Gelana
watershed is located in between latitude 5°25015.9″N to 6°17032.7″N and longitude 37°49054.1″E to 38°21022.7″E (Figure 1).
The Gelana River originates from the Gedeo zone, Yirga Chefe highland area that drains into and meets the Lake Abaya with
a watershed area of about 3,364.6 km2. It is a perennial river. This paper also includes the Gidabo river, Hare river, and Kulfo

rivers located in the Rift valley basin, lake Abay-Chamo sub-basin.
The topographic feature of the Gelana watershed has diverse altitudinal difference which ranges from 1,171 to 3,167 m

above mean sea level. In addition, the classification of the Gelana watershed ranges from humid in the highlands to semi-

arid in the lowlands of the watershed. Rainfall patterns in the Gelana watershed have a bimodal profile with an absolute
peak in May and relative peak in October, with the main rain occurring from March to May (Belg), and from August to
November (end of Kiramet to Tseday). Moreover, relatively intensive rainfall was received in April, May, September, and

October, with the maximum mean monthly rainfall received in May at the Yirga Chefe station. The minimum mean monthly
rainfall was recorded at the Hagere Mariam station in January; also, in all other stations, the lowest rainfall occurred from
December to February but started to increase in March. Additionally, the mean monthly maximum and minimum tempera-

tures vary from 20.87 °C in July at Fiseha Genet to 33.60 °C in March at Arba Minch, and 8.39 °C in January at Yirga Chefe to
18.54 °C in March at Arba Minch, respectively. The highest maximum and minimum temperatures were recorded in the Arba
Minch station in March.

Furthermore, according to the land use/ land cover classification, nine major land uses/ land cover types were identified in

the Gelana watershed. However, the major part of the watershed was covered by agricultural land which covered about
1,336.23 km2 (39.70%) of watershed area, and the lowest part of the watershed was covered by water body which accounts
for about 0.19 km2 (0.01%) of the watershed from the whole study area (Table 1). Also, based on the dominant characteristics,

the soil of the study area was classified into four major groups: Humic Nitisols, Chromic Luvisols, Eutric Fluvisols, and Eutric
Vertisols. But Humic Nitisols is the dominant soil type covering an area of 1,514.90 km2 (45.02%), whereas Eutric Vertisols
soil type covering the lowest area of 363.16 km2 (10.82%) of the watershed from the total area (Table 2).

Journal of Water and Climate Change Vol 15 No 2, 706

Downloaded from http://iwa.silverchair.com/jwcc/article-pdf/15/2/703/1375352/jwc0150703.pdf
by guest
on 09 April 2024



Figure 1 | Location map of the study area.
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2.2. Data sources

2.2.1. Materials and software used

2.2.1.1. Meteorological data. Climate data used as input for the SWAT model were collected from the National
Meteorological Agency of Ethiopia. The main data, sources and their descriptions are summarized in Table 3. These
include rainfall, maximum and minimum temperature, solar radiation, wind speed, and relative humidity with varied data

lengths. There are seven meteorological stations in and around the Gelana watershed. However, only two stations were
synoptic stations, which have all climate variables data. These are Arba Minch and Hagere Mariam stations (Figure 2 and
Table 4). Moreover, climate data and the locations of the neighbor watersheds as shown in Table 5.

2.3. Hydrological (streamflow) data

Hydrological data (streamflow) of Gelana, Gidabo, Kulfo, and Hare river streamflow data were obtained from the Ministry of
Water, Irrigation, and Energy (MoWIE) from 1980 to 2015. The Gelana River streamflow was gauged in two nearly stations

Table 2 | Major soil types of the study area with areal coverage

No Types of soil SWAT code Area (km2) Percentage covered (%)

1 Humic Nitisols NTu 1,514.90 45.02

2 Chromic Luvisols LVx 865.27 25.64

3 Eutric Fluvisols FLe 621.27 18.52

4 Eutric Vertisols VRe 363.16 10.82

Total 3,364.6 100

Table 3 | Major data and their sources

Data Sources of data Descriptions

Terrain From Alaska satellite facility (https://
asf.alaska.edu/)

DEM (12.5 m �12.5 m)

Observed climate data National Meteorological Agency
(NMA)

Rainfall, Maximum and minimum temperature, Wind speed, Solar
radiation and Humidity

Hydrological data
(streamflow)

From Ministry of Water, Irrigation, and
Energy (MoWIE)

Gelana streamflow gauged at Tore and Yirga Chefe. Also, the
Gidabo, Kulfo, and Hare river streamflow data.

Land use land cover and
Soil map

From Ministry of Water, Irrigation, and
Energy (MoWIE)

Land use and land cover map, and Soil map

Table 1 | Land use land cover of the study area and their areal coverage

No Types of land use/cover SWAT code Area (km2) Percentage covered (%)

1 Agricultural AGRL 1,336.23 39.70

2 Forest-Evergreen FRSE 983.84 29.25

3 Shrub land RNGB 693.07 20.61

4 Bare land BARR 132.19 3.93

5 Forest-Mixed FRST 112.37 3.34

6 Settlement URBN 68.95 2.05

7 Grass land PAST 28.87 0.86

8 Wetland WETL 8.88 0.26

9 Water body WATR 0.19 0.01

Total 3,364.6 100

Journal of Water and Climate Change Vol 15 No 2, 708

Downloaded from http://iwa.silverchair.com/jwcc/article-pdf/15/2/703/1375352/jwc0150703.pdf
by guest
on 09 April 2024

https://asf.alaska.edu/
https://asf.alaska.edu/


(Figure 1), the upper location is the Yirga Chefe station and the downstream is the Tore station. The maximum mean monthly

streamflow was recorded in May and October, and the minimum flow occurred from December to March in both gauging
stations. The highest mean monthly streamflow was around 9.98 m3/s at the Tore station, and 9.97 m3/s at the Yiga Chefe
station in October. The major materials and software used and their purposes are tabulated and summarized in Table 6.

In addition, the locations and availability of the streamflow gauging stations are mentioned in Table 7.

Figure 2 | Meteorological stations of the watershed.

Table 4 | Climate data and the locations in the Gelana watershed

Stations name Latitude Longitude Elevation Data length

Mirab Abaya 6.28 37.77 1,221 1987–2019

Arba Minch 6.06 37.56 1,207 1987–2019

Burji 5.48 37.87 1,815 1987–2018

Fiseha Genet 6.07 38.18 2,240 1987–2019

Hagere Mariam 5.65 38.23 1,861 1987–2019

Tefere Kella 6.00 38.38 1,870 1987–2019

Yirga Chefe 6.15 38.2 1,856 1987–2019
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2.4. General framework of the study

The general framework of the study is shown in Figure 3.

2.5. Hydrologic modeling using SWAT

2.5.1. Weather database

The SWAT model requires the daily rainfall, maximum and minimum temperature, solar radiation, wind speed and relative
humidity. Not all meteorological stations were synoptic stations, however, Arba Minch and Hager Mariam were synoptic
stations (having all types of climatic data) used for generating the remaining weather database for the other five meteorolo-

gical stations which have no full climate data. After calculating the WXGEN parameters, the corresponding location table
was prepared according to the SWAT format, and then loaded into the model. SWAT takes data of each climatic variable
from the nearest weather station measured from the meteorological stations.

Table 5 | Climate data and the locations of the neighbor watersheds

Stations name Latitude Longitude Elevation Watersheds

Aleta Wendo 6.60 38.42 1,947

Aposto 6.74 38.37 1,762

Hagere Selam 6.47 38.52 2,809 Gidabo watershed

Yirga Chefe 6.15 38.20 1,856

Dilla 6.34 38.30 1,579

Mirab Abaya 6.28 37.77 1,221

Arba Minch 6.06 37.56 1,207 Hare watershed and

Chencha 6.23 37.58 2,632 Kulfo watershed

Zenga 6.35 36.95 1,229

Table 6 | Major materials and software used in this study

No Material name Purposes

1 Arc GIS 10.4.1 Used to obtain the physical parameters and spatial information of the watersheds.

2 Arc SWAT 2012 model Used to delineate the watersheds, and simulate the streamflow for gauged and ungauged watersheds.

3 SWAT-CUP 2012 For sensitivity analysis, calibration, validation, and uncertainty analysis of the SWAT model.

4 IBM SPSS statistics
software

Used to check the correlations and covariances of the physical characteristics of the catchments, to develop
the principal component analysis, and stepwise regression equation.

Table 7 | Available streamflow gauging stations and their locations

No River name/gauging station Latitude Longitude

1 Gelana at Tore 5.89 38.14

2 Gelana at Yirga Chefe 6.15 38.18

3 Gidabo at Aposto 6.75 38.38

4 Hare at Arba minch 6.07 37.60

5 Kulfo at Sikela 6.03 37.53
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2.5.2. Watershed delineation

This was done by loading the DEM (12.5 m� 12.5 m) in the Arc SWAT 2012 model. Then, the stream network was generated
by using a threshold area that defines the origin of a stream. For watershed delineation, the locations of the streamflow gau-
gings were added manually as sub-basin outlets. This ensures that the model calibration was done at the exact location. Based
on this, the total area of the watershed was 3,364.6 km2.

2.5.3. Hydrological response unit

The prepared land use and soil map were loaded in the delineated watershed by Arc SWAT, and then the slope was classified.
The multiple slope option was selected, i.e., five classes (0–5, 5–10, 10–15, 15–20, and above 20). The land use land cover, soil
map, and slope classes were reclassified corresponding with the parameters in the SWAT database. Then, all these physical

properties were made to be overlaid for HRU definition. The HRU was defined by considering the threshold levels. In mul-
tiple HRU definitions, a threshold level was used to eliminate minor land uses, soils, and slope classes in each sub-basin. Sub-
dividing the sub-watershed into areas having unique land use, soil and slope combinations makes it possible to study the

Figure 3 | The general framework of the study. PCP indicates precipitation, TMP indicates temperature, HMD indicates relative humidity, SLR
indicates solar radiation, and WND indicates wind speed.
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differences in streamflow and evapotranspiration for different land cover, soil, and slope. For multiple HRU definitions, 5%

land use land cover, 10% soil, and 15% slope threshold were used. Finally, the Gelana watershed was categorized into 441
HRUs with 29 sub-basins.

2.5.4. SWAT simulation

The SWAT input files were organized and the model was set to run. At the end, it simulates the streamflow in the Gelana
watershed. The daily weather data such as rainfall, temperatures, solar radiation, wind speed, and relative humidity were
loaded in the SWAT model. A total of 29 years including 2-year warm-up periods of the seven climatic stations from 1 January,

1987 to 31 December, 2015 were used for SWAT simulation depending on data availability.

2.5.5. Hydrologic water balance

Water balance is the driving force of the all processes that occur in the watershed hydrologic cycle (Daniel 2023). The hydro-
logic cycle simulated by SWAT is based on the following water balance equation:

SWt ¼ SWo þ
Xt

t¼1

(Rday �Qsurf � Ea �Wdeep �Qgw) (1)

where SWt is the final soil water content in mm, SWo is the initial soil water content in a day in mm, t is the time in days, Rday

is the amount of precipitation in a day (in mm) i, Qsurf is the amount of surface runoff in a day in mm, Ea is the amount of
evapotranspiration in a day in mm, Wdeep is the amount of water entering the vadose from the soil profile in a day (mm), Qgw

is the amount of the return flow in a day (mm).

2.5.6. Estimation of surface runoff

The Soil Conservation Service (SCS) curve number was utilized to appraise the surface runoff due to its capability to utilize
everyday input information. The SCS runoff equation is an empirical model that came into common use within the 1950s.
The model was created to supply a steady premise for evaluating the amounts of runoff under varying land use and soil

types (Daniel 2023).
The SCS curve number equation is:

Qsurf ¼
(Rday � Ia) 2

Rday � Ia þ S
(2)

where Qsurf is the accumulated runoff or rainfall excess (mm H2O), Rday is the rainfall depth for the day (mm H2O), Ia is the
initial abstractions which include surface storage, interception, and infiltration prior to runoff (mm H2O), and S is the reten-
tion parameter (mm H2O).

Hence, a surface runoff will occur when Rday is greater than Ia. The curve number is mainly dependent on the types of soil

and land uses/land cover of the watershed (Daniel 2023).
Furthermore, the retention parameter varies spatially due to changes in soils, land use, management, slope, and temporally

due to changes in soil water content (Daniel 2023). The retention parameter is defined as:

S ¼ 25:4
100
CN

� 10
� �

(3)

where CN is the curve number for the day.

The initial abstraction, Ia is commonly approximated as 0.2S. Finally, the SCS curve number equation becomes

Qsurf ¼
(Rday � 0:2S) 2

Rday þ 0:8S
(4)
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2.6. Sensitivity analysis, calibration, and validation

SUFI-2 (Sequential Uncertainty fitting version 2) embedded in the SWAT-CUP is used for the sensitivity analysis, calibration,
and validation of the hydrological model (SWAT model).

2.6.1. Sensitivity analysis

Owing to a large number of flow parameters in the SWAT model, identifying the most sensitive parameters is necessary to
improve the calibration of the hydrological model. Sensitivity analysis is identifying the most sensitive parameters that

strongly influence the flow process. The parameter ranking is taken from the last iterations of SUFI-2 based on t-Stat and
p-value. The larger the absolute value of t-Stat and the smaller the p-value the more sensitive the parameter (Dibaba et al.
2020; Daniel & Abate 2022). Sensitivity analysis is the method of determining the rate of change in model output concerning

changes in model inputs (parameters), and it is essential to identify key parameters and the parameter precision required for
calibration (Arnold et al. 2012). It is also a measure of the effect of the change of one parameter on another. It minimizes the
number of parameters to be used in the calibration step by making use of the most sensitive parameters largely controlling the
behavior of the simulated process. It reduces the time required for the calibration and validation process. Moreover, it

increases the accuracy of calibration by reducing uncertainty (Gassman et al. 2014).
The SUFI-2 was given several iterations to reach acceptable results. Each iteration provided the suggested values for the

new parameters to be used in the next iteration. Finally, it achieved an acceptable result with the values of the Nash–Sutcliffe,

coefficient of determination, percent of bias, and other uncertainty analysis statistical parameters.
The SWAT-CUP was run monthly from the period 01 January, 1987 to 31 December, 2015. The first 2 years from 01 Jan-

uary, 1987 to 31 December, 1988 were used for model warm-up.

The initial 21 parameters set were selected based on studies undertaken in the Rift valley basin watersheds located near the
Gelana watershed (Shanka 2017; Demmissie et al. 2018). In addition, they were selected by considering the scenario (default)
results from the Txt-In-Out folder after the SWAT model simulation.

Generally, the streamflow simulation considered numbers of hydrological input parameters of groundwater (.gw), manage-

ment (.mgt), soil (.sol), hydrologic response units (.hru), routine (.rte) and sub-basin (.bsn) categories as shown in Table 8.

2.6.2. Calibration

Calibration of the hydrological model is the process of estimating model parameters by comparing the model prediction with
the observed data for the same condition (Dibaba et al. 2020). The SWAT model was constructed with state-of-the-art com-
ponents in an effort to simulate the processes physically and realistically. Inputs of the model are physically based (i.e., based
on readily accessible information). This indicates SWAT is not a ‘parametric model’ with a formal optimization procedure (as

part of the calibration process) to fitting any data (Santhi et al. 2001).
Calibration is the determination to better parameterize a model to a given set of local conditions, thus reducing the predic-

tion uncertainty. It is performed by wisely selecting values for model input parameters within their respective uncertainty

ranges (Arnold et al. 2012). This involves comparing the model results generated with the use of historic meteorological
data to recorded streamflow. Generally, calibration succeeded in identifying the sensitive parameters by comparing model-
simulated streamflow with observed streamflow data for the period of 01 January, 1989–31 December, 2007.

2.6.3. Validation

Validation is used to test the calibrated model without further parameter adjustments with an independent dataset and the
results are compared to the remaining observational data to evaluate the model prediction (Dibaba et al. 2020). It is the pro-

cess of representing that a given site-specific model is capable of making sufficiently accurate simulations (Santhi et al. 2001).
Validation was the last stage of the modeling, verifying the performance of the SWAT model for simulated flows in the

periods 01 January, 2008–31 December, 2015.

2.7. SWAT model performance evaluation

Performance of the model simulation with the observed streamflow is expressed by statistics techniques such as coefficient of
determination, Nash–Sutcliffe efficiency (NSE), and percent bias (Abbaspour et al. 2015; Daniel & Abate 2022). Further-

more, see Table 9.
Coefficient of determination (R2) designates the proportion of the variance in measured data explained by the model, and

is widely used for model evaluation. It is oversensitive to high extreme values (outliers) and insensitive to additive and
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proportional differences between model predictions and measured data (Santhi et al. 2001; Moriasi et al. 2007). It shows how

the simulated data correlates to the observed data. It ranges from 0 to 1, with higher values indicating less error variance
(Moriasi et al. 2007; Daniel & Abate 2022).

Table 8 | SWAT model parameters selected for sensitivity analysis

No Parameters Description Default range Category

1 CN2 SCS runoff curve number (Initial SCS CN II value) 35–98 .mgt

2 ALPHA_BF Baseflow alpha factor [days] 0–1 .gw

3 GW_DELAY Groundwater delay [days] 0–500 .gw

4 GWQMN Threshold depth of water in the shallow aquifer required for return flow to occur [mm] 0–5,000 .gw

5 ALPHA_BNK Baseflow alpha factor for bank storage [days] 0–1 .rte

6 CH_N2 Manning’s ‘n’ value for the main channel �0.01 to 0.3 .rte

7 GW_REVAP Groundwater ‘revap’ coefficient 0.02–0.2 .gw

8 ESCO Soil evaporation compensation factor 0–1 .hru

9 SOL_Z Depth from the soil surface to bottom of layer 0–3,500 .sol

10 SOL_K Saturated hydraulic conductivity 0–2,000 .sol

11 HRU_SLP Average slope steepness [m/m] 0–1 .hru

12 SURLAG Surface runoff lag time 0.05–24 .bsn

13 RCHRG_DP Deep aquifer percolation fraction 0–1 .gw

14 EPCO Plant uptake compensation factor 0–1 .hru

15 SOL_AWC Available water capacity of the soil layer 0–1 .sol

16 SLSUBBSN Average slope length [m] 10–150 .hru

17 REVAPMN Threshold depth of water in the shallow aquifer for ‘revap’ to occur [mm] 0–500 .gw

18 OV_N Manning’s ‘n’ value for overland flow 0.01–1 .hru

19 BIOMIX Biological mixing efficiency 0–1 .mgt

20 CH_K2 Effective hydraulic conductivity in main channel alluvium [mm/hr] �0.01 to 500 .rte

21 CANMX Maximum canopy storage 0–100 .hru

Table 9 | SWAT model performance evaluation formulas

Formula Value Rating

R2 ¼

Pn
i¼1

[(Oi �Oavg)(Si � Savg)]
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

(Oi �Oavg)
2 Pn
i¼1

(Si � Savg)
2

s
0.75, R2� 1 Very good
0.65, R2� 0.75 Good
0.5� R2� 0.65 Satisfactory
R2, 0.5 Unsatisfactory

NSE ¼ 1�

Pn
i¼1

(Oi � Si)
2

Pn
i¼1

(Oi �Oavg)
2

0.75,NSE� 1 Very good
0.65,NSE� 0.75 Good
0.5�NSE� 0.65 Satisfactory
NSE, 0.5 Unsatisfactory

PBIAS ¼

Pn
i¼1

Oi �
Pn
i¼1

Si

Pn
i¼1

Oi

� 100

PBIAS,+ 10% Very good
+10%� PBIAS� 15% Good
+15%, PBIAS� 25% Satisfactory
PBIAS.+ 25% Unsatisfactory

Here, R2 is the coefficient of determination, NSE is the Nash–Sutcliffe Efficiency, and PBIAS is Percent Bias, Oi is the ith observed data, Oavg is the mean of the observed data, Si is the

ith simulated data, Savg is the mean of model-simulated data, and n is the total number of events.
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NSE determines the relative magnitude of the residual variance compared to the measured data variance. NSE is very com-

monly used, which provides extensive information on reported values. It is also the best objective function for reflecting the
overall fit of a hydrograph. It is less sensitive to high extreme values due to the squared differences (Moriasi et al. 2007; Daniel
& Abate 2022). It measures how well trends in the observed data are reproduced by the simulated results over a specified

period and for a specified time step. NSE ranges between �∞ and 1. Values between 0 and 1 are acceptable levels of perform-
ance, whereas values NSE� 0 indicate unacceptable performance (Moriasi et al. 2007; Daniel & Abate 2022).

Percent Bias (PBIAS) measures the mean tendency of the simulated data to be larger or smaller than their observed
counterparts. Its values for streamflow tend to vary more among different autocalibration methods during dry years than

wet years. This fact should be considered when attempting to do a split sample evaluation, one for calibration and one for
validation (Santhi et al. 2001; Moriasi et al. 2007). It characterizes the percent mean deviation between observed and simu-
lated flows. The best value of PBIAS is 0, with low values indicating accurate model simulation (Daniel & Abate 2022).

2.8. Uncertainty analysis of the SWAT model

SWAT model parameters account for uncertainty from driving variables, conceptual models, parameters, and measured

data. Uncertainty analysis measures the goodness of fit and the 95% prediction uncertainty between simulated and observed
streamflow. It is performed after sensitivity analysis by using SWAT-CUP software (Abbaspour et al. 2015).

The propagation of uncertainties in model outputs in SUFI-2 is expressed as the 95% probability distribution. The p-factor
and r-factor statistics are used to quantify the fit between the result expressed as 95PPU and observation. 95PPU is calculated
by the 2.5 and 97.5% levels of the cumulative distribution of the output variables. The degree of uncertainties is measured as
the p-factor, and the measure quantifies the strength of uncertainty analysis by the r-factor. The percentage of observations
covered by the 95PPU varies from 0 to 1 with the ideal value of 1, while for the r-factor, i.e., the thickness of the 95PPU opti-

mal value is around 1 (Dibaba et al. 2020; Daniel & Abate 2022).

r ¼ 1
n

Xn
ti

(yMti , 97:5%� yMti , 2:5%) (5)

r�factor ¼ p�factor
sobs

(6)

where yMti , 97.5% and yMti , 2.5% represents the upper and lower boundaries of the 95PPU, and sobs is the standard deviation of
the measured data.

2.9. Regionalization method

This method transposes hydrological parameters information from gauged watersheds to ungauged watershed, and it is effi-
cient for estimating streamflow in ungauged watershed outlets. The Gelana River streamflow was not gauged at the outlet of
the watershed, due to the fact that the SWAT model optimized parameters were transferred from gauged donor watersheds to

the ungauged watershed outlet.
The regionalization approach was done by the following steps. First, the SWATmodel was calibrated for gauged watersheds

against observed streamflow to establish good-performing sensitive parameter sets. Next, relationships were evaluated

between SWAT model-sensitive parameters and physical catchment characteristics to develop the regionalization model. Fol-
lowing this, the model-sensitive parameters were defined based on the physical catchment characteristics and PCs from the
ungauged watershed. We then substituted the ungauged watershed physical catchment characteristics and PC values in the

developed regionalization equation, and got the sensitive parameters values. Finally, the regionalization model was validated
by using the new sensitive parameters in the neighbor watershed. Then, the transferred SWAT model-sensitive parameters
values were used to simulate the streamflow in the ungauged watershed.

The rivers used for regionalization were Gelana River gauged at Tore, Gelana River gauged at Yirga Chafe, Gidabo River

gauged at Aposto, Hare River gauged at Arba Minch, and Kulfo River gauged at Sekala. Among them, the Gelana River
gauged at Tore and Yirga Chefe, Gidabo River, and Hare River were selected as sensitive parameters donors, whereas the
Kulfo river is the most neighboring river to the ungauged part of the Gelana River and was used for validation of regionalized

parameters. The targeted location was the Gelana watershed outlet near Lake Abaya.
To develop a regionalization model, the optimized SWAT model parameters were assessed during calibration at the gauged

watersheds by SWAT-CUP (SUFI-2). The neighboring (or nearby) watersheds must share physical attributes, such as land use
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land cover, soil, elevation, slope, and climate data; and they were becoming the donor watersheds. The optimized hydrolo-

gical model parameters were transferred by using the regression method to the ungauged site, i.e., Gelana watershed outlet.
The 18 physical catchments characteristics were selected for correlation, and to make an equation with optimized SWAT

parameters. The selected physical catchment characteristics should directly or indirectly affect the production of streamflow

in the watershed. These characteristics were categorized as: two climate descriptors, three soil descriptors, seven land use
land cover descriptors, and six topographical descriptors. They were prepared for developing the regionalization method
as presented in Table 10.

The physical catchment characteristics that relate to the topography of the watersheds were extracted from the DEM. The

others related to the land use land cover and soil were obtained from the land use land cover map and soil map, respectively.
Similarly, the physical catchment characteristics under climate descriptors were obtained from the meteorological data as
made available by NMA.

2.10. PCA

PCA is a data-analytic technique that obtains linear transformations of a group of correlated variables such that certain opti-
mal conditions are achieved. However, the transformed variables are uncorrelated (Daniel & Abate 2022).

The spatially distributed rainfall information and the large dataset do not always lead to higher model performance. In this
case, performing the PCA is important for circumstances where reliable, and long-recorded hydrological data are not avail-
able for modeling (Hu et al. 2007). PCA is used to identify a small number of derived variables from a larger number of

original variables to simplify the subsequent analysis of the data (Wuttichaikitcharoen & Babel 2014). The relevance of
PCA is mainly due to three reasons: it can represent the variance of a scalar field with comparatively fewer independent

Table 10 | Selected physical catchments characteristics

No Physical catchment characteristics Symbol

Topographical descriptors

1 Drainage area (km2) Area

2 Mean elevation (m) ME

3 Length of the longest flow path (km) LLP

4 Topographic wetness index TWI

5 Aspect Aspect

6 Flow accumulation FA

Climate descriptors

1 Mean annual rainfall (mm) MAR

2 Mean annual potential evapotranspiration (mm) PET

Soil descriptors

1 Saturated hydraulic conductivity (mm/hr) Ksat

2 Available water capacity of the soil layer Swc

3 Bulk Density Moist (g/cc) BDM

Land use land cover descriptors

1 Forest-Evergreen (%) % FRSE

2 Agricultural (%) % AGRL

3 Shrubland (%) % RNGB

4 Forest-Mixed (%) % FRST

5 Bare land (%) % BARR

6 Grassland (%) % PAST

7 Settlement (%) % URBN
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coefficients, it can remove redundant variables in a multivariate dataset, and it can represent physically independent pro-

cesses (Syed et al. 2004).
PCA was applied to identify the factors influencing the Gelana watershed streamflow. The first step adopted in the PCAwas

the selection of a set of catchment characteristics indicators for the study area. The initial set consisted of the 18 physical

catchment characteristics under four categories as shown in Table 10. The next step was the assessment of the suitability
of data for the PCA using the Kaiser–Meyer–Olkin (KMO) measure of sampling adequacy and Bartlett’s test of sphericity.
KMO is a test conducted to examine the strength of the partial correlation between the variables. It tests the ratio of item
correlations to partial item correlations. If the partials are similar to the raw correlations, it means that the items do not

share much variance. The range of KMO is from 0.0 to 1.0; however, the score of 0.50 is suggested as the minimum value
for a good PCA (Wuttichaikitcharoen & Babel 2014). Bartlett’s test of sphericity checks for the hypothesis that the correlation
matrix is an identity matrix. The null hypothesis of the test is that the variables are orthogonal, i.e., not correlated. The alterna-

tive hypothesis is that the variables are not orthogonal, i.e., they are correlated enough to where the correlation matrix
diverges significantly from the identity matrix. The significance value for the analysis led us to reject the null hypothesis,
and conclude that there are correlations in the dataset that are appropriate for the PCA. The score from Bartlett’s test of

sphericity with significance at 95% (p, 0.05) was considered appropriate for the PCA (Wuttichaikitcharoen & Babel
2014). The last step was the determination of dominant factors. The PCA with Varimax rotation was performed to identify
the PCs or subsets from a larger dataset. The extraction method of Varimax with Kaiser normalization was employed for

the selection of the dominant factors. Kaiser’s criterion (eigen values) rule states that, only components with eigen values
of 1.0 or more are retained for further investigation and indicate highly correlated factor loadings in the PCs (Wuttichaikitch-
aroen & Babel 2014).

2.11. Regression analysis

Regression-based regionalization can be traced back to 1960 when Nash (1960) tried to find the correlation between the unit
hydrograph and the catchment attributes, and simultaneously, Dalrymple (1960) had proposed the idea for flood frequency

curve transposition. The main core of regression-based regionalization is to establish a certain regression relationship
between model parameters and catchment descriptors. This relationship is used to predict the model parameters of target
catchments, and then to achieve the purpose of a simulation or prediction runoff in ungauged catchments (Guo et al. 2021).

Stepwise regression analysis is one of the common approaches used for streamflow regionalization in both hydrologic
model dependent and independent approaches. It is done based on the hydro-climatological and morphological attributes
of the catchments (Swain & Patra 2015). The most commonly used procedure for selecting the best regression equation is
stepwise linear regression analysis using the probability of 5% for selecting a factor, which is performed by using SPSS

(Wuttichaikitcharoen & Babel 2014).
A stepwise multiple linear regression was used in this study to predict SWAT model-sensitive parameters from several inde-

pendent physical catchment characteristics. It was assumed that better relations can be established using multiple physical

catchment characteristics than when only one physical catchment characteristic is used (Rientjes et al. 2011). Therefore,
relations between physical catchment characteristics and model parameters were assessed through stepwise multiple
linear regression analysis.

The significance of the multiple linear regression equations was tested by evaluating the significance of individual coeffi-
cients and by a test of overall significance. Its statistical significance was tested through the coefficient of determination
(R²), t-stat, and p-value (at the significance level of 5%) of the regression statistics in the regression summary output; and
check hydrologically relevant. This is a guarantee that the regression equations could be used for developing each parameter.

It was performed for each model-sensitive parameter.
The multiple linear regression model is computed as:

Y ¼ b0 þ b1X1 þ b2X2 þ b3X3 þ . . .þ bnXn (7)

where Y is the predicted SWAT model parameter, X1, X2, X3, Xn are the sets of predictors catchment characteristics, b0: the
intercept of the regression line, b1, b2, b3, bn: the coefficients of catchment features.
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2.12. Regionalization model validation

Before its use of a regionalization model output, it must be tested where predicted and observed streamflow was compared for
a neighbor gauged watershed that was not used when establishing the regionalization model. Therefore, the Kulfo watershed

was used for validation only, and not to derive the regionalization equation for the ungauged watershed. Moreover, it is the
nearest watershed to the ungauged part of the Gelana watershed outlet. In addition, it is located in a similar climate condition
(semi-arid zone) with an ungauged part of the study watershed. Thus, the objective functions NSE and R² defined during the
calibration and validation period were used to check the ability of the regionalization model (Daniel & Abate 2022).

3. RESULTS AND DISCUSSION

3.1. Hydrological modeling

3.1.1. Sensitivity analysis

The sensitive parameters which affect the hydrological (SWAT) model output with their ranks were evaluated by using
SWAT-CUP (SUFI-2). The small p-value and large absolute value of t-Stat indicate the most sensitive parameter in the water-
shed. The parameters with medium, high, and very highly sensitive values that affect the model output significantly were used

to calibrate and validate the hydrological model (Daniel & Abate 2022; Daniel 2023). The sensitive parameters in descending
order are shown in Table 11. Hence, the eight topmost sensitive hydrological parameters in the Gelana watershed are
ALPHA_BF.gw (Baseflow alpha factor in days), RCHRG_DP.gw (Deep aquifer percolation fraction), CH_K2.rte (Effective

hydraulic conductivity in main channel alluvium), CN2.mgt (SCS runoff curve number), GWQMN.gw (Threshold depth
of water in the shallow aquifer required for return flow to occur in mm), SOL_K(..).sol (Saturated hydraulic conductivity),
SLSUBBSN.hru (Average slope length), and HRU_SLP.hru (Average slope steepness). The result indicates that the hydrolo-

gical process of the watershed depends mainly on the action of these parameters. The ALPHA_BF.gw (Baseflow alpha factor
in days) was found to be a very highly sensitive parameter.

Table 11 | Sensitivity parameters for the SWAT model

Rank Parameters Name t-Stat p-Value Fitted value

1 V__ALPHA_BF.gw �31.87 0.00 0.000016

2 V__RCHRG_DP.gw �16.52 0.00 0.31

3 V__CH_K2.rte 13.51 0.00 9.94

4 R__CN2.mgt �5.45 0.00 �0.30

5 V__GWQMN.gw 4.45 0.00 942.68

6 R__SOL_K(..).sol �3.05 0.00 �0.25

7 R__SLSUBBSN.hru 2.77 0.01 1.56

8 V__HRU_SLP.hru �2.58 0.01 0.58

9 R__SOL_Z(..).sol �1.26 0.21 �0.08

10 V__ESCO.hru �1.14 0.25 0.62

11 V__SURLAG.hru 0.93 0.35 11.48

12 R__SOL_AWC(..).sol �0.93 0.35 �0.09

13 R__ALPHA_BNK.rte 0.89 0.38 0.48

14 V__OV_N.hru 0.78 0.44 0.22

15 V__GW_DELAY.gw 0.67 0.50 32.35

16 V__GW_REVAP.gw �0.60 0.55 0.12

17 V__EPCO.hru �0.37 0.71 0.20

18 R__CH_N2.rte 0.35 0.72 �0.03

19 V__REVAPMN.gw 0.34 0.73 363.83

Here, R means an existing parameter value is multiplied by (1þ a fitted value), V means an existing parameter value is to be replaced by a fitted value.
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3.1.2. SWAT model calibration and validation

The selected sensitive parameters were used for calibration and validation of the SWAT model with SWAT-CUP (SUFI-2) on
monthly time steps from 1989 to 2015. From the total flow gauging periods about two-thirds of the time steps, i.e., from 1989

to 2007, were nominated for the calibration period, and the remaining around one-third periods i.e., from 2008 to 2015, were
used for validation of the SWAT model gauged at the Tore station in the Gelana watershed (Figures 4 and 5).

The summary of SWAT model calibration and validation results are presented in Table 12. The calibration outcomes on
average monthly streamflow illustrate that the SWAT model can capture the observed streamflow with R2, NSE, and

PBIAS of 0.74, 0.74, and 4.8, respectively. Correspondingly, the mean monthly streamflow validation shows R2, NSE, and
PBIAS of 0.71, 0.67, and 7.5, respectively. Additionally, the percentages of observations bracketed by the 95PPU were 78
and 66% of the observation, and r-factor equals 0.89 and 0.76 during calibration and validation periods, respectively. Overall,

according to Santhi et al. (2001) and Moriasi et al. (2007), the SWAT model attained a good fit between observation and simu-
lation in the Tore station of the Gelana watershed.

Figure 5 | SWAT model validation in the Tore gauging station of the Gelana River.

Figure 4 | SWAT model calibration in the Tore gauging station of the Gelana River.

Table 12 | Summary of SWAT model performance in the Tore gauging station

Evaluation parameters Mean flow (m3/s)

R2 NSE PBIAS p-factor r-factor Observed Simulated

Calibration 0.74 0.74 4.8 0.78 0.89 4.44 4.23

Validation 0.71 0.67 7.5 0.66 0.76 5.34 4.94
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3.2. Regionalization method

3.2.1. SWAT model performance

The SWAT model-sensitive parameters were transposed from gauged neighbor rivers to an ungauged Gelana River outlet. For

donors’ rivers and validation river, the calibration and validation of hydrologic model (SWAT) simulation were done to check
the efficiency of the model performance as shown in Table 13 and Figure 6. The outcomes show that the donors and the vali-
dation rivers demonstrate a good agreement between the observed and model simulated flow (Table 13). Besides, the SWAT

model sensitive parameters values at neighbor gauged catchments are shown in Table 14.

3.2.2. Physical characteristics of the catchments

The selected 18 physical catchment characteristics as shown in Table 15 should have a significant effect on the production of
streamflow in the watershed, and relation with SWAT model-sensitive parameters. The inter-correlations of the selected 18
physical catchment characteristics were evaluated. The bold values indicate the inter-correlation coefficients above +0.60

as shown in Table 16. In addition, Kaiser–Meyer-Olkin’s measure of sampling adequacy is 0.731, Bartlett’s test of sphericity
significance is 0.000. Therefore, the data was suitable for the PCA.

Generally, depending on the inter-correlation values, all selected physical catchment characteristics were in the range of

moderate to strong correlation. The correlation matrix of` physical catchment characteristics reveals strong correlation (cor-
relation coefficient greater than +0.9), good correlation (correlation coefficient greater than +0.75), and moderately
correlated (correlation coefficient greater than +0.60) (Daniel & Abate 2022). Hence, it is complex to cluster the parameters

into components and to assess any physical significance at this step. The inter-correlation values are therefore directed to
the PCA.

3.2.3. PCA

PCA applied with the varimax rotation in IBM SPSS statistics software shows three PCs with an eigen value greater than 1.00
as shown in Tables 17 and 18, and Figures 7 and 8 accounted for the total cumulative variance of 95.4% as per their eigen

values. The first component has described about 55.0% of the variance in the catchment characteristics, the second com-
ponent described 33.4%, and the third component described around 7.0%. Thus, 95.4% of the variance was explained by
only the three components (Daniel & Abate 2022).

The extraction method of PCA by a varimax rotated component matrix was determined as shown in Table 19. The first
component (PC1) is strongly correlated (more than +0.90) with Swc, BDM, and PET, and moderately correlated (more
than +0.60) with FRST, Aspect, Ksat, AGRL, FRSE, and MAR, based on higher loading factors which may be termed as

soil descriptors component. The second component (PC2) is strongly correlated with Area, LLP, and FA, and moderately
correlated with BARR, RNGB, and ME, which may be termed as the topographical descriptors component. The third com-
ponent (PC3) is well correlated (more than+0.75) with URBN and PAST, and moderately correlated with AGRL, FRSE, and
MAR, which may be termed as land use land cover descriptors component (Daniel & Abate 2022).

The prominent variables for following regression analyses were selected based on loading factors (Wuttichaikitcharoen &
Babel 2014). The upper most three variables with the highest loading factor and more than +0.60 were nominated as repre-
sentative variables of each of the PCs. Nine of the parameters were very highly correlated. However, other parameters screen-

out due to their significance, followed by regrouping the remaining variables into the physically significant factors (Sharma
et al. 2015).

Table 13 | SWAT model performance in the gauging stations of the neighbor rivers

Gauging stations
Calibration (1989–2007) Validation (2008–2015)

R2 NSE PBIAS R2 NSE PBIAS

Gelana at Yirga Chefe 0.65 0.64 �3.5 0.67 0.56 �0.1

Kulfo at Sekala 0.65 0.63 7.5 0.63 0.55 5.2

Gidabo at Aposto 0.64 0.63 �3.3

Hare at Arbaminch 0.61 0.61 �1.3
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The screen-out parameters from the analysis having less significance in describing the component variance in the watershed
were FRST, Aspect, Ksat, FRSE, MAR, BARR, RNGB, and ME. Generally, the correlation matrix and PC matrix were devel-

oped from these nine parameters. All nine parameters were supposed to be the forcing factors of streamflow either positive
or negative effects, which can be used subsequently as predictor variables in regression analysis. These predictor variables
are; from PC1: Swc, BDM, and PET; from PC2: Area, LLP, and FA; and from PC3: URBN, PAST, and AGRL were selected.

Figure 6 | The SWAT model calibration and validation in the nearby watersheds: (a) Gelana River gauged at Yirga cheffe, (b) Kulfo river at
Sikala, (c) Hare river gauged at Arba minch, and (d) Gidabo river gauged at Aposto.
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Communalities estimate the variance in each variable accounted for by the components. All communality values in
Table 19 are very high, which indicates that the extracted components represent the variables well.

3.2.4. Regression equation

One parameter from the significant components may form a set of independent parameters at a time of modeling the hydro-
logic responses (Sharma et al. 2015; Daniel & Abate 2022). After the stepwise regression between SWAT model-sensitive
parameters and predictor physical catchment characteristics, the correlation coefficients were identified and the physical rele-
vancy of each index to each parameter was checked. The catchment indices indicate better correlation and were

hydrologically relevant to each SWAT model parameter concerning catchment response. Then, they were nominated and
regressed over each SWAT model parameter.

Finally, the regression equation for each SWAT parameter with a function of the physical characteristics and PCs were

developed after checking the hydrological, and statistical significance through R², t-test, and p-value of the regression statistics
(Supplementary material, Appendix A).

The Supplementary material (Appendix A) values were analyzed by the multiple linear regression equation as:

SWAT model sensetive parameters ¼ b0 þ b1X1 þ b2X2 þ b3X3 þ . . .þ bnXn (8)

where X1, X2, X3, Xn are the sets of predictors catchment characteristics, b0: the intercept of the regression line, b1, b2, b3, bn:

the coefficients of catchment features.
Then, substitute the physical characteristics and PC values of the Gelana watershed outlet. Thus, the SWAT model-sensitive

parameters were transferred to the ungauged outlet of the Gelana watershed as shown in Table 20.

3.2.5. Regionalization model validation

The performance of the regionalization model was tasted by calibration and validation on the nearby watershed, before using
the transferred sensitive parameters in an ungauged watershed (Gelana outlet). Thus, the Kulfo watershed was used to

Table 14 | SWAT model optimized parameters values at neighbor gauged catchments

No Parameters name Gelana at Tore Gelana at Yirga- Chafee Gidabo at Aposto Hare at Arba Minch Kulfo at Sikala

1 V__ALPHA_BF.gw 0.000016 0.000065 0.00002 0.00007 0.61

2 V__RCHRG_DP.gw 0.31 0.94 0.12 0.39 0.37

3 V__CH_K2.rte 9.94 64.09 4.45 0.04 15.27

4 R__CN2.mgt �0.30 �0.09 �0.27 �0.34 �0.09

5 V__GWQMN.gw 942.68 2,487.67 1,140.69 882.61 68.36

6 R__SOL_K(..).sol �0.25 �0.03 �0.18 �0.15 �0.12

7 R__SLSUBBSN.hru 1.56 0.59 1.33 1.08 0.06

8 V__HRU_SLP.hru 0.58 0.41 0.70 0.10 0.11

9 R__SOL_Z(..).sol �0.08 �0.07 1.12 2.31 1.97

10 V__ESCO.hru 0.62 0.13 0.25 0.11 0.98

11 V__SURLAG.hru 11.48 12.41 11.42 2.02 4.14

12 R__SOL_AWC(..).sol �0.09 0.15 0.12 �0.05 �0.07

13 R__ALPHA_BNK.rte 0.48 0.92 0.67 0.26 0.20

14 V__OV_N.hru 0.22 0.74 0.43 0.17 0.35

15 V__GW_DELAY.gw 32.35 15.50 20.52 216.54 30.09

16 V__GW_REVAP.gw 0.12 0.15 0.04 0.09 0.09

17 V__EPCO.hru 0.20 0.91 0.11 0.37 0.30

18 R__CH_N2.rte �0.03 0.20 0.01 �0.03 �0.02

19 V__REVAPMN.gw 363.83 209.43 95.90 349.21 138.14
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Table 15 | The 18 physical catchment characteristics

Catchments Area ME LLP TWI Aspect FA MAR PET % FRSE % AGRL % RNGB % FRST % BARR % PAST % URBN Ksat Swc BDM

Gelana at Tore 622.6 2,064.6 61.2 6.4 196.5 2,360.0 1,361.4 351.2 83.9 10.6 0.9 0.1 0.0 0.1 4.4 21.8 0.1 1.2

Gelana at Yirga Chefe 282.3 2,190.9 26.1 6.2 194.8 970.0 1,370.4 347.9 85.1 9.0 0.7 0.1 0.0 0.0 4.8 20.2 0.2 1.4

Gidabo at Aposto 630.0 2,091.4 47.7 6.5 195.2 1,465.3 1,202.7 298.1 61.8 25.8 0.2 0.0 0.0 11.5 0.7 20.2 0.2 1.4

Hare at Arba minch 186.3 2,497.1 35.4 5.9 150.0 1,453.7 948.6 512.7 0.0 73.0 0.8 14.6 0.0 11.4 0.1 36.4 0.1 1.0

Kulfo at Sikela 370.0 2,296.2 39.2 5.7 159.0 1,500.9 1,100.1 511.5 0.0 73.4 2.1 10.4 0.0 14.0 0.0 24.1 0.1 1.1

Gelana at outlet 3,364.6 1,718.8 170.3 6.7 178.9 5,740.6 1,079.8 384.4 29.3 39.7 20.6 3.3 3.9 0.9 2.1 21.8 0.1 1.2
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Table 16 | The inter-correlation of 18 physical catchment characteristics (PCCs)

PCCs Area ME LLP TWI Aspect FA MAR PET % FRSE % AGRL % RNGB % FRST % BARR % PAST % URBN Ksat Swc BDM

Area 1.00

ME � 0.87 1.00

LLP 0.99 � 0.85 1.00

TWI 0.67 � 0.84 0.66 1.00

Aspect 0.10 �0.56 0.07 0.70 1.00

FA 0.98 � 0.83 1.00 0.62 0.04 1.00

MAR �0.21 �0.27 �0.23 0.30 0.88 �0.24 1.00

PET �0.19 0.60 �0.16 � 0.81 � 0.96 �0.11 � 0.72 1.00

% FRSE �0.10 �0.35 �0.11 0.55 0.95 �0.13 0.94 � 0.88 1.00

% AGRL �0.06 0.49 �0.04 � 0.66 � 0.97 �0.02 � 0.90 0.91 � 0.99 1.00

% RNGB 0.98 � 0.78 0.97 0.53 �0.05 0.96 �0.30 �0.03 �0.22 0.07 1.00

% FRST �0.21 0.65 �0.18 � 0.73 � 0.99 �0.14 � 0.84 0.96 � 0.91 0.95 �0.07 1.00

% BARR 0.99 � 0.79 0.98 0.59 �0.01 0.97 �0.29 �0.09 �0.18 0.02 1.00 �0.11 1.00

% PAST �0.42 0.60 �0.42 �0.59 � 0.63 �0.44 � 0.62 0.54 � 0.69 0.76 �0.38 0.65 � 0.60 1.00

% URBN 0.03 �0.35 0.03 0.39 0.74 0.04 0.86 �0.59 0.86 � 0.86 �0.02 � 0.72 0.00 � 0.91 1.00

Ksat �0.27 0.68 �0.23 �0.53 � 0.83 �0.18 � 0.75 0.76 � 0.68 0.72 �0.17 0.88 �0.17 0.45 � 0.62 1.00

Swc 0.04 �0.50 �0.01 0.45 0.87 �0.06 0.82 � 0.81 0.76 � 0.77 �0.07 � 0.90 �0.05 �0.37 0.53 � 0.96 1.00

BDM �0.01 �0.38 �0.09 0.57 0.86 �0.15 0.71 � 02.89 0.79 � 0.80 �0.12 � 0.86 �0.08 �0.37 0.51 � 0.77 0.88 1.00

The bolded values indicate the high inter-correlated parameters.
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validate the regionalization model (Figure 9). According to Santhi et al. (2001), and Moriasi et al. (2007), the general results
indicate that the R2¼ 0.62 and NSE¼ 0.51 during the calibration, and R2¼ 0.66 and NSE¼ 0.52 during validation. These

outcomes reveal a satisfactory agreement of the observed and simulated streamflow.
Therefore, the PCA coupled with the stepwise regression method regionalization model has an adequate performance in

the nearby watershed. So, the transferred SWAT model-sensitive parameters can govern the Gelana watershed outlet

(ungauged part) streamflow simulation.

3.3. Water balance and surface water potential

SWAT model simulation in Tables 21 and 22 reveals that the rainfall, surface runoff, lateral flow, total water yield, and river

flow are directly related, and inversely related to temperature, evapotranspiration and potential evapotranspiration in the
watershed. Average monthly water balance in Table 21 reveals that the most noteworthy mean monthly rainfall
(190.41 mm) and surface runoff (48.19 mm) are recorded in May. Similarly, the maximum lateral flow contribution to

river flow is evaluated in May (27.14 mm). Their subsequent result is the highest water yield in May (128.64 mm). Addition-
ally, the watershed has the greatest runoff volume of 162.14 MCM and the least runoff of 9.15 MCM in May and January,
respectively.

Table 17 | Total variance explained by IBM SPSS software

Initial eigenvalues Extraction sums squared loadings Rotation sums of squared loadings

Component Total % of variance Cumulative % Total % of variance Cumulative % Total % of variance Cumulative %

1 9.895 54.971 54.971 9.898 54.971 54.971 7.598 42.210 42.210

2 6.015 33.417 88.388 6.015 33.417 88.388 6.375 35.416 77.626

3 1.256 6.975 95.364 1.256 6.975 95.364 3.193 17.738 95.364

4 0.625 3.475 98.838

5 0.209 1.162 100.000

6 0 0 100.000

7 0 0 100.000

8 0 0 100.000

9 0 0 100.000

10 0 0 100.000

11 0 0 100.000

12 0 0 100.000

13 0 0 100.000

14 0 0 100.000

15 0 0 100.000

16 0 0 100.000

17 0 0 100.000

18 0 0 100.000

Table 18 | Summary of PCs for catchment characteristics

PCs Eigenvalues Percent of variance (%) Cumulative variance (%)

1 9.895 54.971 54.971

2 6.015 33.417 88.388

3 1.256 6.975 95.364
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Figure 7 | Scree plot by IBM SPSS software.

Figure 8 | Component plot in rotated space.
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Table 19 | Results of PCA (Varimax rotated component matrix)

Factor Eigenvectors Communalities

PC1 PC2 PC3

Swc 0.950 �0.023 0.110 0.914

BDM 0.931 �0.073 0.118 0.885

PET � 0.909 �0.143 �0.273 0.920

FRST �0.709 �0.159 �0.381 0.996

Aspect 0.696 0.048 0.425 0.985

Ksat �0.688 �0.210 �0.122 0.847

AGRL �0.676 �0.017 � 0.619 0.985

FRSE 0.665 �0.139 0.608 0.985

MAR 0.619 �0.257 0.602 0.945

Area 0.062 0.997 �0.001 0.998

LLP 0.009 0.997 0.027 0.994

FA �0.056 0.989 0.076 0.988

BARR �0.047 0.689 0.005 0.980

RNGB �0.081 0.683 �0.010 0.973

ME �0.504 �0.639 �0.150 0.980

TWI 0.598 0.545 0.212 0.819

URBN 0.418 0.003 0.897 0.980

PAST �0.288 �0.400 � 0.864 0.990

The bold values indicates the extraction method by PCA, rotation method; Varimax with Kaiser normalization indicate highly correlated variables and factor loadings in the PCs.

Table 20 | SWAT model-sensitive parameters transferred to the ungauged Gelana watershed outlet

No Parameters name Transposed value

1 V__ALPHA_BF.gw 0.0001

2 V__RCHRG_DP.gw 0.25

3 V__CH_K2.rte 15.42

4 R__CN2.mgt �0.18

5 V__GWQMN.gw 1,221.33

6 R__SOL_K(..).sol �0.21

7 R__SLSUBBSN.hru 1.30

8 V__HRU_SLP.hru 0.43

9 R__SOL_Z(..).sol 0.15

10 V__ESCO.hru 0.42

11 V__SURLAG.bsn 8.24

12 R__SOL_AWC(..).sol �0.06

13 R__ALPHA_BNK.rte 0.49

14 V__OV_N.hru 0.32

15 V__GW_DELAY.gw 33.60

16 V__GW_REVAP.gw 0.09

17 V__EPCO.hru 0.38

18 R__CH_N2.rte �0.05

19 V__REVAPMN.gw 272.70
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Figure 9 | Regionalization model validation.

Table 21 | Average monthly water balance values of the watershed

Month Rainfall (mm) SUR_Q (mm) LAT_Q (mm) WYLD (mm) ET (mm) PET (mm) Av. temp

January 23.72 2.72 2.14 32.09 15.01 46.16 20.54

February 24.95 3.44 2.32 18.97 15.73 41.67 21.51

March 78.64 14.75 7.59 32.81 28.46 42.90 21.69

April 181.57 40.78 21.82 83.75 27.48 31.49 20.63

May 190.41 48.19 27.14 128.64 25.42 27.93 19.82

June 83.14 14.30 11.53 89.05 16.15 19.02 19.21

July 64.85 8.12 7.64 67.36 11.89 14.52 18.89

August 86.25 12.34 10.63 62.46 15.66 18.95 19.22

September 128.53 21.14 14.51 73.47 21.07 25.71 19.58

October 169.64 40.66 25.41 117.27 23.97 28.81 19.57

November 84.93 20.16 13.33 95.09 24.32 36.25 19.58

December 34.81 4.74 3.47 58.04 19.59 43.05 19.78

SURF_Q is the surface runoff, LAT_Q is the later flow in the watershed, WYLD is Water yield, ET is evapotranspiration, PET is potential evapotranspiration, and Av. temp is the average

temperature.

Table 22 | Average annual water balance values of the watershed

No Water balance Depth (mm)

1 Rainfall 1,151.5

2 Surface runoff 231.34

3 Lateral flow 147.54

4 Total water yield 859.00

5 Evapotranspiration 244.75

6 Potential evapotranspiration 376.45

7 Return flow 133.51

8 Recharge to deep aquifer 144.41

9 Percolation to shallow aquifer 577.62

10 Re-evaporation from shallow aquifer 33.51
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There are four seasons in Ethiopia: Winter (Bega) includes December, January, and February; Spring (Belg) includes

March, April, and May; Summer (Kiremt) includes June, July, and August; and Autumn (Tseday) includes September,
October, and November (Daniel & Abate 2022). The contribution of the water balance during the spring season is high
with a total rainfall of 450.62 mm depth, total surface runoff of 103.72 mm, and lateral soil flow of 56.55 mm. However,

the water balance is low during the winter season with a total rainfall of 83.48 mm, surface runoff depth of 10.9 mm,
and lateral soil flow of 7.93 mm. In addition, the contribution of the water balance during the autumn season is rela-
tively higher than the summer season. A corresponding study was done in the Somodo Watershed, Ethiopia by Ashine
(2021).

The result in Table 22 shows that the mean annual rainfall of the watershed is 1,151.5 mm, the surface water runoff is
231.34 mm, and potential evapotranspiration is 376.45 mm. From the whole Gelana watershed area of 3,364.6 km2, 778.4
million m3 yearly surface runoff was produced.

Generally, the rainfall pattern of the Gelana watershed is the bimodal profile with an absolute peak in May and rela-
tive peak in October, with the maximum rain occurring (wet season) from March to May, and from August to November.
Furthermore, the evapotranspiration is dependent on the crop growth, air temperature and soil water content. Conse-

quently, the average temperature rise results in increasing potential evapotranspiration and actual evaporation, which
could be a critical factor for the reduction of total water yield. As the forms of water are exposed to losses, owing to
the rises in temperature, the evaporation is also a factor for the reduction of the surface runoff and river flow in the

Gelana watershed.
Results of a comparative study in the Jewuha watershed, Awash basin, Ethiopia, by Beza et al. (2023) show that the SWAT

model performs very well to demonstrate the surface water compared to the ground water within the wet season.

3.4. Estimated streamflow

The Gelana River at the outlet was estimated by using PCA coupled with the stepwise regression regionalization method. The
SWAT model-sensitive parameters were transferred to the ungauged outlet of the Gelana watershed, then simulate the stream-

flow using the transposed sensitive parameters at the outlet of the watershed. The estimated hydrological data (streamflow)
was for the period 1989–2015, since the available climate data are in these periods, and the hydrological model (SWAT) simu-
lates from available weather input data.

The estimated mean monthly streamflow of the Gelana watershed at outlet around 3,364.6 km2 from 1989 to 2015 were

shown in Figure 10. The peak streamflow was estimated in May and October, and the low streamflow occurred from Decem-
ber to March. The maximum mean monthly streamflow was estimated about 15.7 and 10.25 m3/s at the outlet in May and
October, respectively.

Furthermore, the highest mean annual streamflow was estimated around 9.3 m3/s in 2010, and the minimum flow was seen
around 1.07 m3/s in 2002 in the Gelana watershed outlet (Figure 11). Generally, the monthly and yearly streamflow show
similar trends with the gauged Gelana River at upstream in Tore and Yirgacheffe stations.

Figure 10 | Mean monthly estimated streamflow at the Gelana watershed outlet.
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Therefore, the surface water potential of the Gelana watershed was 778.4 MCM annually from a total area of 336,460 ha.
Thus, surface water potential within the ungauged watershed is adequate to create any pressure and gravity driven structures
for the purpose of obtaining agrarian efficiency and for water supply within the watershed zone.

4. CONCLUSION

This study aims to model and assess surface water potential in an ungauged watershed using the SWAT, PCA, and regression-
based regionalization techniques in the Gelana River, Ethiopia. The five rivers, namely Gelana River gauged at Tore, Gelana

River gauged at Yirgacheffe, Gidabo river, Hare river, and Kulfo river were used for regionalization. The SWAT model was
calibrated (and validated) for the 1989–2007 (2008–2015) period, on the five rivers. Thus, the 19 sensitive parameters were
selected by using SWAT-CUP (SUFI-2). Next, the 18 physical catchments characteristics were selected for correlation, and to
make an equation with 19 optimized SWAT model parameters. These characteristics were categorized as: two climate

descriptors, three soil descriptors, seven land use land cover descriptors, and six topographical descriptors. The regression
equation for each SWAT parameter with a function of the physical characteristics and PCs were developed. The performance
of the regionalization model was validated on the Kulfo watershed, and reveals a satisfactory agreement. So, the transferred

SWAT model-sensitive parameters can govern the Gelana watershed outlet (ungauged part) stream flow simulation. Results
reveal that the watershed has the greatest runoff volume of 162.14 MCM and a least runoff of 9.15 MCM in May and January,
respectively. The contribution of the water balance during the spring season is high with a total rainfall of 450.62 mm depth,

total surface runoff of 103.72 mm, and lateral soil flow of 56.55 mm. However, the water balance is low during the winter
season with a total rainfall of 83.48 mm, surface runoff depth of 10.9 mm, and lateral soil flow of 7.93 mm. From the
whole Gelana watershed area of 3,364.6 km2, 778.4 million m3 yearly surface runoff was produced. Consequently, the average

temperature rise results in increasing potential evapotranspiration and actual evaporation, which could be a critical factor for
the reduction of total water yield. And, the maximum mean monthly streamflow was estimated about 15.7 and 10.25 m3/s at
the outlet in May and October, respectively. In general, surface water potential within the ungauged watershed is adequate to
create any pressure and gravity driven structures for the purpose of obtaining agrarian efficiency and for water supply. There-

fore, hydrological data are essential for management and development of surface water resources. Likewise, it is necessary for
water and land use managers, administrators, planners, builders, engineers, recreationists, and for all sectors. Besides, the
daily, monthly, seasonal, and annual streamflow data are very useful for characterizing streamflow variability.

4.1. Limitations and directions for future research

This study considered only stepwise multiple linear regression coupled with PCA regionalization techniques. Thus, this study

should be extended by comparing different regionalization methods followed by discussion and conclusion based on the
results of different methods. Moreover, the results were based on limited SWAT model-sensitive parameters and physical
catchment characteristics for the production of streamflow. However, if the physical catchment characteristics were

increased the results become more perfect. Thus, the next study should consider several descriptors from different categories.
Besides, only five river records were used for regionalization in this study. Consequently, future studies should consider sev-
eral rivers gauging from different climatic zones and river basins for regionalization of parameters, and for validation of the

Figure 11 | Mean annual estimated streamflow at the Gelana watershed outlet.
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transposed parameters. Furthermore, the stepwise linear regression analysis was done using the 5% probability for selecting a

factor, which is performed using SPSS. Hence, this study should be extended by using other models/software or MCDM
approaches instead of SPSS software.
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