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ABSTRACT

Increased nutrient and/or water uptake by arbuscular mycorrhizal (AM) symbiosis can affect soil biochemical properties and emission of the

greenhouse gas carbon dioxide (CO2). Therefore, an experiment was designed to investigate the effect of AM fungi (AMF) on CO2 emissions

from turfgrass. Three different AMF species (Funneliformis mosseae, Claroideoglomus etunicatum, and Rhizophagus irregularis) were used in

this experiment. Turfgrass plants were cultivated in pots containing both mycorrhizal and non-mycorrhizal soils over a 10-week period. To

mimic real-world conditions, the plants underwent irrigation cycles at intervals of 1, 2, and 3 days, replicating common irrigation practices

in turfgrass fields. The research aimed to comprehensively understand the effects of AMF and varying irrigation intervals on CO2 emissions,

soil characteristics, plant growth, and AMF parameters. It was observed that the changing irrigation intervals affected the AM symbiosis and

this effect increased as the irrigation interval increased. It was determined that this AM symbiosis created with the plant significantly reduced

CO2 emissions. In addition, it was determined that it regulates the soil structure and increases plant growth. In conclusion, it can be said that

AMF species reduce CO2 emissions by reducing the need for water in the turfgrass.
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HIGHLIGHTS

• Host plants inoculated with arbuscular mycorrhiza (AM) symbiosis are believed to tolerate stressful situations.

• Increased CO2 emissions in soil may pose a threat to a sustainable ecosystem.

• CO2 emissions and soil temperature have been reduced with mycorrhiza treatments.

• It has been determined that AM fungi increases plant growth under different irrigation intervals.

INTRODUCTION

Turfgrass production, an essential part of the green ecosystem, directly depends on irrigation. However, while the amount of
water used may pose a problem for the water needs of the increasing world population, increasing CO2 emissions in the soil
can pose a danger to a sustainable ecosystem (Allaire et al. 2012; Hatfield-Dodds et al. 2017; Song et al. 2018). To avoid this,
the availability of arbuscular mycorrhizal fungi (AMF), which have the potential to increase the water cycle and thus improve

environmental quality in various ecosystems, has been reported (Gianinazzi et al. 2010; Jackson et al. 2012).
It creates arbuscular mycorrhizal (AM) symbiosis by interacting with plant roots of AMF (Smith & Read 2010; Smith &

Smith 2011; Boyno & Demir 2022). This symbiosis has been demonstrated by research in which photoassimilate carbon com-

pounds exchange in the uptake of soil nutrients, especially phosphorus (P) (Kiers et al. 2011; Fellbaum et al. 2014; Boyno
et al. 2022). It has also been suggested that these fungi may affect CO2 emissions in the soil through their direct respiration
or indirect effects on heterotrophic microorganisms (Johnson & Bridge 2002; Langley & Hungate 2003; Cavagnaro et al.
2008).

AM symbiosis can also affect CO2 emissions in the soil through changes in soil physical properties (Augé 2004; Cavagnaro
et al. 2012). The amount of water in the soil significantly impacts the microbial communities and changes the processes of
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mineralization, gaseous diffusion, oxygen availability, nitrification, and denitrification (Blagodatsky & Smith 2012). A large

body of research suggests that, in addition to the direct effects of soil on water retention, AM symbiosis modifies plant–water
interactions and makes mycorrhizal plants more resilient to water stress than non-mycorrhizal plants (Augé et al. 2001;
Burger et al. 2005). Mycorrhizal plants often have their stomatal conductivity unchanged for longer than non-mycorrhizal

plants when soil moisture is lowered by lengthening the watering interval (Duan et al. 1996). Similarly, mycorrhizal plants
frequently display better photosynthetic rates in low soil moisture situations, demonstrating a more substantial tolerance
to drought and internal water use efficiency (Augé et al. 2001; Ruiz-Lozano et al. 2012). Mycorrhizal plants typically have
more significant plant sizes, allowing hyphae to explore the soil’s water and nutrients more deeply, increasing the rate of

photosynthetic activity (Augé et al. 2001; Birhane et al. 2012). However, among plants of comparable size and nutritional
content, mycorrhizal and non-mycorrhizal plants vary in their water interactions (Kothari et al. 1990). Compared to non-
mycorrhizal plants, mycorrhizal plants may absorb more water, which might lead to reduced plant water demand and soil

moisture, affecting biogeochemical soil cycles and CO2 emissions (Augé et al. 2001; Augé 2004).
AM symbiosis of plant roots may boost water and nutrient usage effectiveness, enhancing the quality of the environment in

many environments (Gianinazzi et al. 2010; Jackson et al. 2012). The development of sustainable ecological practices

depends on understanding how these symbiotic interactions affect plant nutrition and biogeochemical cycles. This study
examined how AM symbiosis affects CO2 emissions from the soil under varying irrigation intervals of turf plants. We hypoth-
esized that mycorrhizal plants would reduce CO2 emissions by reducing their water requirement. To test this hypothesis, a

controlled in vivo experiment was designed.

MATERIALS AND METHODS

Plant/fungal materials and study area

Turfgrass seeds (content: 40% Lolium perenne, 35% Festuca rubra rubra, 15% Festuca rubra commutata, and 10% Poa pratensis)
were obtained from a private company (4D Dominantl Mix, Dr Tohumculuk Co., Turkey). AMF inoculums (Funneliformis
mosseae, Claroideoglomus etunicatum, and Rhizophagus irregularis) were also obtained from the culture collection in
Phytopathology Laboratory, at the Department of Plant Protection, Faculty of Agriculture, Van Yuzuncu Yil University,

Turkey. The study was carried out in the climate room of the Faculty of Agriculture of Van Yuzuncu Yil University. During
the study, the mean temperature and humidity inside the climate room were determined as 22+ 3°C and 45+ 5% (Figure 1).

Study design

In the research, 16� 18 cm plastic pots that can hold 1 l of mixture were used. In the experiment, cultivation soil containing
1:2 sand, which was disinfected by keeping it in an autoclave at 121°C for 1 h, was used. Based on this soil volume, 10% AMF
inoculum (F. mosseae, C. etunicatum, and R. irregularis) was added to the cultivation soil and mixed; 10% sterile sand was

added to the pots without AMF application. Turfgrass mixture consisting of 40% L. perenne, 35% F. rubra rubra, 15% F. rubra
commutata, and 10% P. pratensiswas planted in this cultivation soil at 50 g m�2 seeds per pot (Celebi et al. 2009). The sowing
rate, amount, and selection of turfgrass varieties were determined considering the purity and the germination rate of the seeds
before the study. The seeds were covered with peat, burnt-sieved barn manure, and the soil at a ratio of 1:1:1 and pressurized

Figure 1 | Daily temperatures [ ] and humidity [ ] inside the climate room throughout the experimental period.
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by weight. Peat was preferred to protect the soil and seeds from excessive light and other external factors, while barn manure

was preferred to increase moisture retention despite the soil’s light texture. After the sowing process was completed, 4 g m�2

of 26% ammonium nitrate fertilization was applied (Celebi et al. 2009). The turfgrass lawn mowing was initially made to be
cut from 8 to 6 cm in order not to prevent the development of roots and crops and then to be cut from 5–6 to 3–4 cm approxi-

mately every 8–10 days (Morris & Shearman 1998).
The field capacity (pot capacity) and irrigation water amount were determined on a weight basis. The non-mycorrhiza treat-

ment was placed in the water pan and kept in the pan until complete wetting of the soil surface through capillarity. Then it
was drained with gravity to remove excess water above the field capacity, and the field capacity was determined as

0.322 m3 m�3. The irrigation water amount applied in each irrigation was determined with I¼Wfc –Wi where I is the irriga-
tion water amount (mL), Wfc and Wi are weights of the pot (kg) at field capacity and measurement day, respectively.

Until the turfgrass germinated, the amount of moisture that decreased every day was completed to the field capacity. For

this purpose, 18.3 mm of irrigation water was applied in this process. Irrigation treatments (irrigation at intervals of 1, 2, and 3
days) started with the first lawn mowing after the crop height was 8 cm (11th day of the study) and continued. The total
amount of irrigation water applied during the study was approximately equal in all treatments (Figure 2).

Soil analysis

In the experimental soil, particle size distribution (Gee & Bauder 1986), bulk density, specific gravity (Blake & Hartge 1986),
aggregate stability (Kemper & Rosenau 1986), CaCO3 (Nelson 1982), organic matter (Nelson & Sommers 1982), total nitro-

gen (Bremner & Mulvaney 1982), available phosphorus (Olsen et al. 1982), and available potassium (Knudsen et al. 1982)
were determined by analysis. Soil reaction (pH) (McLean 1982) and electrical conductivity (EC) (Corwin & Rhoades
1984) were determined using a pH meter and conductometer in the saturation extract, respectively, while the porosity
(Danielson & Sutherland 1986) and organic carbon (Avramidis et al. 2015) were also calculated. According to the USDA

classification, the soil was sandy loam, and the study of soil properties is given in Table 1.

Irrigation water analysis

In the middle of the study, the tap water was used as irrigation water, cations (Ca, Mg, Na, and K) were determined by induc-

tively coupled plasma - optical emission spectrometry (ICP-OES) (Anonymous 2007), CO3 and HCO3 were determined by
titration with sulfuric acid, CI was determined by titration with silver nitrate using a potassium chromate indicator (Tuzuner
1990), SO4 was determined by a spectrophotometer (HACH 2010), pH and EC were determined by the pH meter and the

conductivimeter by direct reading. The sodium absorption rate (SAR) and percent sodium (%Na) were determined by calcu-
lation (Kanber & Unlu 2010). The values regarding irrigation water quality are given in Table 2.

The plant growth parameters

At the end of the study, turfgrass color values were determined by three researchers according to a 1–9 scale (1: yellow, 3:
light yellow-green, 5: green, 7: dark green, and 9: highly dark green) and turfgrass quality values were also determined accord-
ing to the uniformity, density, color, and homogeneous appearance, again with the same method, according to the 1–9 scale

(Morris & Shearman 1998). Plant fresh weights were determined by weighing. The plant materials were dried at 70 °C for

Figure 2 | The total amount of irrigation water applied during the study.
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48 h and measured to estimate the dry weights. The root length (cm) was determined using a digital caliper (Insize-1112–150,

Germany).

AMF root colonization, spore density, and mycorrhizal dependency assays

Root cleaning and staining (Phillips & Hayman 1970) and the grid line intersect technique were used to assess the coloniza-
tion of host plant roots by AMF (Giovannetti & Mosse 1980). Root segments (0.5–1 cm) were treated with 10% KOH (Merck
1.05012.1000, Germany) and 10% HCl (Merck 1.00312.2500, Germany) after being washed in distilled water. The root por-

tions were then dyed with 0.05% Lactophenol blue (Merck 1.13741.0100, Germany), and lactoglycerol was used to clean
them 2–3 times. To investigate fungal colonization and structures, microscopic slides were created. These slides were created
by cutting 1 cm long segments to represent the root zone. A total of 27 segments were evaluated in this way for each sample.
Fungal spores were extracted from soil samples (1 g in three replicates) using the ultrasound centrifugation technique (Boyno

et al. 2023) and AM fungal spore density in 1 ml was counted using a stereomicroscope (Leica, Germany). Then, the number
of AM fungal spores in 1 g of soil was determined by the following formula (Boyno et al. 2023).

TSN ¼ [SN�W ] 4 S

where TSN is the total AMF spore numbers in 1 g of rhizosphere, SN is the AMF spore numbers in 1 mL of spore suspension,
W is the amount of water used (ml), and S is the amount of soil used (g).

Mycorrhizal dependency (MD) was also determined after 10 weeks of the host plant’s growth (Declerck et al. 1995), as
follows:

MD (%) ¼ [A� B]� 100 4 A

where A is the AMF (þ) total dry weight of the plant and B is the AMF (–) total dry weight of the plant.

Table 1 | The properties of experimental soil

Property Property

Soil texture Sandy loam EC (dS m�1) 0.615

Sand (%) 66.3 pH 7.17

Silt (%) 15.6 CaCO3 (%) 2.2

Clay (%) 18.1 Organic matter (%) 0.81

Bulk density (g cm�3) 1.37 Organic carbon (%) 0.47

Specific gravity 2.69 Total N (%) 0.040

Porosity (%) 49.1 P2O5 (kg ha
�1) 59.0

Aggregate stability (%) 48.1 K2O (kg ha�1) 662

Table 2 | The properties of irrigation water used in the study

Property Property

Ca (me L�1) 1.96 CO3 (me L�1) -

Mg (me L�1) 3.65 HCO3 (me L�1) 2.91

Na (me L�1) 0.42 Cl (me L�1) 1.22

K (me L�1) 0.22 SO4 (me L�1) 1.97

EC (dS m�1) 0.644 SAR 0.25

pH 7.91 %Na 6.72
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Carbon dioxide (CO2) measurements

Carbon dioxide emission from soil was measured with a gas analyzer instrument (EGM-5, PP Systems, Stotfold, UK), which is
a portable dynamic closed chamber infrared gas analyzer system, by taking three measurements from each treatment at the

same time every day and continued until the end of the study. The non-steady state through the flow chamber (SRC-1, PP
Systems, Stotfold, UK; volume 1,334 cm3 and area 78.5 cm2) had only one opening to the soil. In addition, these values
were recorded at the time of carbon dioxide measurement to determine the relationship of carbon dioxide with soil tempera-
ture and soil moisture. Soil temperature was measured at a depth of 5 cm with an STP-1 soil temperature probe connected to

the EGM-5 (Buragiene et al. 2019; Yerli & Sahin 2021), while the soil moisture was determined according to weight.

Statistical analysis

Statistical analyses were performed by using the SPSS software (V23.0). ANOVA was applied to the data, and Duncan’s mul-
tiple range test was used to compare significant means. In addition, linear regression analysis was used to evaluate the

relationship of CO2 emission with soil temperature and soil moisture.

RESULTS

Soil properties

The effects of AMF species (F. mosseae, C. etunicatum, and R. irregularis) on soil properties at different irrigation intervals are

presented in Table 3. It was determined that mycorrhizal treatments had no effect on EC and pH values in the soil compared
to non-mycorrhizal treatment at varying irrigation intervals. However, it was determined that mycorrhizal treatments
increased other parameters (organic matter, organic carbon, total nitrogen (N), P2O5, and K2O). In particular, the highest

values for organic matter, organic carbon, and total N ratios were determined in C. etunicatum and R. irregularis treatments,
while the highest values in P2O5 and K2O ratios were determined in C. etunicatum treatment. When the mean day (1, 2, and 3
days) intermittent irrigation treatments were examined, statistical differences were not observed in all parameters (Table 3).

The plant growth parameters and AMF analyzes

The effects of AMF species on the growth parameters of plants at different irrigation intervals are presented in Table 4. While

these parameters were at the highest values in 1-day interval irrigation conditions, gradual decreases were determined in 2-
and 3-day interval irrigations. However, it was determined that the plants forming AM symbiosis had the highest mean growth
parameters in general compared to the plants non-mycorrhiza. In the leaf color and turfgrass quality mean values, it was

determined that the growth parameters of plants forming symbiosis with C. etunicatum and R. irregularis were higher,
while the highest value in other parameters occurred in plants forming symbiosis with C. etunicatum (Table 4).

Considering the AMF parameters, it is seen that C. etunicatum treatment has the highest percentage of AMF root coloniza-

tion with an mean of 63.2%, while R. irregularis treatment has the highest soil spore density with an mean of 157 spores
g soil�1 (Table 4). One-day interval irrigations in plants forming symbiosis with F. mosseae; 1 and 2 days interval irrigations
in plants forming symbiosis with C. etunicatum; 2-day interval irrigations in plants forming symbiosis with R. irregularis, the
highest AMF colonization rate, and soil spore density occurred. While it was determined that mycorrhizal dependence
occurred in all treatments, a parallel increase was observed according to the irrigation intervals in general. Especially
C. etunicatum has the highest values in mycorrhizal dependence (Table 4).

Carbon dioxide (CO2) emission

The effects of AMF species on the CO2 emissions of plants at varying irrigation intervals are presented in Figure 3. In general,

CO2 emissions were at the highest values in 1-day interval irrigation conditions, while parallel reductions were determined in
2- and 3-day interval irrigations. However, in the non-mycorrhiza treatment, the mean CO2 emission from the soil was 3.5,
5.6, and 5.2% higher, respectively, compared to the F. mosseae, C. etunicatum, and R. irregularis mycorrhiza treatments

(Figure 3). Similarly, in all treatments, the soil moisture values decreased as the irrigation intervals increased (Figure 4).
The soil temperature parameter increases as the irrigation interval increases (Figure 5). The linear regression analysis results
showed that the relationship of CO2 with soil moisture and soil temperature was quite significant (P, 0.01) (Figure 6).
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Table 3 | Chemical soil properties in different mycorrhiza species and irrigation intervals

Mycorrhiza Irrigation intervals EC (ds m�1) pH Organic matter (%) Organic carbon (%) Total N (%) P2O5 (kg ha�1) K2O (kg ha�1)

Non-mycorrhiza 1 day 0.652+ 0.002ns 7.49+ 0.17 ns 0.88+ 0.02 ns 0.51+ 0.01 ns 0.042+ 0.001 ns 60.3+ 0.2 ns 666+ 9 ns
2 days 0.644 + 0.013 7.34 + 0.10 0.87+ 0.01 0.50+ 0.01 0.045+ 0.002 60.4+ 0.5 667+ 5
3 days 0.640 + 0.011 7.39 + 0.07 0.89+ 0.02 0.51+ 0.01 0.042+ 0.001 61.4+ 0.2 668+ 8
Mean 0.642+ 0.005ns 7.41+ 0.07ns 0.88+ 0.01 C** 0.51+ 0.01C** 0.043+ 0.001 B** 60.7+ 0.2 C** 667+ 4 C**

F. mosseae 1 day 0.624+ 0.008 ns 7.47+ 0.10 ns 0.93+ 0.02 ns 0.54+ 0.01 ns 0.047+ 0.003 ns 68.4+ 1.4 ns 678+ 4 ns
2 days 0.638 + 0.013 7.39 + 0.02 0.94+ 0.03 0.55+ 0.02 0.050+ 0.003 67.5+ 2.3 675+ 5
3 days 0.620 + 0.004 7.32 + 0.17 0.97+ 0.03 0.56+ 0.02 0.045+ 0.003 67.4+ 2.4 672+ 8
Mean 0.627 + 0.005 7.39 + 0.06 0.95+ 0.01 B 0.55+ 0.01 B 0.047+ 0.002 B 67.8+ 1.0 B 675+ 3 BC

C. etunicatum 1 day 0.646+ 0.012 ns 7.39+ 0.05 ns 0.99+ 0.02 ns 0.57+ 0.01 ns 0.055+ 0.006 ns 70.7+ 0.5 ns 684+ 8 ns
2 days 0.618 + 0.010 7.44 + 0.14 1.08+ 0.05 0.63+ 0.03 0.051+ 0.004 70.9+ 0.4 691+ 6
3 days 0.634 + 0.003 7.52 + 0.07 1.00+ 0.01 0.58+ 0.01 0.059+ 0.009 70.9+ 0.5 691+ 9
Mean 0.633 + 0.006 7.45 + 0.05 1.02+ 0.02 A 0.59+ 0.01 A 0.055+ 0.003 A 70.8+ 0.2 A 689+ 4 A

R. irregularis 1 day 0.635+ 0.014 ns 7.29+ 0.06 ns 1.00+ 0.07 ns 0.58+ 0.04 ns 0.053+ 0.003 ns 69.1+ 1.1 ns 687+ 2 ns
2 days 0.617 + 0.003 7.48 + 0.06 0.98+ 0.01 0.57+ 0.01 0.054+ 0.001 69.5+ 0.4 680+ 3
3 days 0.625 + 0.010 7.59 + 0.05 0.99+ 0.05 0.63+ 0.03 0.061+ 0.001 69.6+ 0.5 372+ 4
Mean 0.626 + 0.006 7.45 + 0.05 0.99+ 0.03 A 0.59+ 0.02 A 0.056+ 0.002 A 69.4+ 0.4 AB 680+ 2 AB

Mean 1 day 0.635+ 0.005 ns 7.41+ 0.05 ns 0,95+ 0.02 ns 0.55+ 0.01 ns 0.049+ 0.002 ns 67.1+ 1.3 ns 678+ 4 ns
2 days 0.629 + 0.006 7.41 + 0.04 0,97+ 0.03 0.56+ 0.02 0.050+ 0.002 67.1+ 1.3 678+ 3
3 days 0.630 + 0.004 7.45 + 0.05 0.96+ 0.02 0.57+ 0.01 0.052+ 0.003 67.3+ 1.2 676+ 4

Values with the lowercase letters (a,b,c) in each treatment are not significantly different when followed by Duncan’s multiple range test at *P, 0.05 and **P, 0.01, ns, non-significant.

Values with the capital letters (A,B,C) in each treatment’s mean are not significantly different when followed by Duncan’s multiple range test at *P, 0.05 and **P, 0.01, ns, non-significant.

Data in the table are indicated as mean+ SE.
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Table 4 | Turfgrass growth and mycorrhiza analyzes in different mycorrhiza species and irrigation intervals

Mycorrhiza
Irrigation
intervals

Leaf color
(1–9)

Turfgrass quality
(1–9)

Fresh weight
(g m�2)

Dry weight
(g m�2)

Root length
(cm)

AMF colonization
(%)

AMF spore
density
(spore g soil�1)

Mycorrhizal
dependency

Non-
mycorrhiza

1 day 5.6+ 0.6 ns 5.4+ 0.1 a** 283+ 24a* 68+ 7 a** 2.5+ 0.3 b** – – –

2 days 4.8+ 0.1 5.1+ 0.5 a 222+ 26a 50+ 1 b 3.8+ 0.2 a – – –

3 days 5.1+ 0.1 3.6+ 0.1 b 155+ 27b 17+ 2 c 2.6+ 0.3 b – – –

Mean 5.2+ 0.2 C** 4.7+ 0.3 C** 220+ 23 C** 45+ 8 D** 3.0+ 0.3 B** – – –

F. mosseae 1 day 7.0+ 0.4 ns 6.9+ 0.3 a* 349+ 25a** 82+ 18a** 3.6+ 0.3 a** 66.5+ 3.7 a** 153+ 3 a* þ17.1
2 days 7.0+ 0.2 6.6+ 0.4 ab 284+ 14b 63+ 4b 3.7+ 0.3 a 58.2+ 1.8 b 130+ 6 b þ26.0
3 days 6.7+ 0.2 5.6+ 0.1 b 165+ 12c 32+ 3c 2.1+ 0.3 b 32.3+ 6.5 c 137+ 3 b þ46.9
Mean 6.9+ 0.1 A 6.3+ 0.2 A 266+ 28 BC 59+ 9 C 3.1+ 0.4 B 52.3+ 5.6 B** 140+ 4 B** þ30.0

C. etunicatum 1 day 7.8+ 0.6 ns 7.6+ 0.4 a* 403+ 29a** 128+ 12a** 4.8+ 0.3 a* 64.5+ 2.9 ab* 153+ 9 a* þ46.9
2 days 6.8+ 0.1 6.8+ 0.4 ab 379+ 64b 110+ 7a 3.6+ 0.3 b 68.8+ 2.7 a 147+ 3 ab þ54.5
3 days 7.1+ 0.1 5.6+ 0.1 b 270+ 80c 67+ 4b 3.9+ 0.3 b 56.4+ 4.0 b 133+ 7 b þ74.6
Mean 7.2+ 0.2 A 6.6+ 0.3 A 351+ 29 A 102+ 10 A 4.1+ 0.4 A 63.2+ 2.4 A 144+ 4 B þ58.7

R. irregularis 1 day 6.6+ 0.6 ns 6.4+ 0.4 a* 350+ 12a** 119+ 3a** 4.5+ 0.4 a* 49.7+ 2.9 b* 143+ 3 b* þ42.9
2 days 5.8+ 0.1 5.8+ 0.5 a 289+ 45b 78+ 8b 3.5+ 0.3 b 54.5+ 4.5 a 167+ 9 a þ35.9
3 days 6.1+ 0.1 4.6+ 0.1 b 228+ 13c 47+ 7c 3.8+ 0.3 b 48.1+ 3.2 b 160+ 6 ab þ63.8
Mean 6.2+ 0.2 B 5.6+ 0.3 B 289+ 23 B 81+ 11 B 3.9+ 0.2 A 50.8+ 2.1 B 157+ 5 A þ47.5

Mean 1 days 6.7+ 0.4 A** 6.6+ 0.2 A** 346+ 16 A** 99+ 9 A** 3.9+ 0.3 A** 45.2+ 8.2 A** 112+ 20 ns þ26.7
2 days 6.1+ 0.2 B 6.1+ 0.3 B 293+ 25 B 75+ 7 B 3.7+ 0.1 A 45.4+ 8.1 A 111+ 20 þ29.1
3 day 6.3+ 0.2 AB 4.8+ 0.3 C 204+ 16 C 41+ 6 C 3.0+ 0.3 B 34.2+ 6.7 B 108+ 19 þ46.3

Values with the lowercase letters (a,b,c) in each treatment are not significantly different when followed by Duncan’s multiple range test at *P, 0.05 and **P, 0.01, ns, non-significant.

Values with the capital letters (A,B,C) in each treatment’s mean are not significantly different when followed by Duncan’s multiple range test at *P, 0.05 and **P, 0.01, ns, non-significant.

Data in the table are indicated as mean+ SE.
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DISCUSSION

This research investigated the effects of AM symbiosis on rhizosphere soil, turfgrass growth, and CO2 emissions from soil

under different irrigation intervals (intervals of 1, 2, and 3 days). While there was no change in EC and pH in mycorrhizal
rhizosphere soils at all irrigation intervals, an increase was determined in other parameters (organic matter, organic
carbon (C), total N, P2O5, and K2O) (Table 3). It is known that plant C allocation to mycorrhizal fungi in the rhizosphere

plays a dominant role in the formation and stabilization of organic matter through the production of mycorrhizal biomass,
exudates, and necromass (Schmidt et al. 2011; Cotrufo et al. 2013; Frey 2019). In addition to being an important nutrient
store for plants, this organic matter creates more than twice as much carbon (Schlesinger & Andrews 2000) and more

Figure 3 | Mean carbon dioxide emission in different mycorrhiza types and irrigation intervals.

Figure 4 | Mean soil moisture in different mycorrhiza types and irrigation intervals.

Figure 5 | Mean soil temperature in different mycorrhiza types and irrigation intervals.
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than 80% of soil nitrogen (N) than the atmosphere and terrestrial vegetation combined (Simpson et al. 2007). Yang et al.
(2011) also revealed that AMF treatments at different irrigation intervals can be a critical factor in the fixation of organic

carbon and total N in the soil. In particular, the organic carbon attached to the soil increases the mineralization of organic
phosphorus (P) (Zhang et al. 2016, 2018). As a result, AMF can increase plant growth by regulating the soil structure and
helping the plant to take up water and nutrients that it cannot reach (Wu et al. 2008; Celebi et al. 2010; Erman et al.
2011; Lazcano et al. 2014). In addition, some researchers have shown that the effect of AMF on plant growth is highest

even in soils with limited irrigation (Birhane et al. 2012; Ruzicka et al. 2012; Veresoglou et al. 2012). In our study, the
increase in the growth parameters of trufgrass plants forming AM symbiosis supports this result (Table 4). This effect is
especially prominent in C. etunicatum and R. irregularis species. As a matter of fact, when AMF parameters are examined,

it is seen that C. etunicatum treatments have the highest AMF colonization percentage, while R. irregularis treatments have
the highest soil spore density (Table 4). It has been observed that plants form a more effective symbiosis with mycorrhizal
fungi under water stress (Manoharan et al. 2010; Demir et al. 2022). In particular, the fact that C. etunicatum has the highest

values in both root colonization and mycorrhizal dependence shows that it forms a high degree of symbiosis with grass
(Table 4). Suharno et al. (2017) reported that C. etunicatum forms an effective symbiosis with plants belonging to the Poaceae
family.

The mean carbon dioxide (CO2) emission from soil was 3.5, 5.6 and 5.2% lower in F. mosseae, C. etunicatum and R. irre-
gularis treated soils, respectively (Figure 3). This case was evaluated as mycorrhiza provides organic carbon retention in the
soil. As a result of the study, the high organic carbon content in mycorrhizal soils also supports this case (Table 3). Mean CO2

emissions were 4.3 and 9.6% higher in 1-day intermittent irrigation compared to 2- and 3-day intermittent irrigations

(Figure 3). Cheng et al. (2012) and Averill et al. (2014) reported that mycorrhiza treatments reduce carbon emissions from
the soil. Paterson et al. (2016) also stated that mycorrhiza reduces organic matter mineralization in soil. As a matter of
fact, nitrogen in the soil can be oxidized and cause CO2 emissions (Yu et al. 2014). The ratio of organic C to total N in

the soil can affect CO2 emissions by changing the oxidation process and the amount of organic matter (Yerli & Şahin
2021). This case can be evaluated in relation to the fact that irrigation frequently changes the organic matter dynamics in
the soil and increases oxidation due to increased microorganism activity. Jabro et al. (2008) reported that increased microbial

activity with increasing soil moisture causes decomposition of organic matter and thus increases CO2 emissions. Similarly,
Sinaie et al. (2019) stated that with the decrease in soil moisture, microorganism activities slowed down and CO2 emissions
decreased accordingly. In our study, higher mean soil moisture (Figure 4) and lower mean soil temperature occurred in soils
with frequent irrigation (Figure 5). This case can be evaluated in relation to the cooling effect of water ingress into the soil.

Similarly, it is stated that the continuous application of water to the soil increases soil moisture and decreases soil tempera-
ture (Yerli & Şahin 2021). Mancinelli et al. (2015) reported that water ingress into the soil can create a cooling effect by
increasing soil moisture. This suggests that it activates the soil biology and increases the release of CO2 from the soil as a

result of mineralization. Soil moisture balance and processes can increase emissions by affecting the oxidation scale of
organic C and N (Morugan-Coronado et al. 2011). Senyigit & Akbolat (2010) stated that by reducing soil moisture, CO2 emis-
sions decreased. Yerli et al. (2019) noted that scarce irrigation practices reduce emissions. Du et al. (2019) and Zhao et al.

Figure 6 | The linear relationship of carbon dioxide with soil moisture and soil temperature.
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(2020) revealed that soil temperature, which affects mineralization, is positively related to CO2 emissions. Jabro et al. (2008)
reported that soil temperature increased CO2 emissions by 59%. In fact, the CO2 emission reduces when the water need of the
plants forming the AM symbiosis lowers (Cheng et al. 2012; Averill et al. 2014), and the results of our research are consistent
with this.

CONCLUSION

The study findings showed that AM symbiosis increases with increasing irrigation interval. In particular, CO2 emissions in
soil decreased in colonized plants of AMF. It can be said that the reason for this decrease is that AMF reduces the water

requirement in the plant. However, this symbiosis has also shown that turf plants improve growth and regulate soil structure
under varying irrigation intervals. Soil management that enhances the colonization of plant roots by arbuscular mycorrhizae
can contribute to more efficient use of water in changing environmental conditions, as well as reduce CO2 emissions and,

therefore, the environmental impact of agricultural practices.
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