
Downloaded fr
by guest
on 10 April 202
Climate change-induced drought and implications on maize cultivation area in the upper

Nan River Basin, Thailand

Rabin Bastolaa,b, Sangam Shrestha a,*, S. Mohanasundarama and Ho Huu Loca
aWater Engineering and Management, Department of Civil and Infrastructure Engineering, School of Engineering and Technology, Asian Institute of Technology,
Pathum Thani 12120, Thailand
b Department of Environmental Science, Amrit Campus, Tribhuvan University, Kathmandu, Nepal
*Corresponding author. E-mail: sangam@ait.asia

SS, 0000-0002-4972-3969

© 2024 The Authors Journal of Water and Climate Change Vol 15 No 2, 628 doi: 10.2166/wcc.2023.521
ABSTRACT

The escalating frequency of climate change-induced droughts poses a severe threat to rainfed maize cultivation in Thailand’s upper Nan River

Basin (NRB). Utilizing the standardized precipitation evapotranspiration index, this study comprehensively examines spatial and temporal

drought patterns and their potential agricultural impact. Findings indicate a significant shift in precipitation patterns with wetter wet seasons,

drier dry seasons and rising temperatures. The upper NRB experiences prolonged and severe droughts, while the lower region faces higher

drought intensity, signalling an increased likelihood of extended and severe drought episodes in the upper region. Assessing maize cultivation

suitability, factoring in environmental variables and drought impact under observed and climate change scenarios, reveals the current mod-

erate suitability at 42.2%, projected to expand, and unsuitable regions expected to double. Different shared socioeconomic pathways (SSPs)

show varied outcomes, with SSP5-8.5 indicating increased suitability in highly suitable areas and SSP2-4.5 demonstrating improvements in

moderately suitable areas. The study underscores the need for tailored adaptation strategies in water management during droughts to

enhance crop production, especially in dry seasons, in the upper NRB amid a changing climate.
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HIGHLIGHTS

• The upper Nan River Basin (NRB) tends to experience a wetter wet season and drier dry season with rising temperatures.

• The upper region of the basin will likely experience extended periods of drought with higher severity.

• The research findings highlight the impact of drought severity and other environmental variables on maize cultivation in the upper NRB.
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redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/).
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GRAPHICAL ABSTRACT
1. INTRODUCTION

Drought is one of the major consequences of climate change, with prolonged droughts posing a major challenge to agricul-
tural production due to their extended duration (Ahmadalipour et al. 2017; Peña-Gallardo et al. 2019). The spatial and
temporal distribution of drought has significant impacts on availability of water and other environmental attributes, altering
bioclimatic envelope of many plants, including those of agriculture significance (Dai et al. 2020; Jiang et al. 2022; Li et al.
2020). The frequency of droughts is on the rise globally, including in the Mekong area of Thailand, leading to increased
food insecurity and economic losses (Muangthong et al. 2020; Byakatonda et al. 2021; Kang et al. 2021). Several studies
have investigated future drought characteristics in Thailand and shown that northern Thailand, particularly the lower

Mekong Basin, may experience more severe and intense droughts (Thilakarathne & Sridhar 2017; Byakatonda et al. 2021;
Kang et al. 2021). However, such studies are very limited in northern Thailand (Arunrat et al. 2022), and none of them discuss
the potential implications of droughts on maize suitability in the Nan River Basin (NRB).

Drought significantly impacts agricultural productivity through various pathways (Gornall et al. 2010; Brown et al. 2015).
The extent of these impacts depends on the characteristics of drought, such as frequency, intensity and duration, as well as the
specific crop varieties being considered (Mishra & Singh 2010). Agriculture plays a pivotal role in Thailand’s economy, con-

tributing 8.3% to the gross domestic product in 2016 (Office of Agricultural Economics 2017; Office of The National
Economic and Social Development Board 2017). The sector faces significant challenges due to climate change, including
rising temperatures and altered rainfall patterns, resulting in reduced crop yields, especially in rural areas where agriculture
is the primary occupation (Gentle & Maraseni 2012). In northern Thailand, drought further exacerbates agricultural pro-

ductivity, particularly in regions heavily dependent on rainfed farming, such as the study site, where prolonged droughts
have detrimental effects (Gornall et al. 2010; Brown et al. 2015; Ahmadalipour et al. 2017). Maize, a crucial crop in Northern
Thailand, holds the second position after rice, with over 64% of the country’s maize cultivation occurring in the Northern

region (Grudloyma 2014).
The study emphasizes the need for climate change impact assessments across sectors, including agriculture, in Northern

Thailand (Amnuaylojaroen et al. 2021). Water availability is crucial for agriculture in this region, where a lack of water
://iwa.silverchair.com/jwcc/article-pdf/15/2/628/1375915/jwc0150628.pdf
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storage infrastructure during non-rainy seasons presents a challenge, and the Nan River’s water supply is intricately linked to

upstream land use and land cover (Baicha 2016). Moreover, most of the arable (88%) land in the upper NRB is rainfed; there-
fore, assessing patterns of drought and its impact on agriculture land is essential. To address these concerns, the study focuses
on assessing drought risk and its implications on maize-suitable area to guide adaptation planning.

The agricultural sector in Thailand covered 46.5% of the total land area in 2015, and over 34% of the Thai population
depends on the agricultural sector for their livelihood (Office of Agricultural Economics 2015). Natural forest area in Nan
Province, Thailand, decreased by 41.5% between 1995 and 2012, while the agricultural land area increased by 51.1%
(Baicha 2016), increasing demand for agricultural water. Subsequently, local farmers have perceived changes in climatic pat-

terns with a negative impact on farming (Shrestha & Arunyawat 2017).
Understanding the spatial and temporal patterns of drought under different climate change scenarios and their effects on

maize cultivation is crucial for devising appropriate strategies to strengthen community resilience in coping with future

drought scenarios. Standardized precipitation evapotranspiration index (SPEI) is commonly used to identify and monitor
the various levels of drought conditions (Vicente-Serrano et al. 2010; World Meterological Organization (WMO) and
Global Water Partnership (GWP) 2016). The SPEI accounts for the effect of temperature on drought development,

making it a more robust indicator for drought assessment.
In this study, we aim to investigate the patterns of observed and future drought patterns, including spatial and temporal

trends, spatial distribution, intensity and duration, using SPEI as the drought indicator. We used recently available CMIP6

datasets, which are commonly used for similar studies (Arunrat et al. 2022; Muthuvel et al. 2023). The CMIP6 dataset
better captures the key elements of future climate conditions compared to other candidate models like CMIP5, providing
essential information for drought risk management (Li et al. 2020; Ukkola et al. 2020; Zhai et al. 2020). In addition, we
aim to model the maize-suitable areas based on the predicted pattern of drought and examine the potential impact of drought

on the maize-suitable areas in the upper NRB, providing critical information for water-related decision-makers and the devel-
opment of site-specific adaptation strategies.

2. DATA AND METHODOLOGY

2.1. Study area

The upper NRB is located in the northern part of Thailand, between 99°510 E to 101°210 E longitude and 15°420 N to 18°370 N
latitude (Figure 1). The upper NRB is one of the major sub-basins of the Chao Phraya River Basin, contributing approximately
25–40% of the total flow of the Chao Phraya River, which is a vital water resource for the country (Chuenchum et al. 2017).
This study, however, will only consider the upper part of the basin, which covers an area of 13,130 km2. The Nan River,
which originates in the north of the province and flows southward to the Sirikit Dam, joins with other rivers to form the
Chao Phraya River.

The climate of the upper NRB region is significantly influenced by the southwest and northwest monsoons and tropical
depressions from the South China Sea, which occur from July to September. The wet season in the region, which occurs
between May and October, accounts for about 85% of the annual rainfall, with a bimodal pattern of rainfall distribution, peak-
ing in May and August (Petpongpan et al. 2021). The average temperature in the region is approximately 25.6 °C, with an

annual precipitation of 1,382 mm (Wangpimool et al. 2013). The basin experiences two distinct seasons, namely, the wet
season and dry season, where the former spans from May to October, while the latter lasts from November to April. The
temperature gradually increases downstream, with temperatures ranging from 8.0 °C at the river source area in Bo Kluea

District towards the border with Lao PDR to 20.7 °C near the Sirikit Dam in Uttaradit Province of Thailand.
Approximately 35% of the basin area is used for cultivation. Maize is the primary crop in the basin, occupying more than

10% of the total cultivated area. A recent study on the impact of climate change on crop production in northern Thailand

found that the production of rainfed rice and maize may decline by 5 and 4%, respectively (Amnuaylojaroen et al. 2021).
Moreover, more than 64% of the total maize cultivation area is situated in the northern part of Thailand (Grudloyma
2014). Promising adaptation strategies for improving crop production include additional irrigation, crop diversification

and appropriate planting dates, which require further evaluation (Amnuaylojaroen et al. 2021).

2.2. Future climate projections

Observed meteorological data (1986–2020) were used in this study (Table 1). A total of 16 meteorological stations were used
to represent the upper NRB climate from 1981 to 2014.
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Figure 1 | Location of upper NRB in Thailand and its hydrological and meteorological stations.
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Table 1 | Geographical information of the meteorological stations in the upper NRB

SN Station ID Location Latitude Longitude Elevation (m above mean sea level)

1 28022 Wiang Sa, Nan 18° 340 100° 450 192

2 28032 Na Noi, Nan 18° 190 100° 430 262

3 28042 Pua, Nan 19° 100 100° 550 252

4 28073 Tha Wang Pha, Nan 19° 070 100° 480 230

5 28102 Chiang Klang, Nan 19° 170 100° 510 262

6 28142 Mueang, Nan 18° 520 100° 450 302

7 28152 Mae Charim, Nan 18° 440 100° 010 431

8 40043 Song, Phrae 18° 280 100° 110 162

9 40124 Rong Kwang, Phrae 18° 230 100° 220 205

10 70072 Fak Tha, Uttaradit 17° 590 100° 520 265

11 70202 Ban Khok, Uttaradit 18° 020 100° 010 385

12 48307 Thung Chang, Nan 19° 250 100° 520 333

13 48315 Tha Wangpha, Nan 19° 070 100° 470 235

14 48330 Phrae 18° 070 100° 100 162

15 48331 Nan 18° 480 100° 460 200

16 48333 Agromet, Nan 18° 310 100° 270 610
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The CMIP6 models have been used in this study. The CMIP6 model simulations have enhanced the performance of temp-
erature and regional rainfall projections (Eyring et al. 2019; Zhu & Yang 2020). In this study, two scenarios, i.e., SSP2-RCP4.5

(SSP2-4.5) and SSP5-RCP8.5 (SSP5-8.5), are considered (Riahi et al. 2011). Four CMIP6 global climate models (GCM)
(CMCC-ESM2, EC-Earth3, EC-Earth3-CC and GFDL-ESM4) were selected for this study to project future climate (2023–
2097) (Table 2).

The climatic variables include daily maximum near-surface air temperature (tasmax), daily minimum near-surface air temp-
erature (tasmin) and precipitation (pr). These GCMs have been widely used in similar studies (Cook et al. 2020; Ukkola et al.
2020; Iqbal et al. 2021; Schwarzwald et al. 2021; Yue et al. 2021). The entire study period was divided into three 35-year

periods for equal comparison, i.e., history (from 1986 to 2020), near future (NF; from 2023 to 2057) and far future (FF;
from 2063 to 2097).
2.3. Bias correction of climate data

The quantile mapping technique was used to bias correct the GCMs with the observation data provided by the Royal Irriga-

tion Department (RID) and Thai Meteorological Department (TMD). This is a non-parametric bias correction method
(Shrestha et al. 2017; Yue et al. 2021). Quantile mapping is based on daily constructed empirical cumulative distribution
functions (ECDFs) and can improve the median, variance, frequency, intensity and extremes (Themeßl et al. 2012). The
Table 2 | Information about CMIP GCMs used in this study

Model Institution/Country Reference

CMCC-
ESM2

The Centro Euro-Mediterraneo sui Cambiamenti Climatici,
Italy

Iqbal et al. (2021); Lovato et al. (2022)

EC-Earth3 EC-Earth Consortium, Europe Massonnet et al. (2020); Khadka et al. (2021); Döscher et al.
(2021)

EC-Earth3-
CC

EC-Earth Consortium, Europe Swart et al. (2019); Zhu & Yang (2020); Khadka et al. (2021);

GFDL-ESM4 Geophysical Fluid Dynamics Laboratory (GFDL), USA Dunne et al. (2020); Supharatid et al. (2021)
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method corrects the distribution shape of the daily precipitation based on daily constructed pointwise ECDFs. Both wet and

dry days are included in the ECDF estimation. Thus, the frequency of precipitation occurrence is corrected along with its
quantity. The temperature is corrected on the basis of theoretical distribution.

Ycor
t,i ¼ Xraw

t,i þ CFt,i (1)

CFt,i ¼ ecdfobs,cal
�1

doy,i (Pt,i)� ecdfmod,cal�1

doy,i (Pt,i) (2)

Pt,i ¼ ecdfobs,caldoy,i Xraw
t,i (3)

where CF is the difference between the observed and modelled inverse ecdf for the respective day of the year in the calibration
period at probability P, ecdf is the empirical cumulative density distribution, ecdf-1 is the inverse empirical cumulative density

distribution, t represents daily, i is the grid cell, obs is the observed data, mod is the model data, doy is the day of the year, cal
is the calibration period and Xraw is the raw climate model output.

Four GCMs were corrected based on observed climate data obtained from the RID and TMD. Data from five stations were
used for correcting the maximum and minimum temperatures and 11 rain gauge stations for correcting the rainfall. The bias

correction performance was evaluated using the mean, standard deviation, root mean square error and coefficient of deter-
mination (R2). An ensemble of four GCMs was used to represent the climate in the basin under future climate scenarios.
2.4. Calculation of standardized precipitation evapotranspiration index

Different indices assess drought, but subjectivity in its definition makes a unique and universal index challenging to establish
(Heim 2002). The SPEI gains consensus as a common drought index because it considers both rainfall and temperature
(Vicente-Serrano et al. 2010).

Drought metrics include duration (D), intensity (I) and severity (S). Duration refers to consecutive months below the

drought threshold, while frequency is the number of drought events over time (Figure 2). Intensity is the difference between
the threshold and the monthly running mean drought index during a drought. Severity is the cumulative intensity over the
drought period (Ukkola et al. 2020).

SPEI is used in this study for meteorological drought analysis. It uses the concept of ‘climatic water balance,’ which con-
siders the difference between precipitation and potential evapotranspiration (PET) (Peña-Gallardo et al. 2019). PET is
calculated using the Hargreaves method (Hargreaves & Samani 1985), providing an alternative to the Penman–Monteith

method.
Standardized precipitation index/SPEI calculation timescales range from 1 to 48 months or longer, denoted as SPI1

(SPEI1), SPI2 (SPEI2) and so on (World Meteorological Organization 2012). For annual drought trend and intensity,
Figure 2 | Schematic diagram of run theory showing variables of drought – duration, intensity and severity (Lee et al. 2017).

://iwa.silverchair.com/jwcc/article-pdf/15/2/628/1375915/jwc0150628.pdf



Journal of Water and Climate Change Vol 15 No 2, 634

Downloaded fr
by guest
on 10 April 202
SPEI12 in December is used (Sections 3.1 and 3.3). SPEI6 in May and November represent the dry and wet seasons, respect-

ively, based on data from the past 6 months. SPEI3 is used in Section 3.2, as it reflects drought characteristics and the
widespread impact of seasonal drought in tropical and temperate regions, particularly in primary agricultural regions
(WMO 2012; Ukkola et al. 2020).

In this study, the SPEI values are calculated for 3-, 6- and 12-month timescales for each meteorological station. Calculations
were performed using the ‘SPEI package’ available in R-program (Vicente-Serrano et al. 2010). The calculation of the SPEI is
briefly described as follows:

(a) Calculate the difference between precipitation and PET on the monthly basis (Equation (4)):

Dj ¼ Pj � PETj (4)

The PET was calculated using the Hargreaves equation as it performs relatively close to the standard Food and Agricultural
Organization equation (Allen et al. 1998).

(b) The next step is to calculate the accumulated difference between precipitation and PET at different timescales. The accu-
mulated difference (Xk

i,j) at the k-month timescale is calculated using Equation (5):

Xk
i,j ¼

P12
l¼13�kþj

Di�1, l þ
Pj
l¼1

Di, j if j , k

Xk
i,j ¼

Pj
i¼j�kþ1

Di, j if j � k

(5)

where Xk
i,j is the accumulated difference between precipitation and the PET at the k-month timescale in the jth month of

the ith year; Di,l is the monthly difference between the precipitation and the PET in the l month of the ith year.
(c) Normalize the Xk

i,j data sequence. Because there may be negative values in the original data sequence Xk
i,j, therefore, the

SPEI uses the three-parameter log-logistic probability distribution (Vicente-Serrano et al. 2010). For the data sequence of

all timescales, the accumulative function of the log-logistic probability distribution F(X) is given in Equation (6):

F(X) ¼ 1þ a

x� g

� �b
" #�1

(6)

where a, b and g are scale, shape and position parameters, respectively, which can be calculated using the equations pro-

posed by Vicente-Serrano et al. (2010).

p is the probability of a definite Xk
i,j value:

p ¼ 1� F(X) (7)

If p � 0:5,

w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2ln p

p
(8)

SPEI ¼ w� C0 þ C1wþ C2w2

1þ d1wþ d2w2 þ d3w3 (9)
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If p . 0:5,

w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2ln(1� p)

p
(10)

SPEI ¼ C0 þ C1wþ C2w2

1þ d1wþ d2w2 þ d3w3 (11)

where C0 ¼ 2:515517, C1 ¼ 0:802853, C2 ¼ 0:010328 d1 ¼ 1:432788, d2 ¼ 0:189269 and d3 ¼ 0:001308.
The calculated values of the SPEI are classified as shown in Table 3 and are used to analyse the characteristics of dry and wet

events in the basin in terms of their duration, severity and intensity of dry andwet events. The duration of an event is the length of

time (months) that the SPEI is consecutively at or below a truncation level. The drought duration (D) is the period length in
which the SPEI is continuously negative, starting from the SPEI values equal to �1 and ending when the SPEI values turn
out to be positive. The drought severity (S) is the cumulated SPEI values within the drought duration, which is defined by:

Severity (S) ¼ �
XD
i¼1

SPEIi (12)

and intensity of drought is the ratio of severity of drought to its duration. Events that have shorter duration and higher severities
will have large intensities.

Intensity (I) ¼ S
D

(13)

2.5. Mann–Kendall’s trend and Sen’s slope estimation

The Mann–Kendall (MK) test is a non-dimensional statistical method used to detect trends in time series (Mann 1945; Ken-

dall 1975), and is recommend by the World Meteorological Organization (WMO) for trend analysis (Liu et al. 2020). The MK
test was employed to examine the temporal trend of SPEI in this study. For all results, the significance of the trend was tested
at the 5% level.

Sen’s slope estimation is a non-parametric method (Sen 1968) used to determine the magnitude of the trend in hydro-
meteorological data. The method involves computing slopes for all the pairs of ordinal time points and then using the
median of these slopes as the estimate of the overall slope. This method is not affected by outliers in data and can effectively
quantify the trend in a time series data. The estimate of the trend slope Q is given by:

Q ¼ Median
xj � xk
j� k

� �
k , j (14)

where for i¼ 1, 2, …, N, xj is the data value at time j, xk is the data value at time k and j is the time after k ( j. k) and N is a

number of all pairs xj and xk.

2.6. Inverse distance weighting interpolation

To analyse the spatial patterns of the magnitudes and trends of SPEI, the inverse distance weighting algorithm (Fluixá-
Sanmartín et al. 2016) was used, which is widely applied to map the spatial extent of climatic and hydrological point data
(Feng et al. 2017; Ma et al. 2017). The method is a deterministic interpolation assuming that the sample values closer to
Table 3 | Classification of the severity of dry and wet events based on the calculated SPEI

Category SPEI value

Extreme dryness Less than �2

Severe dryness �1.99 to �1.5

Moderate dryness �1.49 to �1.0
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the prediction location are more representative than sample values farther away (Ashraf & Routray 2015). Thus, the closest

value to the prediction location receives the maximum weight, and the weight is decreased as a function of distance (Liu et al.
2020).

2.7. Modelling impact of drought on suitability of maize cultivation area

We prepared maize suitability maps using both physical and bioclimatic variables. We used the maximum entropy model
(Phillips et al. 2006), known as MaxEnt, which is based upon ecological niche theory, that predicts the distribution of a
species over an area from environmental data and species occurrence records (Guisan & Zimmermann 2000). The

MaxEnt model works with ‘presence-only data’ and has outperformed other presence-only modelling algorithms (e.g.,
Hernandez et al. 2006; Aguirre-Gutiérrez et al. 2013). It is a widely used tool to evaluate the suitability of areas and its spatial
distribution for a particular species.

2.7.1. Maize presence data

We derived the maize presence locations from the land use and land cover map of Nan Province. The map includes ‘maize

cultivation’ area as one of the categories. We generated 500 random points from the maize cultivation area with a linear dis-
tance at least of 500 m to avoid spatial autocorrelation in the model.

2.7.2. Environment variables

Environmental variables include those that potentially influence suitability of maize cultivation (Fu et al. 2011; He & Zhou
2012; Tashayo et al. 2020). We selected physical variables, namely, elevation, slope, aspects, soil and profile curvature, as
environmental variables to predict areas suitable for maize cultivation as these variables have a major influence of maize cul-

tivation. Changes in elevation significantly impact various environmental factors, including soil water content, precipitation,
radiation and temperature. These elements fluctuate based on the elevation above the sea level, influencing maize yield,
growth and distribution (Tashayo et al. 2020). Slope also affects maize suitability through various pathways. Generally,

low slope land is more suitable for maize farming (He & Zhou 2012). The steepness of the slope greatly influences the
choice of irrigation methods, drainage rates and mechanization in agricultural activities. Moreover, it indirectly has adverse
effects on soil properties and reduces the crop yield (Fu et al. 2011; Tashayo et al. 2020). Profile curvature is a measure of

curvature parallel to slope direction and has direct implication with water flow acceleration. Aspect is an important variable
and is the steepest downhill direction. It affects temperature and soil characteristics and moisture. The characteristics of the
soil significantly affect the production of maize, and the research findings indicate that the greatest crop output can be
achieved with fully irrigated sandy loam soil (Fang & Su 2019).

All these physical variables have an important role in the extent of suitability of maize cultivation (Fu et al. 2011; He &
Zhou 2012; Tashayo et al. 2020). In addition, we used drought characteristics data as a proxy of bioclimatic variable. It
includes drought duration, drought severity and intensity, which are derived from minimum and maximum temperature

and precipitation. Studies have shown that temperature and precipitation influence maize suitability (He & Zhou 2016;
Kogo et al. 2019; Neswati et al. 2021). Since other bioclimatic variables (e.g., temperature and precipitation) are highly cor-
related with drought characteristics, we therefore retained drought characteristics only in the models.

2.7.3. Modelling procedure

Maize presence data and selected variables were adapted to the format required for MaxEnt software (v 3.3.3k) (Phillips et al.
2006). We selected 75% of maize presence data to build the model, with the remaining 25% used for model verification. We
included 10 replicates in our analysis. We used a jackknife estimator to detect the importance of each variable. The model
output includes a probability map ranging from 0 to 1. The models were verified by receiver operating characteristic
(ROC) curve values, where an ROC value .0.7 is considered a good model. We reclassify the map into four suitability classes

following criteria of the Intergovernmental Panel on Climate Change as follows: ,0.05, unsuitable; 0.05–0.33, marginally
suitable; 0.33–0.66, moderately suitable; and .0.66, highly suitable (Manning 2006; Yue et al. 2019). These classes indicate
how suitable the respective areas would be for maize cultivation under the given climate change scenarios. This procedure

was followed for building maize suitability for mapping of observed drought condition and two climate change pathways
(SSP2-4.5 and SSP5-8.5). The ROC values indicated a good performance of the models for all scenarios: observed (0.719),
SSP2-4.5 NF (0.722), SSP2-4.5 FF (0.718), SSP5–85.5 NF (0.70) and SSP5–8.5 FF (0.70).
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Table 4 | Mann–Kendall’s test results of observed and future SPEI in the upper NRB

SPEI

Observed SSP2-4.5 SSP5-8.5

Trend Slope Trend Slope Trend Slope

Whole year No trend �0.0220 Increasing 0.0341 Increasing 0.0939

Dry season No trend �0.0001 Increasing 0.0222 Increasing 0.0376

Wet season No trend �0.0034 Increasing 0.0026 Increasing 0.0323

Note: No trend means the trend is not significant (α¼ 0.05).
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3. RESULTS

3.1. Observed and future trend of drought

The observed and future temporal trend of SPEI in the upper NRB is presented in Table 4. The spatial distribution of SPEI in

the upper NRB is shown in Figures 3(a)–3(c). The upper NRB will become wetter in the wet season and over the whole year in
the future, as demonstrated by SPEI, but the trend is not statistically significant and is also decreasing during the observed
period.

There is a rising trend of SPEI in the whole year and wet season in the future period under SSP2-4.5 and SSP5-8.5 (Table 4),
but there is no significant and decreasing trend during the observed period for all seasons.

Under SSP2-4.5 and SSP5-8.5, the whole year SPEI (i.e., SPEI12 of December) increased by 0.0341 per year and 0.0939 per
year, respectively, across the entire study river basin. The dry season SPEI (i.e., SPEI6 in May) increased by 0.0222 per year

and 0.0376 per year, respectively. The wet season SPEI (i.e., SPEI6 of November) increased by 0.0026 per year and 0.0323 per
year, respectively.

The whole year, dry season and wet season SPEI of future periods in the upper NRB show slight increases, whereas the

observed period SPEI decreased. The results indicate that drought tends to be less severe during wet season and whole
year than in the dry season (Figures 3(a)–3(c)). During the last quarter of the 21st century, the wet season will be wetter com-
pared to the earlier future periods. Moreover, the study found that short-term drought events were frequent and alternating

throughout the study period, with extreme events in 1992, 2015 and 2019, while long-term droughts lasting more than 6
months occurred, with several before the 1990s and then reappearing after a two-decade gap. The most severe and intense
events were observed in 1992 (Table 5).

3.2. Spatial distribution of observed and future drought duration, intensity and severity

Observed (1986–2020) and two future periods, i.e., NF (2023–2057) and FF (2063–2097), were compared to analyse changes
in future drought duration, intensity and severity in different regions in the upper NRB (Figures 4–6).

Based on the results, the upper region of the basin experienced extended and severe drought, while the intensity of drought
was higher in the lower region of the basin during the observed period. The NF under both scenarios show longer drought in
the upper region, while the FF under SSP2-4.5 shows longer drought in the mid-region and SSP5-8.5 shows longer drought

along the lower stretch of the basin. The severity also follows the same pattern as the duration under NF and FF under both
scenarios. However, the intensity of drought during NF and FF under two scenarios shows mixed and contrasting results
(Figures 5 and 6).

The NF under SSP2-4.5 and SSP5-8.5 shows longer drought duration in the upper parts of the basin similar to the observed
period. The results of SSP5-8.5, however, show shorter drought in most parts of the basin except lower parts during the FF
compared to the observed period and future period under SSP2-4.5 scenario. Hence, the upper NRB will experience more wet
conditions during FF than in NF.

3.3. Temporal evolution and frequency of occurrence of dry and wet events in the basin

We analysed a 35-year observed dataset from 1986 to 2020 and a 75-year projected dataset from 2023 to 2097 under SSP2-4.5

and SSP5-8.5 scenarios to create the 12-month SPEI time series. In Figure 7, we show the evolution of 12-month SPEI values
across upper NRB stations, revealing three distinct phases in dry and wet events. From 1986 to 1995, dry events prevailed,
while after 2010, drought events increased, often mixed with wet conditions. The future period under SSP2-4.5 and SSP5-8.5
://iwa.silverchair.com/jwcc/article-pdf/15/2/628/1375915/jwc0150628.pdf



Figure 3 | Dynamics of observed and future (a) annual, (b) dry season, and (c) wet season SPEI of the upper NRB (future projection is based
on average of the four GCM models).
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Table 5 | The duration, severity and intensity of occurrence of some of the major dry events (SPEI��1) in the upper NRB during observed
period (1986–2020)

Period of occurrence Duration Severity Intensity

Dry events for SPEI3

Aug 86–Dec 86 4 �6.69 �1.67

Aug 89–Oct 89 3 �3.85 �1.28

Apr 92–Jun 92 3 �5.78 � 1.93

Nov 93–Feb 94 4 �6.17 �1.54

Jan 07–Mar 07 3 �4.29 �1.43

Aug 12–Oct 12 3 �3.99 �1.33

Jun 15–Aug 15 3 �5.47 �1.82

Apr 19–Jun 19 3 �4.13 �1.38

Nov 19–Mar 20 5 �8.58 �1.72

Dry events for SPEI6

Aug 86–Jan 87 6 �9.90 �1.65

May 92–Oct 92 6 �10.86 � 1.81

Oct 93–Feb 94 5 �6.54 �1.31

May 09–Jan 10 9 �11.25 �1.25

Jun 15–Nov 15 6 �10.83 �1.80

Feb 19–Jul 19 6 �8.15 �1.36

Feb 20–Jul 20 6 �10.38 �1.73

Dry events for SPEI12

Dec 86–Oct 87 11 �17.24 �1.57

Aug 89–Mar 90 8 �9.46 �1.18

Jul 91–Jan 92 7 �8.78 �1.25

Apr 92–Nov 92 8 �13.55 � 1.69

Aug 09–Jul 10 12 �17.19 �1.43

Jun 15–Apr 16 11 �16.02 �1.46

Jul 20–Dec 20 6 �8.48 �1.41

The bold intensity values represent the highest drought intensities at SPEI3, SPEI6, and SPEI12.
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shows contrasting pictures. The NF period seems to be dominated by dry events compared to the FF period. Moreover, the FF
under SSP5-8.5 scenario shows prolonged wetter condition at the last quarter of the 21st century.
3.4. Temporal pattern of observed drought duration, intensity and severity

The temporal pattern of short-term drought (SPEI3) shows that the frequency of alternating dry–wet conditions is higher
throughout the study period. The basin experienced extreme short-term drought (SPEI3��2) events in May to June 1992,

July 2015, and November 2019. The SPEI6 and SPEI12 represent the long-term water deficiency for almost about a year
with considerable fluctuation of the dry and wet events than the SPEI3. A total of seven long-term (more than 6 months)
drought events (1986–1987, 1989–1990, 1991–1992, 2009–2010, 2015–2016, and 2020) were observed during the study
period. Most of these drought events were frequent before the 1990s and, after a gap of more than two decades, became

more frequent, suggesting longer droughts in recent decades over the basin.
The longest duration of dry events for SPEI12 was 12 months (August 2009 to July 2010) followed by 11 months during

December 1986 to October 1987 and June 2015 to April 2016). Based on SPEI6, the longest drought event was 9 months,

observed during the May 2009 to January 2010 period. Table 5 shows that the most severe dry event for SPEI3, SPEI6
and SPEI12 were observed during November 2019 to March 2020, May 2009 to January 2010, and December 1986 to Octo-
ber 1987 periods, respectively. Moreover, the most intense event was observed during 1992 for all timescales.
://iwa.silverchair.com/jwcc/article-pdf/15/2/628/1375915/jwc0150628.pdf



Figure 4 | Spatial distributions of SPEI3 drought duration (a), unit: month; intensity (b); and severity (c) across the upper NRB for the observed
period.
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The moderate drought at 3-, 6- and 12-month timescales had the highest frequencies of 8.2, 12.6 and 12.6%, respectively,
over the upper NRB (Figure 8). The results also showed that moderate drought frequencies for SPEI3, SPEI6 and SPEI12
were 2.7 (12.0), 3.1 (7.4) and 3.1 (10.6) times higher than the severe and extreme drought frequencies, respectively.

Meanwhile, severe and extreme drought frequencies at the SPEI3 were 3.1 and 0.7%, whereas the severe drought frequency
was 2.4 and 3.4 times higher than the extreme drought frequency for 6- and 12-month time timescales.

Overall, the results indicate that the moderate drought was higher than the severe and extreme droughts during the
observed period over the upper NRB. The longest short-term drought (SPEI3) was observed in 2019/2020 with a duration

of 5 months and a total severity of �8.58. Moreover, the longest duration of 9 and 12 months were observed for SPEI6
and SPEI12, respectively (Table 6).

Moreover, the SPEI6 exhibited the shortest average duration, whereas the SPEI3 demonstrated the lowest average severity

(Figure 9). Interestingly, the average intensity remained consistent across all timescales (SPEI3, SPEI6 and SPEI9).
The duration and severity of drought at the SPEI12 and SPEI6 were higher than at the SPEI3, while the intensity was lower

in the case of SPEI6 and SPEI12. Further, the increase in duration leads to an enhanced drought severity and intensity at a

longer timescale.

3.5. Observed and projected seasonal drought distribution

The seasonal distribution of meteorological drought in the future is illustrated in Table 7. Generally, both seasonal droughts
are similar during the observed period. Under SSP2-4.5 during the FF period, the percentage of dry season drought under
severe and exceptional drought grade is higher (53%) than in wet season (47%). In contrast, under SSP5-8.5 during the FF

period, the percentage of wet season drought under severe and exceptional drought grade is higher (54%), while that for
dry season is only 46%. The FF results under SSP5-8.5 are like those under SSP2-4.5, with a higher percentage of mild drought
higher for dry season and severe and exceptional drought higher for wet seasons.

3.6. Impact of drought on maize suitability area

Elevation and slope were among the most important variables describing the distribution of maize cultivation in the upper

NRB (Table 8). Other physical factors such as aspect and curvature were not important (Table 8). Among the three charac-
teristics of drought, severity was important in the observed and SSP5-8.5 scenario, whereas intensity was important in SSP2-
4.5 scenario.

The areas suitable for maize in the upper NRB, based on observed drought condition, showed that moderately suitable area
comprised the highest proportion of the basin (42.2%), followed by highly suitable area (29.2%) and marginally suitable
area (28.5%) (Table 9 and Figure 10). Under the SSP2-4.5 NF scenario, there was a slight increase in moderately suitable area
om http://iwa.silverchair.com/jwcc/article-pdf/15/2/628/1375915/jwc0150628.pdf
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Figure 5 | Spatial distributions of SPEI3 drought duration (a and d), unit: month; intensity (b and e); and severity (c and f) based on ensemble
of CMIP6 GCMmodels across the upper NRB under SSP2-4.5 and SSP5-8.5 scenarios. The first row figures are for NF (2023–2057) under SSP2-
4.5 and second row for NF under SSP5-8.5.
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(3.0%), while a decrease in marginally suitable area (1.4%) and highly suitable area (2.4%), and no change in unsuitable

area. However, in the case of FF scenario of this projection (SSP2–4.5 FF), the model indicated a double increase in unsuitable
area, with a decrease in the marginally suitable area (0.1%), moderately suitable area (0.4%) and highly suitable area (0.2%).

In contrast, there was a double increase in unsuitable area under SSP5-8.5 NF scenario with a decrease in the marginally

suitable area (5.5%) and highly suitable area (0.7%). Here, moderately suitable area was projected to increase by 6.2%. Look-
ing further ahead into the FF under SSP5-8.5, a notable increase in highly suitable areas by 3.2% was observed, while
marginally suitable areas decreased slightly by 1%. Moreover, unsuitable areas remained the same as observed (0.1%) and
moderately suitable areas decrease by 2.2% in comparison with NF projection.

A model showed that the proportions of different land-use classes that remained unchanged, in comparison with the
observed one, in the SSP2-4.5 NF and SSP2-4.5 FF scenarios were 56 and 69%, respectively (Figures 11 and 12). Under
SSP5-8.5 scenario, the proportion of areas that remained unchanged were 33 and 77% in NF and FF scenarios, respectively.

Thus, in the NF, the unchanged area was high in SSP2-4.5 compared to SSP5-8.5 (Figure 11). There was a reverse pattern in
the FF where more area remained unchanged in SSP5-8.5 compared to SSP2-4.5 (Figure 12). Nearly 21% of the area is pro-
jected to have improved suitability classes in SSP2-4.5 NF scenarios, which was lower than SSP5-8.5 NF scenario (16%)
://iwa.silverchair.com/jwcc/article-pdf/15/2/628/1375915/jwc0150628.pdf



Figure 6 | Spatial distributions of SPEI3 drought duration (a and d), unit: month; intensity (b and e); and severity (c and f) based on ensemble
of CMIP6 GCMmodels across the upper NRB under SSP2-4.5 and SSP5-8.5 scenarios. The first row figures are for FF (2063–2097) under SSP2-
4.5 and second row for FF under SSP5-8.5.
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(Figure 11). Here, 22% of the area comprising various categories of maize suitability is projected to have deteriorated suit-

ability classes in SSP2-4.5 NF, the same in SSP5-8.5 NF (20%), suggesting a net deterioration of suitability classes.
Interestingly, nearly 13% of the area is projected to have improved suitability classes in SSP2-4.5 FF scenario, where a

slightly higher proportion area (16%) was projected in the SSP5-8.5 FF scenario (Figure 12). Here, 14% of the area comprising

various categories of maize suitability is projected to have deteriorated suitability classes in SSP2-4.5 FF, the same in SSP5-8.5
NF (7%), suggesting a net gain of suitability classes (Figure 12).
4. DISCUSSION

4.1. Evolution of temporal and spatial pattern of drought

The results from this study are overall consistent with previous studies based on the CMIP6 model projections. For instance,

Wang et al. (2021) assessed drought characteristics at a global scale based on multiple indicators from 11 CMIP6 models.
They discovered that, in the 21st century, numerous regions worldwide are anticipated to witness heightened frequencies,
prolonged durations and expanded spatial coverage of droughts. Previous studies show that the Southeast Asian region
om http://iwa.silverchair.com/jwcc/article-pdf/15/2/628/1375915/jwc0150628.pdf
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Figure 7 | The evolution of the SPEI for 12-month timescale over the upper NRB during (a) observed period, and future periods (b) SSP2-4.5
and (c) SSP5-8.5, showing the variation in the duration, severity and intensity of dry and wet events.

Figure 8 | Observed frequencies of moderate, severe and extreme drought at SPEI3, SPEI6 and SPEI12 timescales over the upper NRB.
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would experience more droughts under the scenarios SSP1-2.6, SSP2-4.5 and SSP5-8.5 (Byakatonda et al. 2021; Zeng et al.
2022).

This region, particularly Thailand and the Mekong River Basin, is also projected to have a similar temporal drought pattern
when using different indices at different timescales (Thilakarathne & Sridhar 2017; Muangthong et al. 2020; Khadka et al.
://iwa.silverchair.com/jwcc/article-pdf/15/2/628/1375915/jwc0150628.pdf



Table 6 | Maximum and minimum duration, severity and intensity of SPEI3, SPEI6 and SPEI12 over the upper NRB (1986–2020)

SPEI Maximum (minimum) duration months Maximum (minimum) severity Maximum (minimum) intensity

SPEI3 5 (1) �8.58 (� 1.03) �1.93 (� 1.03)

SPEI6 9 (1) �11.25 (� 1.03) �1.81 (� 1.03)

SPEI12 12 (1) �17.24 (� 1.04) �1.69 (� 1.04)

Figure 9 | Average duration, severity and intensity of SPEI3, SPEI6 and SPEI12 over the upper NRB (1986–2020).

Table 7 | Meteorological drought occurred in the dry season and wet season in upper NRB in the future under SSP2-4.5 and SSP5-8.5
scenarios

Drought type Season

Scenario

Observed
SSP2-4.5 SSP5-8.5

historical (1986–
2020)

Near future (2023–
2057)

Far future (2063–
2097)

Near future (2023–
2057)

Far future (2063–
2097)

Mild and above (SPEI≦� 0.5) Dry 49% 49% 49% 53% 51%
Wet 51% 51% 51% 47% 49%

Severe and exceptional
(SPEI≦� 1.3)

Dry 51% 49% 53% 48% 46%
Wet 49% 51% 47% 52% 54%

Note: Here the thresholds of drought are the same as that used by US Drought Monitor (Svoboda et al. 2002).

Table 8 | Importance of variables for different climate change scenarios

Variables

Variable importance

Observed SSP2-4.5 NF SSP2-4.5 FF SSP5-8.5 NF SSP5-8.5 FF

Elevation 52.1 50.2 51.4 49.4 53.4

Slope 17.2 13.2 13.4 17.1 21.2

Intensity 6.7 17.2 19.7 13.7 4.2

Severity 10.6 3.4 6.2 15.4 14.2

Curvature 5 3.2 3.3 2.6 2.6

Duration 4.5 11.6 2.2 1.4 2.3

Aspect 3.2 1.3 1.6 2.0 2.1
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Figure 10 | Maize suitability area projected using observed and projected climate change scenarios based on the maximum entropy model.

Table 9 | Percentage area of different suitability classes under climate change scenarios

Scenario Time Unsuitable Marginally suitable Moderately suitable Highly suitable

Observed 0.1 28.5 42.2 29.2

SSP2-4.5 Near future 0.1 27.9 45.2 26.8

SSP2-4.5 Far future 0.2 28.0 44.8 27.0

SSP5-8.5 Near future 0.2 23.0 48.4 28.5

SSP5-8.5 Far future 0.1 22.0 46.2 31.7
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2021). Our analyses of drought characteristics over the upper NRB based on the 3-, 6- and 12-month SPEI for the period
beginning 1986–2020 showed longer droughts in the upper region of the basin, which is more intense in terms of water
demands for agriculture due to lack of irrigation facilities (Chaowiwat et al. 2016). It is now accepted that climate change

has altered the patterns of rainfall, resulting in more frequent extreme weather events such as drought and flood (Tabari
2020). Our results of spatial and temporal evolution of dry and wet events captured by 3-, 6- and 12-month timescales of
SPEI would have crucial implications on agriculture and community resilience. It is shown that dry conditions were
://iwa.silverchair.com/jwcc/article-pdf/15/2/628/1375915/jwc0150628.pdf



Figure 11 | Change in maize production suitability areas under climate change scenarios (SSP2-4.5 and SSP5-8.5) in the near future.

Figure 12 | Change in maize production suitability areas under climate change scenarios (SSP2-4.5 and SSP5-8.5) in the far future.
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predominant during the observed period than in the future. The seasonal drought is similar for wet and dry seasons while the
FF period seems to experience wetter conditions, particularly under SSP5-8.5 scenario. The pattern of the temporal evolution
of dry/wet events in the basin can be due to the influence of the high variability of seasonal and annual rainfall in the South-

east Asia region. The severe drought in 2016 along Southeast Asia is believed to be strongly linked to the super El Niño (Li
et al. 2022). This study also captured the worst drought events during the 2015–2016 (Zenkoji et al. 2019) and 2019–2020
periods (NASA 2020) in Thailand.
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4.2. Seasonal drought impact

The agriculture sector is vulnerable to climate, and it is especially important to identify the most appropriate tools for moni-
toring the impact of the weather on crops, and particularly the impact of drought. Drought indices calculated at different

timescales (SPI or SPEI) are most closely correlated with crop yield, suggesting different patterns of yield response to drought
depending on the region (Peña-Gallardo et al. 2019). As a paddy crop, the impact of rice yield is related to precipitation, as
illustrated by previous studies (Thuy & Anh 2015; Chen et al. 2020). According to Kang et al. (2021), the increase in precipi-
tation and CO2 concentration in the Lower Mekong Basin could result in increased rice production. This study shows that

drought conditions in both seasons are similar during the observed period. In the FF period under SSP2-4.5, the occurrence of
dry season drought is elevated. Conversely, under SSP5-8.5, there is a higher prevalence of mild drought during the dry
season, along with increased occurrences of severe and exceptional drought during the wet seasons. Considering the

uneven distribution of irrigation facilities, and spatial and seasonal heterogeneity in future drought projections (Prabnakorn
et al. 2018), further studies are needed to investigate how future changes in drought influence water security and crop pro-
duction in the upper NRB and explore possible adaptation strategies.

4.3. Potential implication for maize cultivation area

Our study offers valuable insights into the present and projected suitability of maize in the upper NRB under two climate
scenarios. The findings demonstrate a redistribution of maize-suitable areas in response to climate change, particularly
under drought projections for both NF and FF scenarios. Regarding drought, the current findings align with the work of

Rangwala & Miller (2012), who emphasized the importance of drought severity in crop distribution models. In addition, a
study by Diffenbaugh et al. (2018) demonstrated the influence of drought intensity on crop suitability, which is consistent with
the results showing the relevance of intensity in the SSP2-4.5 scenario. Looking into future scenarios, the projection of increased
unsuitable areas is consistent with the predictions of Chen et al. (2020), who forecasted worsening agricultural conditions due to

climate change. Regarding land-use changes, the results corroborate with the studies of Ty et al. (2022), which found shifts in land-
use classes under different climate scenarios, supporting the notion that land-use changes are scenario dependent.
5. CONCLUSION

Based on the observed climate data and an average of four CMIP6 models under two climate change scenarios, this study
examines the observed and future drought characteristics using SPEI in the upper NRB. This study highlights the contrasting

changes in observed and future periods, and in the dry and wet seasons. The conclusions are as follows.

(1) There is an increasing trend of SPEI in the whole year and wet season of future period under SSP2-4.5 and SSP5-8.5 scen-

arios, but no significant and decreasing trend during the observed period for all seasons. The future trend in dry season
drought is higher than the wet season. The wet season will be wetter in the future compared to the observed period, par-
ticularly during the FF under SSP5-8.5 scenario.

(2) Based on SPEI, the upper region of the basin experienced extended and severe drought, while the intensity of drought was
higher in the lower region during the observed period. Moreover, in the NF, both scenarios show longer drought in the
upper region, while the FF under SSP2-4.5 shows a longer drought in the mid-region and SSP5-8.5 shows a longer drought

along the lower stretch of the basin.
(3) The results indicate that the moderate drought was higher than the severe and extreme droughts during the observed

period over the upper NRB. The longest short-term drought (SPEI3) was observed in 2019/2020 with a duration of 5
months and a total severity of �8.58. Moreover, the longest duration of 9 and 12 months were observed for SPEI6

and SPEI12, respectively.
(4) The study findings provide valuable insights into the topographical factors influencing maize cultivation areas in the

upper NRB and offer valuable implications for agricultural planning and climate change adaptation in the region. More-

over, the results indicate a redistribution of maize suitability areas under two climate change scenarios.

Since future droughts during the dry season are expected to become more severe while the wet season becomes wetter in

the upper NRB, further studies are needed to investigate the application of differentiated adaptation strategies for different
districts under drought conditions to increase maize production, particularly during the dry seasons, in the face of a changing
climate.
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