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ABSTRACT

To enhance the mining area's overall use of mine water in the arid area of Western China and mitigate the current water scarcity problem,

this paper introduces an intelligent optimization algorithm and neural network for mine water quality evaluation and proposes a principal

component analysis (PCA)–particle swarm optimization (PSO)–back propagation (BP) mine water quality evaluation model. Firstly, the

model uses PCA to identify the primary factors affecting mine water quality, then enhances the optimal weights and thresholds of the BP

neural network based on the PSO algorithm, and the PCA–PSO–BP evaluation model with nine input layers, nine hidden layers, and one

output layer is created. In addition, using the Shicaocun Mine as an example, the results demonstrate that the PCA–PSO–BP model has accu-

rate mine water quality evaluation results, and the prediction accuracy reached 86.8255%. This exemplifies the PSO method's superiority to

the BP neural network improvement. This study not only offers a novel theoretical framework for assessing and forecasting water quality in

mining regions, but it also sets the stage for the possible broad use of state-of-the-art neural networks and optimization algorithms in the coal

mining industry.

Key words: BP neural network, mine water quality evaluation, particle swarm optimization (PSO), principal component analysis (PCA),

PSO–BP model

HIGHLIGHTS

• Intelligent algorithms and neural networks are introduced into mine water quality evaluation.

• Established a PCA–PSO–BP model for mine water quality evaluation.

• Realized the accurate evaluation and reasonable prediction against the background of big data.

• Provide reference for the in-depth research of optimization algorithms and neural networks in the field of water quality evaluation.
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GRAPHICAL ABSTRACT

1. INTRODUCTION

The role of coal as the primary energy source in China will not change for a very long time (Wang et al. 2019), and the dis-

tribution of coal resources in China indicates a situation where more is in the West and less is in the East (Shang et al. 2016;
Wang & Luo 2018), which is exactly the opposite of the distribution of water resources. Therefore, mining coal in arid mines
in western China will deplete the water resources and exacerbate the current situation of water scarcity in the mines. (Wang

et al. 2021). According to statistics, 2.1 t of mine water is created for every 1 t of raw coal mined, meaning that there is a huge
waste of mine water resources. Mine water cannot be utilized directly due to the presence of suspended materials, salts, heavy
metals, and other components. Instead, it must be graded based on its quality (Mitko et al. 2021; Zhang et al. 2022). In order
to maximize the use of mine water resources and reduce adverse environmental consequences, it is crucial to accurately

evaluate the different categories of mine water quality.
Several water quality evaluation methods have played a significant role in encouraging the development of water quality

evaluation. At this point, the methods of mine water quality evaluation mostly include the single-factor evaluation method

and the complete pollution index method. Although the single index evaluation technique is easy to use, it does not ade-
quately reflect the full state of water quality, leading to significant differences. This is because it employs a single index as
the reference standard (Zhao et al. 2021). The Nemerov pollution index is one of the most widely used comprehensive pol-

lution index methods in evaluating mine water quality. The method is simple to calculate and the physical concept is
understandable, but it emphasizes the impact of the maximum pollution index on the mine water quality, making it
simple to exaggerate the effects of specific pollutants on water quality while at the same time indicating that the weight of

each pollutant index is not objective when determining, which will eventually lead to inaccurate conclusions (Liu et al.
2022; Sharma & Krupadam 2022). In addition to the previously mentioned research methods, related theoretical techniques
and models include principal component analysis (PCA) (Liu et al. 2020), Bayesian theory (Huang et al. 2019), fuzzy com-
prehensive evaluation method (Liu et al. 2021), gray system theory (Guo et al. 2020), cluster analysis method (Prasad et al.
2020), hierarchical analysis method (Yu et al. 2022), entropy power analysis method (Ju & Hu 2021), fuzzy variable set theory
(Li et al. 2022), material element topological model (Shi et al. 2018), set pair analysis method (Qu et al. 2021), and multi-
criteria group decision-making models (Baghapour et al. 2020). These models also support accurately classifying the water

quality in mining areas and evaluating sudden water hazards. However, they have shortcomings such as instability in the cal-
culation process, lack of universality, and a large gap between calculations and real outcomes in the definition of index
thresholds.
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Machine learning and intelligent optimization algorithms have been used extensively in the area of artificial intelligence

and big data. Zhang & Li (2019) designed a fuzzy genetic neural network model to realize the detection of atmospheric qual-
ity. Liu (2022) adopted particle swarm optimization (PSO) to improve the traditional BP neural network (BPNN) and finally
constructed a PSO-powered BP neural network (PSO–BPNN) model for the intelligent emergency risk avoidance of sudden

financial disasters. Nassif (2014) used evolutionary algorithms to optimize artificial neural network models for decreasing the
energy consumption of air conditioning systems in the field of architectural design. A thorough IFPA-BP network model was
built for the intelligent diagnosis of natural gas pipeline defects, realizing the intelligent diagnosis of natural gas pipeline
defects. This was based on the IFPA algorithm, which is used to optimize the initial weights and thresholds of the BPNN

(Liang et al. 2020). Yang (2022) introduced a BPNN optimization algorithm based on a multidirectional mutation genetic
algorithm (MMGA-BP). The multidirectional mutation genetic BPNN method is used for the intelligent optimization of Eng-
lish-teaching courses. To effectively predict the stock index, Yang et al. (2019) proposed a hybrid intelligent algorithm based

on brain storm optimization and PSO to optimize the parameters of the system model. Du et al. (2013) proposed an integrated
learning algorithm, combining the RCDPSO_DM algorithm with a Kalman filtering algorithm, which was applied to optimize
antecedent and consequent parameters of constructed T-S FNNs, for medical applications handling complex clinical pathway

variances. In the study applying intelligent optimization algorithms to COVID-19 identification, Baghdadi et al. (2022) pro-
posed a method for automatically and accurately classifying COVID-19 on CT lung images using convolutional neural
networks (CNNs), pre-trained models, and the sparrow search algorithm (SSA).

As can be seen, intelligent optimization algorithms and neural networks have been used in a variety of fields. However,
there have been relatively few studies on the evaluation of mine water quality using intelligent optimization algorithms
and neural networks, even though these technologies have strong fault tolerance, high classification accuracy, and robustness.
Therefore, this study proposes to incorporate an intelligent optimization algorithm and neural network into the evaluation of

mine water quality. It also innovates and develops the mine water quality evaluation model. It can support the reasonable and
scientific evaluation of mine water quality, as well as lay the theoretical scientific foundation for mine water treatment, util-
ization, and discharge.

2. THEORETICAL FOUNDATION

2.1. Principal component analysis

PCA is a mathematical transformation of multiple indicators with high correlation into several uncorrelated composite indi-
cators, or principal components, by using the idea of dimensionality reduction (Marukatat 2022). Assume that the original
variables are n-dimensional vectors [ f1 f2 … fn], and the dimensionality reduction yields k-dimensional variables [F1 F2 … Fk]
(k , n). PCA recombines the n-dimensional original variables to obtain a new k-dimensional linearly uncorrelated variable,
as shown in Equation (1).

F1 ¼ a11f1 þ a12f2 þ � � � þ a1nfn
F2 ¼ a21f1 þ a22f2 þ � � � þ a2nfn
..
.

Fk ¼ ak1f1 þ ak2f2 þ � � � þ aknfn

8>>><
>>>:

(1)

The principal components obtained after PCA processing can reflect most of the information of the original variables with
fewer indicators and are independent of each other, eliminating the information redundancy of the original numerous factors
and reducing the complexity of the problem (Hsieh & Tung 2009). In addition, PCA can eliminate the influence of correlation

among evaluation indicators and overcome the shortcomings of correlation among indicators and overlapping information
reflected by indicators in multi-indicator evaluation, which makes the evaluation results more accurate.

2.2. The BPNN

BPNN is a neural network with reverse error transmission, which is usually composed of an input layer, hidden layer and
output layer. The learning process is mainly divided into two parts: forward transmission of information and backward propa-

gation of error. The training of the network is completed by continuously adjusting the weights and thresholds of the neural
network through multiple cycles of training so that the output results tend to be close to the target value. A single hidden layer
BPNN with d input units Xd, m hidden units Zm, and l output units Yl is given in Figure 1, where Vih denotes the connection
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weight between input unit Xi and hidden unit Zh, and Wqj denotes the connection weight between hidden layer unit Zq and
output layer unit Yj (Dong et al. 2013).

BPNN can handle non-smooth, non-time-series data related to water quality evaluation, but at the same time, it is easy to

fall into the problem of local minima itself, and the difficulty in determining the weights and thresholds may lead to inaccur-
ate results of mine water quality evaluation.

2.3. Particle swarm optimization

At the end of the 20th century, Kennedy and Eberhart proposed PSO capable of performing swarm intelligence searches
(Mendes et al. 2004). This algorithm is a swarm-intelligent search method, mainly inspired by the predation process of
birds, where the solution of each optimization problem is considered as a spatially flying bird, denoted as a particle, and

each particle searches for an individual optimal solution in the local solution space, and all particles together form a
swarm of particles, which obtain the swarm optimal solution by communicating with each other (Clarke et al. 2014).

The PSO algorithm runs initially to generate a random group of particles with vector dimension n. Then the position of a

particle can be written as a point in the n-dimensional search space, that is, a solution in the n-dimensional optimization
space. xj denotes the vector of the current position of the jth particle.

xj ¼ x j1, x j2, . . . , x jn

vj denotes the current velocity vector of the jth particle.

vj ¼ v j1, v j2, . . . , v jn

In the process of each iteration, the particle position vector needs to be substituted into the customized fitness function Ek

first, and the fitness value of the particles is solved to find the best position pj and the global best position gj of the individuals
of the particle population over generations by comparing the optimal fitness value, i.e.

pj ¼ pj1, pj2, . . . , pjn

gj ¼ g j1, g j2, . . . , g jn

Figure 1 | Schematic diagram of BPNN structure.
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The swarm of particles is updated and optimized by pj, gj, xj and vj to find the position vector and velocity vector after the

iteration, and the evolution equation of this algorithm can be expressed as (Jiang et al. 2021).

vj(kþ 1) ¼ v� vjkþ c1 � r1 � [pj(k)� xj(k)]þ c2 � r2 � [gj(k)� xj(k)]
(2)

xj(kþ 1) ¼ xj(k)þ vj(kþ 1) (3)

where j ¼ 1,2,3, …,N,N denotes the total number of particle swarms; vj denotes the velocity of the particle; xi is the position of
the particle; v is the inertia factor; c1 and c2 are the learning factors; pi is the optimal solution of the individual; gi is the opti-
mal solution of the whole; r1 and r2 are the random numbers between [0, 1]; k and k þ 1 denote the kth and k þ 1th

generations, respectively.
The performance of the algorithm is strongly influenced by the v inertia weight, the v larger it is, the better it is for

global optimization search, and the v smaller it is, the better it is for local search. In this paper, we choose adaptively

adjustable inertia weights, which are negatively correlated with the number of iterations, and the expressions are as
follows.

v ¼ vmax � (vmax � vmin)� k
kmax (4)

where k is the current iteration number; kmax is the maximum iteration number; vmax and vmin are the maximum and
minimum values, respectively.

The PSO algorithm has the advantages of high efficiency and fast search speed, therefore, it is used to improve the BPNN to

solve the defect that the BPNN is easy to fall into local optimum and achieves the purpose of improving model accuracy.

2.4. Construction of the BPNN model based on PCA and PSO

In the construction of the BPNN evaluation model of mine water quality, the accuracy of the evaluation results can be
improved by appropriately increasing the network input variables. However, there are many factors affecting mine water

quality, and there is often a high correlation between different factors, resulting in a large amount of redundancy of infor-
mation, which not only makes the accuracy of the evaluation model deviated but also increases the difficulty of data
processing. PCA is the main method to solve the correlation between factors. The PCA algorithm can get the main factors
affecting the mine water quality by analyzing the contribution rate and cumulative contribution rate of each influencing

factor to the mine water quality, and the accurate prediction of the mine water quality can be made by considering only
the main factors.

The threshold and weights of the BPNN affect the accuracy of the neural network model; usually, the initial weights and

thresholds are determined by random assignment. However, this method tends to make the BPNN fall into local optimal sol-
utions. In order to overcome the defects and accelerate the convergence speed, this paper adopts the PSO algorithm to
optimize the BPNN. The PSO algorithm can expand the space to search for the optimal solution and has a strong global

search capability, and the search for the optimal weights and thresholds is completed through continuous iterative updating.
The optimal weights and thresholds of the BPNN can be determined to improve the accuracy of the BPNNmodel and realize
the scientific evaluation of the water environment in the mining area.

Thus, the BPNN is improved based on PCA and PSOmethods, the mine water quality evaluation model of PCA–PSO–BP is

proposed, and its implementation process is shown in Figure 2.
The steps for constructing a BPNN model based on PCA and PSO improvements are as follows.

(1) Determine the structure and relevant parameters of the BPNN.
(2) Set the cluster size, the initial flight speed of the particles and the corresponding point positions. The current best point

position of the particle is selected as the initial point position, and the best point position of the swarm is the global best

point position.
(3) Each particle contains a fitness value, which is used to reflect the superiority or inferiority of the particle. After training

the BPNN, the training error is used as the fitness value of the current point position of the particle, and the result is
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compared with the value of the previous best point position, if it is better than the previous best point position, it is
replaced, otherwise, it remains unchanged.

(4) If the global best point position is less than the previous best point position of the current particle, the global best point
position is replaced by the previous best point position, otherwise, it remains unchanged.

(5) Reprogram the flight speed of the particle and the corresponding point position according to Equations (2) and (3).
(6) Check whether the algorithm meets the termination condition (the number of iterations reaches the maximum number of

iterations or the error accuracy reaches the initially set target error accuracy), if the termination condition holds, the best

weight and threshold are output, and then the model is further simulated, otherwise skip to (3).

3. CASE STUDY

3.1. Background

The Shicaocun coal mine is a medium and large coal mine in the south of the Yuanyang Lake mining area of Ningxia Ning-
dong coalfield, and the administrative division is under the jurisdiction of Ningdong Town, Lingwu City, Ningxia. Ningxia is

located in the western part of China, where water resources are scarce, and mining activities will aggravate the current situ-
ation of water scarcity in the mine area, so the efficient use of mine water is very important for the protection of mine water
resources, and the comprehensive evaluation of mine water quality is a prerequisite for the efficient use of mine water
resources.

Eighty sets of mine water observation points were selected in the Shicaocun coal mine, and the mine water was tested by
laboratory testing at each testing point. The main testing indexes included sulfide ( f1), oxygen consumption ( f2), hexavalent
chromium ( f3), total hardness ( f4), ammonia nitrogen ( f5), volatile phenols ( f6), sulfate ( f7), chloride ( f8), nitrate ( f9), total
dissolved solids ( f10), fluoride ( f11), turbidity ( f12), mercury ( f13), selenium ( f14), total alpha radioactivity ( f15), total beta
radioactivity ( f16), anionic surfactant ( f17), sodium ( f18), zinc ( f19), iron ( f20), septum ( f21), lead ( f22), aluminium ( f23),
total bacterial colony ( f24), etc. Some data on specific test results are shown in Supplementary material, Appendix. According

Figure 2 | Flow chart of PCA–PSO–BPNN.
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to the Groundwater Quality Standard (GB/T14848-2017) (Chen et al. 2022), the mine water quality was classified into the

following five categories, and the mine water quality classification is shown in Table 1, detailed groundwater quality classi-
fication indicator ranges are provided in Supplementary material, Appendix.

We can determine the grade of each index by comparing the mine water test results with the Groundwater Quality Stan-

dard, but we are unable to determine the mine water quality overall. For instance, the monitoring points 01s lead and
cadmium indicators meet the standard in class V, the indication of oxygen consumption meets class IV, and the total
number of colonies indicator meets class I. 2160. However, it is not possible to determine the overall water quality of the
monitoring site. It is evident that while the standard can assess the grade of a particular indicator, it is unable to assess

the overall mining area’s water quality. As a result, a set of models for evaluating the water quality in mining areas must
be created.

Although there are relevant studies in the evaluation of mine water quality at this stage, mine water quality is affected by a

variety of factors, and it is difficult to evaluate the water quality reasonably by a single indicator or multiple indicators. In
addition, the mine water quality contains a large amount of data, and the traditional evaluation method can’t make full
use of all the data. Therefore, intelligent algorithms and neural networks can be introduced into the mine water evaluation

to make full use of all the data to achieve accurate evaluation and prediction of mine water quality.

3.2. PCA reduction

Due to a large number of water quality testing indicators; direct water quality evaluation on the one hand, the fact that the
amount of data is large, on the other hand, there may be a correlation between the indicators, which will also affect the evalu-
ation results. Therefore, first of all, through the method of PCA, the water quality impact factors for dimensionality reduction

processing. In the SPSS software for PCA, select the eigenvalue greater than 1 as the extraction conditions, the results of the
PCA are shown in Table 2.

According to the results of principal component extraction, the final 24 indicators of water quality impact factors were

downscaled into nine principal components, nine principal components are independent of each other, and cover more
than 75% of the information of the original 24 indicators, to achieve the downscaling of indicators. According to the
factor score matrix of the nine principal components in the PCA, the factor score of each principal component can be cal-

culated, and the combined linear function of each principal component is shown in Equation (5).

F1 ¼ 0:425f1 þ 0:334f2 þ 0:323f3 þ � � � � 0:129f23 þ 0:086f24
F2 ¼ 0:175f1 � 0:127f2 þ 0:265f3 þ � � � þ 0:254f23 þ 0:195f24
..
.

F9 ¼ �0:035f1 � 0:247f2 þ 0:087f3 þ � � � þ 0:205f23 þ 0:404f24

8>>><
>>>:

(5)

where f1–f24 denote the 24 water quality impact indicators, F1–F9 denote the extracted nine principal component factor
scores, respectively.

3.3. PSO–BPNN algorithm design

Based on the nine principal components obtained by dimensionality reduction of PCA, as the input parameters of the BPNN,
and the mine water quality level as the output parameters of the neural network, the input unit d of the network is 9, the

Table 1 | Groundwater quality standard classification table

Classification Meaning

Class I Low groundwater chemical component content, suitable for various applications.

Class II Lower groundwater chemical component content, suitable for various applications.

Class III Medium content of groundwater chemical component, suitable for centralized domestic drinking water sources.

Class IV The high content of groundwater chemical components, suitable for agriculture and some industrial water

Class V Groundwater with high chemical component content is not suitable as a source of domestic drinking water.
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output unit l is 1, and the number of hidden layer units m can be determined according to Equation (6) (Li 2020).

m ¼
ffiffiffiffiffiffiffiffiffiffiffi
dþ l

p
þ a (6)

where m is the number of cells in the hidden layer, d is the number of cells in the input layer, l is the number of cells in the

output layer, and a is an integer between [1,10].
Through several experiments, it is verified that the model accuracy of the BPNN is higher when m ¼ 9, so the number of

nine hidden layer units is set. The construction of the BPNN topology is carried out in MATLAB R2020b, as shown in
Figure 3.

4. RESULTS

4.1. PSO–BP model training

The PSO–BP mine water quality evaluation prediction model is constructed based on MATLAB R2020b. The input nodes are
the nine principal components that have been dimensioned down by PCA, the output nodes are the mine water quality levels,

and the number of hidden layers is determined to be nine according to Equation (6).
The BPNN parameters were set with a training number of 1,000 times, a learning rate of 0.01, a minimum error of 1� 10�6,

a Tansig function for the implicit layer, a Purelin function for the output layer, and a Trainlm for the training function.

Table 2 | Results of principal component dimensionality reduction analysis

Components

Initial eigenvalue Extraction of the sum of squares of loads

Total Percentage of variance Accumulation, % Total Percentage of variance Accumulation, %

1 3.225 13.437 13.437 3.225 13.437 13.437

2 2.955 12.313 25.750 2.955 12.313 25.750

3 2.309 9.619 35.369 2.309 9.619 35.369

4 2.161 9.004 44.373 2.161 9.004 44.373

5 1.732 7.215 51.588 1.732 7.215 51.588

6 1.720 7.167 58.754 1.720 7.167 58.754

7 1.478 6.157 64.912 1.478 6.157 64.912

8 1.372 5.718 70.630 1.372 5.718 70.630

9 1.191 4.963 75.593 1.191 4.963 75.593

10 0.896 3.734 79.327

11 0.836 3.485 82.812

12 0.804 3.352 86.164

13 0.665 2.769 88.933

14 0.574 2.393 91.326

15 0.442 1.841 93.167

16 0.433 1.805 94.972

17 0.3030 1.377 96.348

18 0.274 1.143 97.492

19 0.229 0.955 98.446

20 0.153 0.636 99.082

21 0.105 0.437 99.519

22 0.061 0.256 99.775

23 0.030 0.127 99.901

24 0.024 0.099 100.000

Extraction method: Principal component analysis
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The 80 ollected sets of data were randomly sorted, and the first 70 sets were selected as the training set for training and the
last 10 sets as the testing set. Normalizing the data before training can eliminate the influence between the magnitude and
order of magnitude of different indicators and help improve the learning speed of the network, and the formula for normal-

izing the data is as follows.

i ¼ x� xmin

xmax � xmin
(7)

where i is the normalized input data, x is the actual data, and xmax and xmin are the maximum and minimum values of the
actual data, respectively.

The model training results are shown in Figures 4 and 5. Figure 4 is a graph of the change in optimal individual fitness, the

horizontal axis indicates the number of iterations and the vertical axis indicates its fitness value. From Figure 4, it can be seen
that the PSO–BP model can converge to the optimal fitness value quickly, and during the iteration, the particles can jump
out of the optimal value to search and avoid falling into the local optimum, and the accuracy is high, which shows the super-

iority of the PSO algorithm to improve the BPNN. Figure 5 shows the training results of the PSO–BP model, where the index
value of the y-axis is a quantitative expression of the quality of mine water, according to the mine water quality classification
standard, class I corresponds to [8, 10], class II corresponds to [6, 8], class III corresponds to [4, 6], class IV corresponds to

[2, 4], and class V corresponds to [0, 2]. It can be seen that after 70 sets of sample data for training, the PSO–BP model has
high accuracy and can be used to evaluate and predict the quality of mine water.

Figure 3 | BP neural network topology diagram.

Figure 4 | Adaptation function.
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4.2. Analysis of evaluation results

To illustrate the advantages of the PSO–BPNN model, the prediction results of the traditional BPNN are compared with

those of the PSO–BP model to discuss the advantages of the constructed PSO–BP model. The prediction values of the tra-
ditional BPNN and the PSO-optimized BPNN for 10 sets of test samples are given in Figure 6. It is obvious that the
prediction effect of the BPNN optimized by the PSO algorithm is more accurate than that of the traditional BPNN, and

the prediction values of the PSO–BP model for 10 sets of samples almost overlap each other, while the conventional
BPNN has a poor fit between predicted and actual values compared to PSO–BP.

To analyze the prediction results of the PSO–BP model separately, 10 of these samples were selected as the test set and
validated in the PSO–BP model, and the results of the predicted and real values of PSO–BP for each group of samples are

shown in Figure 7. It can be seen that the predicted values in the test set are very close to each other and the prediction results
are more accurate.

Figure 5 | PSO–BP model training results.

Figure 6 | PSO–BP and BP predicted values.
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4.3. Discussion

Figure 8 gives a comparison of the prediction error values between the traditional BPNN and the PSO–BP model, and it can
be found that the error value of the BPNN fluctuates more, and the error values of all test sample points are higher than those

of PSO–BP model, while the prediction error of PSO–BP is between +0.02, and the stability and error value is better than
that of BPNN. In order to more clearly analyze the accuracy of the constructed PSO–BP prediction model, the prediction
errors of the test set samples are shown in Figure 9, from which it can be seen that the errors of all test samples are between
+0.01, among which the error of test sample 8 is the largest, reaching 0.015, and most of the samples have errors between

+0.01, indicating that the prediction results of the PSO–BP model are more accurate and can achieve accurate prediction
and evaluation of mine water quality.

In order to evaluate and compare the model prediction accuracy objectively, this study uses the evaluation indexes of mean

square error (MSE), mean absolute error (MAE), root mean square error (RMSE), and mean percentage error (MAPE) to
analyze the prediction accuracy of the two models, and the calculation results are shown in Table 3. It is obvious from

Figure 7 | PSO–BP predicted and actual values.

Figure 8 | Comparison of PSO–BP and BP errors.
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the table that the PSO–BP model has a prediction error of 13.1745% and a prediction accuracy of 86.8255%, while the BPNN
model has a MAPE of 49.943% and a prediction accuracy of only 50.057%, which also proves that the PSO–BP model has a
higher prediction accuracy than that of the BPNN.

In addition, we analyze the training time of the model by changing the number of training data sets. When the training set data
is 80, the training time of the model is 32.9816 s, when the training data of the model is reduced to 50, the training time shrinks to
27.7433 s, and when the training data is 30, the training time is 26.3589 s. It can be seen that the amount of training data is pro-

portional to the training time of the model, and when the number of the training set is reduced, the training time is reduced as
well, but as the number of training continues to decrease, the rate of training time reduction becomes slower and slower.

By comparing the traditional BPNN with the PSO–BP model, it is found that the BPNN has the problems of slow conver-

gence speed and long training time. While this study makes full use of the global search capability of the PSO algorithm to
optimize the BPNN, it can improve network prediction performance and computational efficiency. Moreover, for the pro-
blem of multi-indicator evaluation, it may be that the number of indicators is too large, leading to too much computation.

This paper proposes a pre-processing method of indicator dimensionality reduction by using PCA, which can achieve the
reduction of the number of evaluation indicators, but also retain the main information to ensure the accuracy of the evalu-
ation results. In conclusion, the PCA–PSO–BPNN model proposed in this paper can solve the problem of multi-indicator
evaluation and has the advantages of high computational efficiency and accurate evaluation results. It has accurate prediction

results for mine water quality, which can propose a new assessment system for mine water quality evaluation.

5. CONCLUSIONS

An intelligent optimization algorithm and neural network are introduced into mine water quality evaluation, and a mine

water quality evaluation model of PCA–PSO–BPNN is proposed, which can provide an intelligent evaluation prediction
model for the research related to mine water quality, and the main conclusions are as follows.

(1) The quality of mine water is influenced by several things. The PCA method is used in this study to minimize the dimen-
sionality of the factors influencing the quality of mine water. It achieves dimensionality reduction of the data and
minimizes information loss by reducing the original 24 evaluation indexes to nine primary components.

Figure 9 | Error plot of the test sample set.

Table 3 | Comparison of prediction accuracy indexes of two models

MSE MAE RMSE MAPE

BP 4.3987 1.6615 2.0973 49.943%

PSO–BP 0.25972 0.46655 0.50963 13.1745%
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(2) The PSO algorithm enhances the BPNN, and to make up for the difficulty of figuring out the thresholds and weights of the

conventional BPNN, the optimal weights and thresholds of the BPNN are determined by using PSO search.
(3) Using the water testing data from the Shicaocun Coal Mine, the developed PCA–PSO–BP mine water quality evaluation

prediction model was validated and contrasted with the conventional BPNN prediction outcomes. The outcomes show

that the PCA–PSO–BP water quality evaluation model has an 86.8255% prediction accuracy compared to the convention-
al BPNN.
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